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Let’s Go Sightseeing

Somewhere in the Bavarian Alps 1

This is actually a disclaimer: nothing formal in this talk.



Topics of Interest in UniBW Munich

• Asynchrous Remote Key Generation

• CCA1 (Fully) Homomorphic Encryption
• Isogeny-related ZKPoK
• Revokable/Tracable Key Attestation
• Updatable KEM
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How to register and authenticate users securely
without relying on passwords?

Motivation. It is going to be very hands on and applied. Hopefully everyone can follow and get something back. Probably not the most captivating topic (FHE) but this project is partially concluded (not attestation).



Web Authentication (WebAuthn)

As a W3C speci̇cation
An API allowing servers to register and authenticate users using public key cryptography
instead of passwords.

Example of strong authenticator: Yubikey

Physical device & cryptographic keys password 123C4r4mb42026.

WebAuthn + Client-To-Authenticator Protocol = FIDO2.

3

This is the context. Backed up by large organizations. W3C: International standards organization for WWW (1994). Includes CSS, HTML, XML, WebAssembly, EPUB, ... Something you POSSESS vs something you KNOW.
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WebAuthn: registration
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WebAuthn: authentication
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Digital Signatures: asymmetric primitive, guarantees that the owner of the secret key acknowledges the message/challenge.



Dealing with authenticator loss

Solution: always carry a backup authenticator and register both

They may be lost simultaneously.
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Dealing with authenticator loss

Better solution: Asynchronous Remote Key Generation (ARKG).

Introduced at ACM CCS 2020 by Frymann et al.

Multiple authenticators, only one is used during registration.

6



Applications

Where unlinkability and asynchrony are required.

Examples

• WebAuthn/FIDO2
• Unlinkable delegation of accounts
• Stealth addresses and signatures
• Anonymous encryption/KEM

Standardization: IETF draft currently being written.

7

Other applications. Running example will be backup but I can talk about the others if required.



Asynchronous Remote Key Generation (ARKG)

Setting: main and the backup or proxy.

Syntax

1. KGen 1 sk pk
2. DerivePK pk pk cred stored on server under User Info pk pk cred
3. DeriveSK sk cred sk
4. Check sk pk

8

Most of the time KGen = underlying algorithm.
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Asynchronous Remote Key Generation (ARKG)

Setting: main and the backup or proxy.

Syntax

1. KGen(1λ)→ (sk,pk)
2. DerivePK(pk)→ (pk′, cred) stored on server under

(

User Info,pk , (pk′, cred)
)

3. DeriveSK(sk , cred)→ sk′

4. Check(sk,pk)→ >/⊥

8

Most of the time KGen = underlying algorithm.



DLog-based ARKG instantiation

Setting: key pairs of the form (sk,pk) = (s,gs), examples: Schnorr, ECDSA, ElGamal.

DerivePK pk

1 e E KGen 1
2 k KDF1 pke

3 P gk pk
4 return pk P cred E

DeriveSK sk cred E

1 k KDF1 Esk

2 return sk k sk

9

Explain DL. Mention the other components: KGen, Check, KDF_2, MAC, and why. AT THE END: show DH and KEM.



DLog-based ARKG instantiation

Setting: key pairs of the form (sk,pk) = (s,gs), examples: Schnorr, ECDSA, ElGamal.

DerivePK(pk)
1 : (e, E)← KGen(1λ)
2 : k← KDF1(pke )

3 : P← gk · pk
4 : return pk′ = P, cred = E

DeriveSK(sk, cred = E)

1 : k← KDF1(Esk )
2 : return sk′ = k+ sk

9

Explain DL. Mention the other components: KGen, Check, KDF_2, MAC, and why. AT THE END: show DH and KEM.



General(?) ARKG instantiation (using KEM)

Setting: key pairs (sk∆ , pk∆ ) for a (signature) scheme ∆ and (skΠ,pkΠ) for a KEM Π.

