ACCESS RECOVERY AND ATTESTATION USING STRONG AUTHENTICATORS

Asynchronous Remote Key Generation & Key Attestation

January 06, 2026

Hugo Nartz
gitlab.com/rv5MDg

Happy . New . Year

https://gitlab.com/rv5MDg

Let's Go Sightseeing

Somewhere in the Bavarian Alps

This is actually a disclaimer: nothing formal in this talk.

Topics of Interest in UniBW Munich

- Asynchrous Remote Key Generation

Topics of Interest in UniBW Munich

- Asynchrous Remote Key Generation

- CCA1 (Fully) Homomorphic Encryption

Topics of Interest in UniBW Munich

- Asynchrous Remote Key Generation
- CCA1 (Fully) Homomorphic Encryption
- Isogeny-related ZKPoK

Topics of Interest in UniBW Munich

- Asynchrous Remote Key Generation

- CCA1 (Fully) Homomorphic Encryption
- Isogeny-related ZKPoK

- Revokable/Tracable Key Attestation

Topics of Interest in UniBW Munich

- Asynchrous Remote Key Generation

- CCA1 (Fully) Homomorphic Encryption
- Isogeny-related ZKPoK

- Revokable/Tracable Key Attestation

- Updatable KEM

Topics of Interest in UniBW Munich

- Asynchrous Remote Key Generation

- CCA1 (Fully) Homomorphic Encryption
- Isogeny-related ZKPoK

- Revokable/Tracable Key Attestation

- Updatable KEM

How to register and authenticate users securely
without relying on passwords?

Motivation. It is going to be very hands on and applied. Hopefully everyone can follow and get something back. Probably not the most captivating topic (FHE) but this project is partially concluded (not attestation).

Web Authentication (WebAuthn)

This is the context. Backed up by large organizations. W3C: International standards organization for WWW (1994). Includes CSS, HTML, XML, WebAssembly, EPUB, ... Something you POSSESS vs something you KNOW.

Web Authentication (WebAuthn)

As a W3C specification

An API allowing servers to register and authenticate users using public key cryptography
instead of passwords.

This is the context. Backed up by large organizations. W3C: International standards organization for WWW (1994). Includes CSS, HTML, XML, WebAssembly, EPUB, ... Something you POSSESS vs something you KNOW.

Web Authentication (WebAuthn)

As a W3C specification

An API allowing servers to register and authenticate users using public key cryptography
instead of passwords.

Example of strong authenticator: Yubikey

This is the context. Backed up by large organizations. W3C: International standards organization for WWW (1994). Includes CSS, HTML, XML, WebAssembly, EPUB, ... Something you POSSESS vs something you KNOW.

Web Authentication (WebAuthn)

As a W3C specification

An API allowing servers to register and authenticate users using public key cryptography
instead of passwords.

Example of strong authenticator: Yubikey

Physical device & cryptographic keys > password 123C4r4mb42026.

This is the context. Backed up by large organizations. W3C: International standards organization for WWW (1994). Includes CSS, HTML, XML, WebAssembly, EPUB, ... Something you POSSESS vs something you KNOW.

Web Authentication (WebAuthn)

As a W3C specification

An API allowing servers to register and authenticate users using public key cryptography
instead of passwords.

Example of strong authenticator: Yubikey

Physical device & cryptographic keys > password 123C4r4mb42026.

WebAuthn

This is the context. Backed up by large organizations. W3C: International standards organization for WWW (1994). Includes CSS, HTML, XML, WebAssembly, EPUB, ... Something you POSSESS vs something you KNOW.

Web Authentication (WebAuthn)

As a W3C specification

An API allowing servers to register and authenticate users using public key cryptography
instead of passwords.

Example of strong authenticator: Yubikey

Physical device & cryptographic keys > password 123C4r4mb42026.

WebAuthn + Client-To-Authenticator Protocol

This is the context. Backed up by large organizations. W3C: International standards organization for WWW (1994). Includes CSS, HTML, XML, WebAssembly, EPUB, ... Something you POSSESS vs something you KNOW.

Web Authentication (WebAuthn)

As a W3C specification

An API allowing servers to register and authenticate users using public key cryptography
instead of passwords.

Example of strong authenticator: Yubikey

Physical device & cryptographic keys > password 123C4r4mb42026.

