

ACCESS RECOVERY AND ATTESTATION USING STRONG AUTHENTICATORS

Asynchronous Remote Key Generation & Key Attestation

January 06, 2026

Hugo Nartz

gitlab.com/rv5MDg

Let's Go Sightseeing

Somewhere in the Bavarian Alps

- Asynchronous Remote Key Generation

- Asynchronous Remote Key Generation
- CCA1 (Fully) Homomorphic Encryption

- Asynchronous Remote Key Generation
- CCA1 (Fully) Homomorphic Encryption
- Isogeny-related ZKPoK

- Asynchronous Remote Key Generation
- CCA1 (Fully) Homomorphic Encryption
- Isogeny-related ZKPoK
- Revokable/Tractable Key Attestation

- Asynchronous Remote Key Generation
- CCA1 (Fully) Homomorphic Encryption
- Isogeny-related ZKPoK
- Revokable/Tractable Key Attestation
- Updatable KEM

- Asynchronous Remote Key Generation
- CCA1 (Fully) Homomorphic Encryption
- Isogeny-related ZKPoK
- Revokable/Tractable Key Attestation
- Updatable KEM

How to register and authenticate users securely
without relying on passwords?

Web Authentication (WebAuthn)

Web Authentication (WebAuthn)

As a W3C specification

An API allowing servers to register and authenticate users using public key cryptography instead of passwords.

Web Authentication (WebAuthn)

As a W3C specification

An API allowing servers to register and authenticate users using public key cryptography instead of passwords.

Example of strong authenticator: Yubikey

Web Authentication (WebAuthn)

As a W3C specification

An API allowing servers to register and authenticate users using public key cryptography instead of passwords.

Example of strong authenticator: Yubikey

Physical device & cryptographic keys > password 123C4r4mb42026.

Web Authentication (WebAuthn)

As a W3C specification

An API allowing servers to register and authenticate users using public key cryptography instead of passwords.

Example of strong authenticator: Yubikey

Physical device & cryptographic keys > password 123C4r4mb42026.

WebAuthn

Web Authentication (WebAuthn)

As a W3C specification

An API allowing servers to register and authenticate users using public key cryptography instead of passwords.

Example of strong authenticator: Yubikey

Physical device & cryptographic keys > password 123C4r4mb42026.

WebAuthn + Client-To-Authenticator Protocol

Web Authentication (WebAuthn)

As a W3C specification

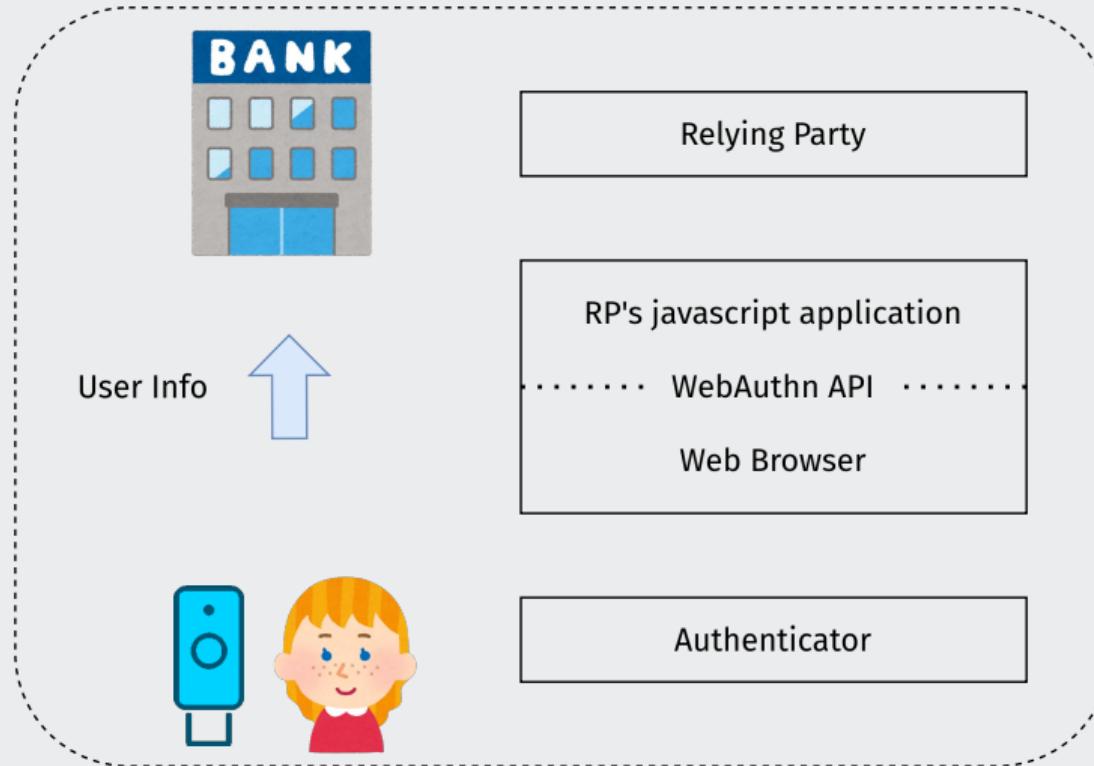
An API allowing servers to register and authenticate users using public key cryptography instead of passwords.