DerivePK pk pk pk

1 K ct KEM Encaps pk
2 k KDF1 K
3 P BlindPK pk k
4 return pk P cred ct

DeriveSK sk sk sk cred ct

1 K KEM Decaps sk ct
2 k KDF1 K
3 return sk BlindSK sk k

10

Introduce KEM, example with DL. Note that two keys in input. With BL-ARKG we only have one. rejection sampling. Talk about ECDSA, Kyber, SQISign, RSA



General(?) ARKG instantiation (using KEM)

Setting: key pairs (sk∆ , pk∆ ) for a (signature) scheme ∆ and (skΠ,pkΠ) for a KEM Π.

DerivePK(pk = (pk∆,pkΠ))

1 : (K, ct)← KEM.Encaps(pkΠ)
2 : k← KDF1(K)
3 : P← BlindPK(pk∆, k)
4 : return pk′∆ = P, cred = ct

DeriveSK(sk = (sk∆, skΠ), cred = ct)

1 : K ← KEM.Decaps(skΠ, ct)
2 : k← KDF1(K)
3 : return sk′∆ = BlindSK(sk∆, k)

10

Introduce KEM, example with DL. Note that two keys in input. With BL-ARKG we only have one. rejection sampling. Talk about ECDSA, Kyber, SQISign, RSA



Security of ARKG

Must follow the WebAuthn requirements.

Secret-Key Secrecy
An adversary cannot generate valid sk pk cred .
Multiple variants: honest/malicious and weak/strong.

ms mw hw and ms hs hw

Public-Key Unlinkability
An adversary with access to pk cannot tell derived keys pk from freshly generated ones.
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PK-Unlinkability

12

Obviously this does not include additional metadata! EMPHASIZE: derived keys are used to register.



Current State of ARKG: Existing Schemes

Discrete Logarithm and Bilinear Keys

• [FGKLMN20] original Dlog-based scheme.
• [FGMN23] general framework for pairings.
• [MN25] distributed ARKG.

Targeting Dilithium signature scheme (lattice-based)

• [FGM23] based on split-KEMs and rejection sampling (Kyber).
• [BCF23] using only KEM to share randomness (Kyber, fully trusted delegator)

Targeting variants of CSI-FiSh, Dilithium and LegRoast

• [W23] also uses Kyber, focuses on blinding schemes.

13



Digression: An Annoying Obstruction

Blinding keys: pk′ ← BlindPK(pk, k) .

For DLog: pk pk gk or pkk.
For isogenies: pk k pk.
For lattices:

pk A A sk e A k A A sk k e

with e and sk vectors sampled from Gaussian distributions.
What about the distribution of sk ?

2

So sk is not distributed in the same way as a fresh key.

14

sqrt2 is not big but many samples! Oracle Opk in PKU game.
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Blinding keys: pk′ ← BlindPK(pk, k) .
For DLog: pk′ ← pk · gk or pkk.
For isogenies: pk′ ← φk · pk.
For lattices:

pk′ ← (A, (A · sk+ e) + (A · k)) = (A,A · (sk+ k) + e)

with e and sk vectors sampled from Gaussian distributions.
What about the distribution of sk′?

Gσ + Gσ ∼ G√2σ

So sk′ is not distributed in the same way as a fresh key.

14

sqrt2 is not big but many samples! Oracle Opk in PKU game.



Solution: Rejection Sampling

15



Security of the Dlog-based instantiation

Secret-Key Secrecy

Honest-strong⇐ Dlog assumption in standard model.

Malicious-strong⇐ snPRF-ODH assumption in the ROM.

Public-Key Unlinkability
Follows from the nnPRF-ODH assumption in the ROM.

snPRF-ODH: introduced to study TLS1.3.

16

PRF-ODH: about distinguishing PRF( pk^e ) from random sampling knowing pk and E + Oracles
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Extension to Pairings: Generic Security Properties

-AKG: An asymmetric scheme together with a map Gsk Gpk Gpk.
Let KDF1 (and KDF2, MAC) be a secure function.