WebAuthn + Client-To-Authenticator Protocol = FIDO2.

This is the context. Backed up by large organizations. W3C: International standards organization for WWW (1994). Includes CSS, HTML, XML, WebAssembly, EPUB, ... Something you POSSESS vs something you KNOW.

WebAuthn: registration

Relying Party

RP's javascript application

....... WebAuthn APl =+++---

Web Browser

S Authenticator

WebAuthn: registration

Relying Party

RP's javascript application

....... WebAuthn APl =+++---

Web Browser

S Authenticator

WebAuthn: registration

Relying Party

RP's javascript application

P N
E pk, Sign(sk, C) { I PR WebAuthn APl +«evx--

Web Browser

KGen, Sign

sk, pk NE Authenticator

WebAuthn: registration

L) Relying Party
0
Verify RP's javascript application
g E WebAuthn APl +«evs--

User info, pk
ser info, p Web Browser

L]
| o) e Authenticator
L

WebAuthn: authentication

Relying Party

RP's javascript application

....... WebAuthn APl =+++---

Web Browser

S Authenticator

WebAuthn: authentication

UU48
ussnm

|

Relying Party

RP's javascript application

Sign(sk, C) ﬁ ------- WebAuthn APl -+ -----

Web Browser

Sign

sk, pk N D Authenticator

WebAuthn: authentication

UU48

Relying Party
Uusens

Verify RP's javascript application
....... WebAuthn APl +++----

Web Browser

S Authenticator

Digital Signatures: asymmetric primitive, guarantees that the owner of the secret key acknowledges the message/challenge.

Dealing with authenticator loss

Dealing with authenticator loss

Solution: always carry a backup authenticator and register both

o)
)

o
L]

Dealing with authenticator loss

Solution: always carry a backup authenticator and register both

f
|

Crr
LJ

~

\
R

They may be lost simultaneously.

Dealing with authenticator loss

Better solution: Asynchronous Remote Key Generation (ARKG).
Introduced at ACM CCS 2020 by Frymann et al.

Multiple authenticators, only one is used during registration.

Where unlinkability and asynchrony are required.

Examples
- WebAuthn/FIDO2
- Unlinkable delegation of accounts
- Stealth addresses and signatures

-+ Anonymous encryption/KEM

Standardization: IETF draft currently being written.

Other applications. Running example will be backup but I can talk about the others if required.

Asynchronous Remote Key Generation (ARKG)

Setting: /main and the [Backupl or [PFOXY.

Most of the time KGen = underlying algorithm.

Asynchronous Remote Key Generation (ARKG)

Setting: /main and the [Backupl or [PFOXY.

Syntax
1. KGen(1*) — (sk, pk)

Most of the time KGen = underlying algorithm.

Asynchronous Remote Key Generation (ARKG)

Setting: /main and the [Backupl or [PFOXY.
Syntax
1. KGen(1*) — (sk, pk)
2. DerivePK(pk) — (pk’,cred) ~ stored on server under (User Info, pk, (pk’, cred))

Most of the time KGen = underlying algorithm.

Asynchronous Remote Key Generation (ARKG)

Setting: /main and the [Backupl or [PFOXY.

Syntax
1. KGen(1*) — (sk, pk)
2. DerivePK(pk) — (pk’,cred) ~ stored on server under (User Info, pk, (pk’, cred))

3. DeriveSK(sk,cred) — sk’

Most of the time KGen = underlying algorithm.

Asynchronous Remote Key Generation (ARKG)

Setting: /main and the [Backupl or [PFOXY.

Syntax
1. KGen(1*) — (sk, pk)
2. DerivePK(pk) — (pk’,cred) ~ stored on server under (User Info, pk, (pk’, cred))

3. DeriveSK(sk,cred) — sk’
4. Check(sk, pk) — T/L

Most of the time KGen = underlying algorithm.

DLog-based ARKG instantiation

Setting: key pairs of the form (BKJBK) = (s, g°), examples: Schnorr, ECDSA, ElGamal.

Explain DL. Mention the other components: KGen, Check, KDF_2, MAC, and why. AT THE END: show DH and KEM.

DLog-based ARKG instantiation

Setting: key pairs of the form (BKJBK) = (s, g°), examples: Schnorr, ECDSA, ElGamal.

DerivePK(pk)
1: (e,E) + KGen(1*)
2: R+« KDFy(pk®)

3: P+ gf. pk
4: return pk' = P,cred = F

DeriveSK(sk, cred = E)
1: R4+ KDF(E%K)
2: return sk’ = R+ sk

Explain DL. Mention the other components: KGen, Check, KDF_2, MAC, and why. AT THE END: show DH and KEM.

General(?) ARKG instantiation (using KEM)

Setting: key pairs (SKal, [PKR)) for a (signature) scheme A and (skn, pky) for a KEM M.

Introduce KEM, example with DL. Note that two keys in input. With BL-ARKG we only have one. rejection sampling. Talk about ECDSA, Kyber, SQISign, RSA

General(?) ARKG instantiation (using KEM)

Setting: key pairs (SKal, [PKR)) for a (signature) scheme A and (skn, pky) for a KEM M.

DerivePK(pk = (pka,pkp))
1: (K, ct) < KEM.Encaps(pkp)
2: R+ KDFy(K)

3: P+« BlindPK(pky,R)

4: return pkly = P, cred = ct

DeriveSK(sk = (ska,skn), cred = ct)

1: K<« KEM.Decaps(skn, ct)
2: k<« KDFy(K)
3: return sky = BlindSK(ska, R)

Introduce KEM, example with DL. Note that two keys in input. With BL-ARKG we only have one. rejection sampling. Talk about ECDSA, Kyber, SQISign, RSA

Security of ARKG

1

Security of ARKG

Must follow the WebAuthn requirements.

1

Security of ARKG

Must follow the WebAuthn requirements.

Secret-Key Secrecy

An adversary cannot generate valid (sk’, pk’, cred).
Multiple variants: honest/malicious and weak/strong.

ms = mw = hw and ms = hs = hw.

1

Security of ARKG

Must follow the WebAuthn requirements.

Secret-Key Secrecy

An adversary cannot generate valid (sk’, pk’, cred).
Multiple variants: honest/malicious and weak/strong.

ms = mw = hw and ms = hs = hw.

Public-Key Unlinkability

An adversary with access to |pk cannot tell derived keys pk’ from freshly generated ones.

1

PK-Unlinkability

> PK 4T
- —— 5:1
T

pk

Obviously this does not include additional metadata! EMPHASIZE: derived keys are used to register.

Current State of ARKG: Existing Schemes

Discrete Logarithm and Bilinear Keys

- [FGKLMN20] original Dlog-based scheme.
- [FGMN23] general framework for pairings.
- [MN25] distributed ARKG.

Targeting Dilithium signature scheme (lattice-based)

- [FGM23] based on split-KEMs and rejection sampling (Kyber).
- [BCF23] using only KEM to share randomness (Kyber, fully trusted delegator)

Targeting variants of CSI-FiSh, Dilithium and LegRoast

- [W23] also uses Kyber, focuses on blinding schemes.

Digression: An Annoying Obstruction

Blinding keys: pk’ < BlindPK(pk, R).

14

sqrt2 is not big but many samples! Oracle Opk in PKU game.

Digression: An Annoying Obstruction

Blinding keys: pk’ < BlindPK(pk, R).
For DLog: pk’ + pk - g* or pk*.

14

sqrt2 is not big but many samples! Oracle Opk in PKU game.

Digression: An Annoying Obstruction

Blinding keys: pk’ < BlindPK(pk, R).
For DLog: pk’ + pk - g* or pk*.
For isogenies: pk’ < ¢y - pk.

14

sqrt2 is not big but many samples! Oracle Opk in PKU game.

Digression: An Annoying Obstruction

Blinding keys: pk’ < BlindPK(pk, R).
For DLog: pk’ + pk - g* or pk*.
For isogenies: pk’ < ¢y - pk.
For lattices:
pk’ < (A, (A-sk+e)+ (A-k)) = (A A (sk+k)+e)

14

sqrt2 is not big but many samples! Oracle Opk in PKU game.

Digression: An Annoying Obstruction

Blinding keys: pk’ < BlindPK(pk, R).
For DLog: pk’ + pk - g* or pk*.
For isogenies: pk’ < ¢y - pk.
For lattices:
pk’ < (A, (A-sk+e)+ (A-k)) = (A A (sk+k)+e)

with e and sk vectors sampled from Gaussian distributions.