Theorem (msKS/mwKS-Secret-Key Secrecy)
If -AKG KDF1 is secure under the snPRF-O assumption, the compiled ARKG scheme is
msKS-secure (and therefore mwKS-secure).

Theorem (Public-Key Unlinkability)
If -AKG KDF1 is secure under the nnPRF-O assumption, the compiled ARKG scheme
satis̃es PK-unlinkability.

17



Extension to Pairings: Generic Security Properties

φ-AKG: An asymmetric scheme together with a map φ : Gsk × Gpk → Gpk.

Let KDF1 (and KDF2, MAC) be a secure function.

Theorem (msKS/mwKS-Secret-Key Secrecy)
If -AKG KDF1 is secure under the snPRF-O assumption, the compiled ARKG scheme is
msKS-secure (and therefore mwKS-secure).

Theorem (Public-Key Unlinkability)
If -AKG KDF1 is secure under the nnPRF-O assumption, the compiled ARKG scheme
satis̃es PK-unlinkability.

17



Extension to Pairings: Generic Security Properties

φ-AKG: An asymmetric scheme together with a map φ : Gsk × Gpk → Gpk.
Let KDF1 (and KDF2, MAC) be a secure function.

Theorem (msKS/mwKS-Secret-Key Secrecy)
If (φ-AKG, KDF1) is secure under the snPRF-Oφ assumption, the compiled ARKG scheme is
msKS-secure (and therefore mwKS-secure).

Theorem (Public-Key Unlinkability)
If (φ-AKG, KDF1) is secure under the nnPRF-Oφ assumption, the compiled ARKG scheme
satis̃es PK-unlinkability.

17



Instantiation: Bilinear Groups

A description of a bilinear group is a tuple G1 G2 GT g1 g2 e p such that

• G1, G2 and GT are cyclic groups of prime order p,
• G1 (resp. G2) is generated by element g1 (resp. g2),
• e G1 G2 GT is a non-degenerate bilinear pairing,
• G2 G1 is an isomorphism.

e ga1 gb2 e g1 gb2 a e ga1 g2 b e g1 g2 ab

Assumptions on G1 and G2 (CDH, DDH, ...) and on the e˾cient computability of 1 (the
type of ): XDH, SXDH, DBDH, ...

18
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Building φ and Unlinkability with a Pairing

Asymmetric keys parametrized by exponent vectors: (sk(~x),pk(~x)) with ~x ∈ Z
n1+n2+nT
p .

Example: Type-1 group with x x1 x2 and sk x pk x x1 x2 gx1 gx2
Under nnPRF- :

PK-Unlinkability PRF sk x pk y z $ Gsk
sk x pk y Z $ GT

Mapping for Camenisch-Lysyanskaya signatures
Bilinear group of type 1: e GT

sk x pk y x1 x2 gy1 gy2 e gy1 gy2 x1x2 gx1x2y1y2T

PK-Unlinkability gQ x y
T Z $ GT

19

Parallel with DLog. MENTION THE ROM.
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Reduction to decisional UBER-assumption familly

Parametrization for Camenisch-Lysyanskaya signatures
4-multivariate polynomial vectors: ~F, ~H, ~K in X1, X2, Y1, Y2:

~F = (X1, X2), ~H = (Y1, Y2), ~K = ∅

Q(X1, X2, Y1, Y2) = X1X2Y1Y2.

F H K Q -Decisional UBER experiment

Given gF x y1 , gH x y
2 and gK x y

T , distinguish gQ x y
T from random sampling on GT .

Read: given pk x and E pk y , distinguish e sk y pk x from random sampling on
GT ( PK-Unlinkability by a reduction result).

20
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4-multivariate polynomial vectors: ~F, ~H, ~K in X1, X2, Y1, Y2:

~F = (X1, X2), ~H = (Y1, Y2), ~K = ∅

Q(X1, X2, Y1, Y2) = X1X2Y1Y2.