14

sqrt2 is not big but many samples! Oracle Opk in PKU game.

Digression: An Annoying Obstruction

Blinding keys: pk’ < BlindPK(pk, R).
For DLog: pk’ + pk - g* or pk*.
For isogenies: pk’ < ¢y - pk.
For lattices:
pk’ < (A, (A-sk+e)+ (A-k)) = (A A (sk+k)+e)

with e and sk vectors sampled from Gaussian distributions.
What about the distribution of sk’?

14

sqrt2 is not big but many samples! Oracle Opk in PKU game.

Digression: An Annoying Obstruction

Blinding keys: pk’ < BlindPK(pk, R).
For DLog: pk’ + pk - g* or pk*.
For isogenies: pk’ < ¢y - pk.
For lattices:
pk’ < (A, (A-sk+e)+ (A-k)) = (A A (sk+k)+e)

with e and sk vectors sampled from Gaussian distributions.
What about the distribution of sk’?

ga‘ + gcr ~ g\/ia'

So sk’ is not distributed in the same way as a fresh key.

14

sqrt2 is not big but many samples! Oracle Opk in PKU game.

Solution: Rejection Sampling

Security of the Dlog-based instantiation

Secret-Key Secrecy

Honest-strong < Dlog assumption in standard model.
Malicious-strong < snPRF-ODH assumption in the ROM.

Public-Key Unlinkability
Follows from the nnPRF-ODH assumption in the ROM.

PRF-ODH: about distinguishing PRF(pk^e) from random sampling knowing pk and E + Oracles

Security of the Dlog-based instantiation

Secret-Key Secrecy

Honest-strong < Dlog assumption in standard model.
Malicious-strong < snPRF-ODH assumption in the ROM.

Public-Key Unlinkability
Follows from the nnPRF-ODH assumption in the ROM.

snPRF-ODH: introduced to study TLS1.3.

PRF-ODH: about distinguishing PRF(pk^e) from random sampling knowing pk and E + Oracles

Extension to Pairings: Generic Security Properties

Extension to Pairings: Generic Security Properties

¢$-AKG: An asymmetric scheme together with a map ¢ : Gsx X Gpr — Gpy.

Extension to Pairings: Generic Security Properties

¢$-AKG: An asymmetric scheme together with a map ¢ : Gsx X Gpr — Gpy.
Let KDF, (and KDF,, MAC) be a secure function.

Theorem (msKS/mwKS-Secret-Key Secrecy)

If (¢-AKG, KDF,) is secure under the snPRF-O, assumption, the compiled ARKG scheme is
msKS-secure (and therefore mwKS-secure).

Theorem (Public-Key Unlinkability)

If (¢-AKG, KDF;) is secure under the nnPRF-O, assumption, the compiled ARKG scheme
satisfies PK-unlinkability.

Instantiation: Bilinear Groups

Instantiation: Bilinear Groups

A description of a bilinear group G is a tuple (G, Gy, Gr, g1, g2, €,7, p) such that

- Gy, G, and Gy are cyclic groups of prime order p,
- G, (resp. G,) is generated by element g4 (resp. g»),
- e:Gy x G — Gy is a non-degenerate bilinear pairing,

- v: Gy — Gy is an isomorphism.

e(9y, %) = e(g1,95)" = e(gy,92)" = e(g1,92)*".

Instantiation: Bilinear Groups

A description of a bilinear group G is a tuple (G, Gy, Gr, g1, g2, €,7, p) such that

- Gy, G, and Gy are cyclic groups of prime order p,
- G, (resp. G,) is generated by element g4 (resp. g»),
- e:Gy x G — Gy is a non-degenerate bilinear pairing,

- v: Gy — Gy is an isomorphism.

e(9y, %) = e(g1,95)" = e(gy,92)" = e(g1,92)*".

Assumptions on Gy and G, (CDH, DDH, ...) and on the efficient computability of v/~ (the
type of G): XDH, SXDH, DBDH, ...

Building ¢ and Unlinkability with a Pairing

Asymmetric keys parametrized by exponent vectors: (sk(X), pk(X)) with X € Zy' ™"+

19

Parallel with DLog. MENTION THE ROM.