(~F, ~H, ~K,Q)-Decisional UBER experiment

Given g~F(~x,~y)1 , g~H(~x,~y)2 and g~K(~x,~y)T , distinguish gQ(~x,~y)T from random sampling on GT .

Read: given pk(~x) and E = pk(~y), distinguish φ(e = sk(~y),pk(~x)) from random sampling on
GT (⇒ PK-Unlinkability by a reduction result).
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Concrete assumption for CL: DBDH

DBDH experiment
Given (gx,gy,gz) with (x, y, z)←$ Z3p distinguish g

xyz
T from random sampling on GT .

DBDH Decisional F H K Q -Decisional UBER assumption PK-Unlinkability.
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Concrete assumption for CL: DBDH

DBDH experiment
Given (gx,gy,gz) with (x, y, z)←$ Z3p distinguish g

xyz
T from random sampling on GT .

DBDH⇒ Decisional (~F, ~H, ~K,Q)-Decisional UBER assumption⇒ PK-Unlinkability.
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More Complicated Keys

Waters signature scheme (type 1):

sk = (gx11 , x2, . . . , xl), pk = (gx1T ,g
x2
2 , . . . ,g

xl
2 )

The mapping φ used:

(gx11 , x2, . . . , xl), (g
y1
T ,g

y2
2 , . . . ,g

yl
2 ) 7→ (gy1T )

x1e(gx11 ,g
y2
2 )e(g

x2
1 ,g

y2
2 ) · · · e(g

xl
1 ,g

yl
2 ).
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Results: Instantiations of ARKG for Pairing-Based Signature Schemes

Type-1 (DBDH assumption)

• BLS-1 (trusted CRS)
• Camenisch-Lysyanskaya

Type-3 (SXDH assumption)
• BLS-3
• Pointcheval-Sanders
• SPS-EQ
• Waters

Type-1 (((X1, Y1),∅,∅, X1Y1(X1 + Y1))-UBER)
• BLS-1
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Performances

Table 1: Mean time in milliseconds for each ARKG algorithm. BLS-1/3 and CL are written in C while
PS, SPS-EQ and Waters are implemented in python.

DerivePK DeriveSK Check ARKG total AKG.KGen
BLS-1 3.56 1.07 0.63 5.26 0.63
BLS-3 2.92 0.99 0.62 4.53 0.61
CL 5.36 0.89 2.21 6.26 2.24
PS 99.23 8.29 0.89 107.52 0.94
SPS-EQ 123.34 17.13 10.89 140.47 5.62
Waters 127.40 17.12 11.52 144.52 8.96

https://gitlab.surrey.ac.uk/sccs/bp-arkg
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How to backup access to more than one proxy in a
thresholded manner?



The Trivial Case: N-out-of-N Threshold

DerivePK((pk1 = gs1 , . . . ,pkN = gsN))

1 : pk← pk1 · · · pkN = g
∑

i si

2 : (e, E)← KGen
3 : k← KDF1(pke )

4 : P← gk · pk
5 : return pk′ = P, cred = E

DeriveSK((sk1 = s1, · · · , skN = sN), cred = E)

1 : sk←
∑

i
si

2 : k← KDF1(Esk )
3 : return sk′ = k+ sk

Non-interactive 2-out-of-N ARKG: hard but possible with pairings.
Non-interactive 1-out-of-N ARKG MP-NIKE iO, multilinear maps.
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DeriveSK((sk1 = s1, · · · , skN = sN), cred = E)

1 : sk←
∑

i
si

2 : k← KDF1(Esk )
3 : return sk′ = k+ sk

Non-interactive 2-out-of-N ARKG: hard but possible with pairings.
Non-interactive 1-out-of-N ARKG⇒ MP-NIKE⇒? iO, multilinear maps.
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dARKG: General Goal and Context

Multiple Proxies (backups) chosen by one Delegator (main).

Observations

• Proxy/Delegator interactivity is not an issue.
• Proxy/Proxy interactivity unwanted.