Building ¢ and Unlinkability with a Pairing

Asymmetric keys parametrized by exponent vectors: (s} (X), pk(X)) with X € Zg+m+.
Example: Type-1 group with X = (xq,X;) and (sk(X), pk(X)) = ((x1,%2), (", g))

19

Parallel with DLog. MENTION THE ROM.

Building ¢ and Unlinkability with a Pairing

Asymmetric keys parametrized by exponent vectors: (sl (X), pk(X)) with X € Zg+m+.
Example: Type-1 group with X = (x1,X;) and (sk(X), pk(X)) = ((x1,x2), (", g))
Under nnPRF-Oy:
PK-Unlinkability < PRF(ig(sk(X), pk(¥)) ~ z <5 Gk
& B(sk(X), pk(¥)) ~ Z' < Gr.

19

Parallel with DLog. MENTION THE ROM.

Building ¢ and Unlinkability with a Pairing

Asymmetric keys parametrized by exponent vectors: (s} (X), pk(X)) with X € Zg+m+.
Example: Type-1 group with X = (xq,%;) and (sk(X), pk(X)) = ((x1,%2), (g, g°?))
Under nnPRF-Oy:

PK-Unlinkability < PRF(ig(sk(X), pk(¥)) ~ z <5 Gk
& B(sk(X), pk(¥)) ~ Z' < Gr.

Mapping ¢ for Camenisch-Lysyanskaya signatures
Bilinear group G of type 1: e : G x G — Gy

¢(sk(X), pk(¥)) = &((x1,X2), (9", ")) := e(g", ")™ = g7"".

19

Parallel with DLog. MENTION THE ROM.

Building ¢ and Unlinkability with a Pairing

Asymmetric keys parametrized by exponent vectors: (sl (X), pk(X)) with X € Zg+m+.
Example: Type-1 group with X = (xq,X;) and (sk(X), pk(X)) = ((x1,%2), (", g))
Under nnPRF-Oy:
PK-Unlinkability < PRF(ig(sk(X), pk(¥)) ~ z <5 Gk
& BEKENBK@) ~ 2’ = Gr.

Mapping ¢ for Camenisch-Lysyanskaya signatures
Bilinear group G of type 1: e : G x G — Gy

¢(sk(X), pk(¥)) = &((x1,X2), (9", ")) := e(g", ")™ = g7"".

PK-Unlinkability < gg(;’m ~ 7+ Gr.
19

Parallel with DLog. MENTION THE ROM.

Reduction to decisional UBER-assumption familly

Parametrization for Camenisch-Lysyanskaya signatures

4-multivariate polynomial vectors: F, H, K in X1, X2, Y1, Ya:

F=(X,%),H=(Y,Y2),Kk=2
Q(X1, X2, Y1, Ya) = X1XoYa Ya.

20

Reduction to decisional UBER-assumption familly

Parametrization for Camenisch-Lysyanskaya signatures
4-multivariate polynomial vectors: F, H, K in X1, X2, Y1, Ya:

F=06,%),H=1Y),k=2
Q(XWaXZa y1a YZ) = X1X2Y1Y2.

(F,H,K,Q)-Decisional UBER experiment

Given gf(i’y), gz’q(xm and 95(;’37), distinguish g?ay) from random sampling on Gr.

20

Reduction to decisional UBER-assumption familly

Parametrization for Camenisch-Lysyanskaya signatures
4-multivariate polynomial vectors: F, H, K in X1, X2, Y1, Ya:

F=06,%),H=1Y),k=2
Q(XWaXZa y1a YZ) = X1X2Y1Y2.

(F,H,K,Q)-Decisional UBER experiment

Given gf(i’y), gz’q(xm and 95(;’37), distinguish g?ay) from random sampling on Gr.

Read: given pk(X) and E = pk(¥), distinguish ¢(e = sk(V), pk(X)) from random sampling on
Gr (= PK-Unlinkability by a reduction result).

20

Concrete assumption for CL: DBDH

DBDH experiment
Given (g%, ¢”, g%) with (x,y,z) «% Z3 distinguish g7* from random sampling on Gr.

21

Concrete assumption for CL: DBDH

DBDH experiment
Given (g%, ¢”, g%) with (x,y,z) «% Z3 distinguish g7* from random sampling on Gr.