Solution:

• 1-Round Publicly Veri̇able Asymmetric Key Agreement (1PVAKA).
• Blinding scheme.
• Threshold secret sharing.

26

Universal Composability Canetti was too complicated, YOSO style.
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Asymmetric Key Agreement: Generation

27

This is the first step: building an AKA scheme
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Asymmetric Key Agreement: Aggregation
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Asymmetric Key Agreement: Recovery
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Asymmetric Key Agreement: Recovery

27

We obtain a 1-out-of-N ARKG!!!



In Practice: Long-Term Encryption Keys
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Actually not as clever as it sounds in practice.
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Asymmetric Key Agreement: Generation

Information sent from each proxy:
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Asymmetric Key Agreement: Aggregation

Aggregation of the public keys and shares by the Delegator:

28



Asymmetric Key Agreement: Aggregation

Optimization using additively homomorphic encryption:
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Recall the General ARKG Algorithms

Setting: key pairs of the form (sk∆,pk∆ ) = (s,gs).

DerivePK(pk∆)
1 : (e, E)← KGen
2 : k← KDF1(pke∆ )

3 : P← gk · pk∆ return pk′ = P, cred = E

DeriveSK(sk∆, cred = E)

1 : k← KDF1(Esk∆ )

2 : return sk′ = k+ sk∆

In dARKG, generate pk∆ using AKA and add the shares to the credentials.
Yields a 1-out-of-N dARKG construction with minimal interactions.
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Robustness: Malicious Proxy During AKA Generation
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Robustness Using Veri̇able Encryption (VE)

Witness/statement relation:

(sk∆,i) R (eki,pk∆,i, ct)
⇔ct = Enc(eki, sk∆,i) with gsk∆ i = pk∆,i.
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Decentralized ARKG

Shared key pk∆: created via 1-Round Publicly-Veri̇able AKA using the delegator as relay.

VE: Multi-recipient encryption + custom NIZK.
Additively homomorphic encryption to compress ciphertexts and thus credentials.
Blinding k: for unlinkability.
Threshold k : shared blinding factor created by the delegator.
Encrypted for each proxy using standard PKE.

pk
i qual

pk i pk gk gk pk

credi VE Enc eki sk i Enc eki shi MAC

sk
i qual

sk i k k

1PVAKA, Threshold, Blinding.
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Decentralized ARKG

Shared key pk∆: created via 1-Round Publicly-Veri̇able AKA using the delegator as relay.
VE: Multi-recipient encryption + custom NIZK.
Additively homomorphic encryption to compress ciphertexts and thus credentials.
Blinding k: for unlinkability.
Threshold k′: shared blinding factor created by the delegator.
Encrypted for each proxy using standard PKE.

pk∆ =
∏

i∈qual
pk∆,i pk′ = gk · gk

′

· pk∆

credi = {VE.Enc(eki, sk∆,i),Enc(eki, shi),MAC(...), ...}
sk′ =

∑

i∈qual

sk∆,i + k′ + k .

1PVAKA, Threshold, Blinding.
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dARKG: Results and Performances

New syntax and security models for 1PVAKA and dARKG along with generic constructions.
Instantiation based on additive ElGamal and pairing-friendly curve BLS12-381.
https://gitlab.com/rv5MDg/jupyter-notebook-darkg

N, t 2, 1 4, 1 4, 3 8, 1 8, 7 16, 1 16, 15
KGenProxy 0.5 1.0 2.1 4.0
DeriveSK 0.01 0.01 0.3 0.1 0.7 0.1 1.4

Table 2: Each proxy’s runtime (in sec). N: number of proxies, t: threshold.

N, t 2, 1 4, 1 4, 3 8, 1 8, 7 16, 1 16, 15
KGenDeleg 0.7 3.2 14.4 54.3
DerivePK 0.3 0.6 0.6 1.4 1.4 2.4 2.8

Table 3: Delegator’s runtime (in sec). N: number of proxies, t: threshold.
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Thank You for Your Attention!

Eibsee 32