DBDH = Decisional (F, H, K, Q)-Decisional UBER assumption = PK-Unlinkability.

21

More Complicated Keys

Waters signature scheme (type 1):

Sk = (Q?W,Xz./...,X[), pk: (9?7g)2(2>"'ag)2<[)

The mapping ¢ used:

(Q:W’XZ, vao le)a (9)7/_17g)2/2’ cey glz/[) = (g){])Xwe(g;ﬁ’g)zfz)e(g;(z’gjz/z) e e(g);[’ 9)2/{)

22

Results: Instantiations of ARKG for Pairing-Based Signature Schemes

Type-1 (DBDH assumption)
- BLS-1 (trusted CRS)

- Camenisch-Lysyanskaya

Type-3 (SXDH assumption)
- BLS-3
- Pointcheval-Sanders
- SPS-EQ
- Waters

Type_1 (((XW; Y1)7 Q) QaX‘I Y1(X1 + YW))_UBER)
- BLS-1

23

Performances

Table 1: Mean time in milliseconds for each ARKG algorithm. BLS-1/3 and CL are written in C while
PS, SPS-EQ and Waters are implemented in python.

DerivePK DeriveSK Check ARKG total AKG.KGen

BLS-1 3.56 1.07 0.63 5.26 0.63
BLS-3 292 0.99 0.62 4.53 0.61
CL 5.36 0.89 221 6.26 2.24
PS 99.23 8.29 0.89 107.52 0.94
SPS-EQ 123.34 17.13 10.89 140.47 5.62
Waters 127.40 17.12 11.52 144.52 8.96

https://gitlab.surrey.ac.uk/sccs/bp-arkg

24

https://gitlab.surrey.ac.uk/sccs/bp-arkg

How to backup access to more than one proxy in a
thresholded manner?

The Trivial Case: N-out-of-N Threshold

DerivePK((pk, = g%, ..., pky = g°"))
>oisi

1: pk<pk;---pky =g
2: (e, E) + KGen

3: k<« KDF(jpk®)

4: P+« gf. pk

5: return pk' = P,cred = E

DeriveSK((sky =sq,---,sky = sy),cred = E)
11 sk Z_s,-

2: k< KDF,(E)
3: return sk’ = kR + sk

25

The Trivial Case: N-out-of-N Threshold

DerivePK((pk, = g%, ..., pky = g°"))

1:

23

35

4

53

pk « pk, - - pkyy = g>=°

(e, E) + KGen

k < KDF+(ppk¥)

P+ gf-pk

return pk’ = P, cred = E

DeriveSK((sky =sq,---,sky = sy),cred = E)

e

23

33

sk + Zl_ S
k < KDF;(E%)
return sk’ = k + sk

Non-interactive 2-out-of-N ARKG: hard but possible with pairings.

25

The Trivial Case: N-out-of-N Threshold

DerivePK((pk, = g%, ..., pky = g°"))
>oisi

1: pk<pk;---pky =g
2: (e, E) + KGen

3: k<« KDF(jpk®)

4: P+« gf. pk

5: return pk' = P,cred = E

DeriveSK((sky =sq,---,sky = sy),cred = E)
11 sk Zl_ S
2: k< KDF,(E)
3: return sk’ = R+ sk

Non-interactive 2-out-of-N ARKG: hard but possible with pairings.

Non-interactive 1-out-of-N ARKG = MP-NIKE =7 iO, multilinear maps.
25

dARKG: General Goal and Context

Multiple [Proxies (backups) chosen by one |Delegator (main).

26

Universal Composability Canetti was too complicated, YOSO style.

dARKG: General Goal and Context

Multiple [Proxies (backups) chosen by one |Delegator (main).

Observations

- Proxy/Delegator interactivity is not an issue.
- Proxy/Proxy interactivity unwanted.

26

Universal Composability Canetti was too complicated, YOSO style.

dARKG: General Goal and Context

Multiple [Proxies (backups) chosen by one |Delegator (main).

Observations

- Proxy/Delegator interactivity is not an issue.
- Proxy/Proxy interactivity unwanted.

Solution:

- 1-Round Publicly Verifiable Asymmetric Key Agreement (1TPVAKA).
- Blinding scheme.
- Threshold secret sharing.

26

Universal Composability Canetti was too complicated, YOSO style.

Asymmetric Key Agreement: Generation

1 round interaction
between Proxy 1 and
Delegator

°)
°)

27

This is the first step: building an AKA scheme

Asymmetric Key Agreement: Generation

1 round interaction
between Proxy 2 and
Delegator

e 8 %

27

Asymmetric Key Agreement: Generation

1 round interaction
between Proxy 3 and
Delegator

27

Asymmetric Key Agreement: Aggregation

Construction of a shared
public key and recovery
shares by Delegator

2 = Shl, Sh2, Sh3

27

Asymmetric Key Agreement: Recovery

Individual recovery of the
secret key by proxies

o)
°)

SkA -
" 1|_|
Sh1

¢ E pka
= shy, shy, shs
LJ

o
v)

27

Asymmetric Key Agreement: Recovery

Individual recovery of the
secret key by proxies

w l SR
"= U - A shy,shy,shs

27

Asymmetric Key Agreement: Recovery

Individual recovery of the
secret key by proxies

pka
= shy, shy, shs

(¢
(

N

wn

=

w

)
v

27

We obtain a 1-out-of-N ARKG!!!

In Practice: Long-Term Encryption Keys

(dkl,ekl) S5
(dks, ek>) 1—%"‘ o
’ L
(dks,ekg) 7
[

28

Actually not as clever as it sounds in practice.

In Practice: Generation

' Enc(eky, ska 1), Enc(eks, ska 1), Pka 1

(ska,1,Pka 1)
S 1L
(ekz, eks)
2 L

28

In Practice: Generation

1
Enc(ekl,skA2), Enc(eks, ska 2), pka »

g A (eki, eks)
e (R <*'
=

28

In Practice: Generation

(ska,3,Pka 3)

e &R

. (ekl, ek2)

[3

Enc(eky, ska 3), Enc(eks, ska 3), pka 3

28

Asymmetric Key Agreement: Generation

Information sent from each proxy:

‘: (%} Enc(eks,ska 1) Enc(eks,skai) Pka;

=) I
& ap.
1.&»;"!_;.: Enc(eki, ska 2) @ Enc(eks,skas) Pkas 58
s U L1 ek

:v: . Enc(eky, ska 3) Enc(eks, ska 3) (%] pPkas

[W

28

Asymmetric Key Agreement: Aggregation

Aggregation of the public keys and shares by the Delegator:

%} Enc(eks,ska1) Enc(eks, ska 1)
1
Enc(ekq, ska) (%] Enc(eks, ska2) :j
2 L
Pka := Pk - Pka - Pkag
Enc(eky,ska) Enc(eks,ska 3) (%]
e shy shy shy

28

Asymmetric Key Agreement: Aggregation

Optimization using additively homomorphic encryption:

) Enc(eks,ska;)| |Enc(eks,ska;)

1

Enc(eky, ska2) 1] Enc(eks, ska 2) sk
! L

Pka = pka - Pkay - Pkas

Enc(eky,skas)| |Enc(eks,ska s) 2

3 v
Enc(eky, ska 2 + ska 3) i
Enc(eks, ska,1 +ska 3)

Enc(eks, ska ;1 + ska2)

28

Recall the General ARKG Algorithms

Setting: key pairs of the form (SKAYPKA!) = (s, g°).

DerivePK(pk,)

1: (e, E) + KGen

2: k<« KDFy(pky)

3: P+« g pky, return pk’ = P, cred = £
DeriveSK(ska,cred = E)

10 R < KDF(E%a)
2: return sk’ = R+ ska

In dARKG, generate pk, using AKA and add the shares to the credentials.
Yields a 1-out-of-N dARKG construction with minimal interactions.

29

Robustness: Malicious Proxy During AKA Generation

Asymmetric Key ARKG/Registration (R

Agreement using pk as backup Recovery of secret key

ska = ska1 +ska?

¢! Enc(eky, ska 1), pka 1 cred; := | Enc(eks,ska?),... K 777

credy := | Enc(eks,skay),... 6 i, o= el -k

sk’ :=ska + k

.l
)

\ 4

Enc(ek?,ska ?), Pka o

pka = pka 1Pk »

pk’ := gFpky

30

Robustness: Malicious Proxy During AKA Generation

1 2 3

Asymmetric Key ARKG/Registration

. R f k
Agreement using pk as backup ecovery of secret key

ska = SkA,l aF SkA,'_r

Enc(eks, ska 1), Pka 1 ELXT3 cred; := | Enc(ekz,ska?),... ~ K — 777
e Y = 777
> U Ly

ska :=skao +ska;

Il] creds := | Enc(eks,skay),...

Enc(ek?,ska?), pPka o

sk’ :=ska + k

pka = pka 1Pk »

pk’ := gFpky

30

Robustness: Malicious Proxy During AKA Generation

1 2 3
Asymmetric Key ARKG/Registration
Agreement using pk as backup Recovery of secret key
1y
s 3 ska = SkAJ aF SkA;_r
Enc(eky,ska 1), pka ; EIXT3 cred; := | Enc(eks,skay?),... -~ e 777
004 Y

I

Enc(ek?,ska?), pka o

> U >
& g credz:= | Enc(ely,skay),... e ska :=skas +ska

sk’ :=ska + k
pka = Pka 1Pka 2

Pk’ := gFpky

30

Robustness Using Verifiable Encryption (VE)

Witness/statement relation:

(ska,i) R (ekj, pka j, Ct)
sct = Enc(ek;, ska ;) with g1 = pka ;.

1 2
Verifiable Asymmetric ARKG/Registration
Key Generation using pk as backup
¢ l Enc(eks, ska 1), pka 1 l i qual := {Bob}
=

A pkp = PkA,l
> 8.0

[
o ‘ pk' := g"pka
1 — IEnc(ek?VSkA,?)vpkA,zl

30

Decentralized ARKG

Shared key pk,: created via 1-Round Publicly-Verifiable AKA using the delegator as relay.

31

Decentralized ARKG

Shared key pk,: created via 1-Round Publicly-Verifiable AKA using the delegator as relay.
VE: Multi-recipient encryption + custom NIZK.
Additively homomorphic encryption to compress ciphertexts and thus credentials.

31

Decentralized ARKG

Shared key pk,: created via 1-Round Publicly-Verifiable AKA using the delegator as relay.
VE: Multi-recipient encryption + custom NIZK.

Additively homomorphic encryption to compress ciphertexts and thus credentials.
Blinding k: for unlinkability.

31

Decentralized ARKG

Shared key pk,: created via 1-Round Publicly-Verifiable AKA using the delegator as relay.
VE: Multi-recipient encryption + custom NIZK.

Additively homomorphic encryption to compress ciphertexts and thus credentials.
Blinding k: for unlinkability.

Threshold R": shared blinding factor created by the delegator.

31

Decentralized ARKG

Shared key pk,: created via 1-Round Publicly-Verifiable AKA using the delegator as relay.
VE: Multi-recipient encryption + custom NIZK.

Additively homomorphic encryption to compress ciphertexts and thus credentials.
Blinding k: for unlinkability.

Threshold R": shared blinding factor created by the delegator.

Encrypted for each proxy using standard PKE.

Pka = Hiequal PKa,i pk' =g" - g¥ - pka
cred; = {VE.Enc(ek;, ska ;), Enc(ek;,sh;), MAC(...), ...}
sk’ = Z Skl + K + .

iequal

1PVAKA, Threshold, Blinding.

31

dARKG: Results and Performances

New syntax and security models for TPVAKA and dARKG along with generic constructions.
Instantiation based on additive ElGamal and pairing-friendly curve BLS12-381.
https://gitlab.com/rv5MDg/jupyter-notebook-darkg

N, t 2,1] 41 [43]81]87]161]716,15
KGenProxy | 0.5 1.0 2.1 4.0
DeriveSK [0.01 [00103]01[07] 01] 14

Table 2: Each proxy’s runtime (in sec). N: number of proxies, t: threshold.

N, t 2,1 41]43]81]87]16,1]16,5
KGenDeleg | 0.7 3.2 4.4 54.3
DerivePK [03 [0.6 [0.6 | 1.4 [14] 2.4 | 2.8

Table 3: Delegator’s runtime (in sec). N: number of proxies, t: threshold.

32

https://gitlab.com/rv5MDg/jupyter-notebook-darkg

Thank You for Your Attention!

Eibsee