Example of strong authenticator: Yubikey

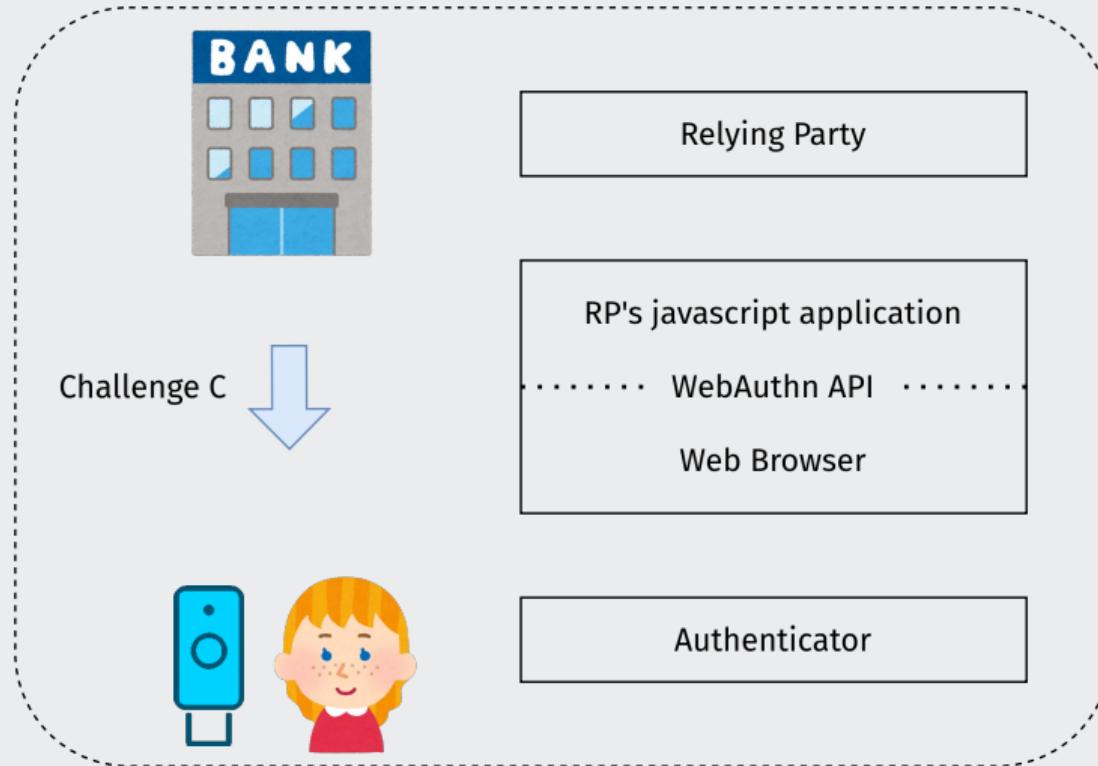
Physical device & cryptographic keys > password 123C4r4mb42026.

WebAuthn + Client-To-Authenticator Protocol = FIDO2.

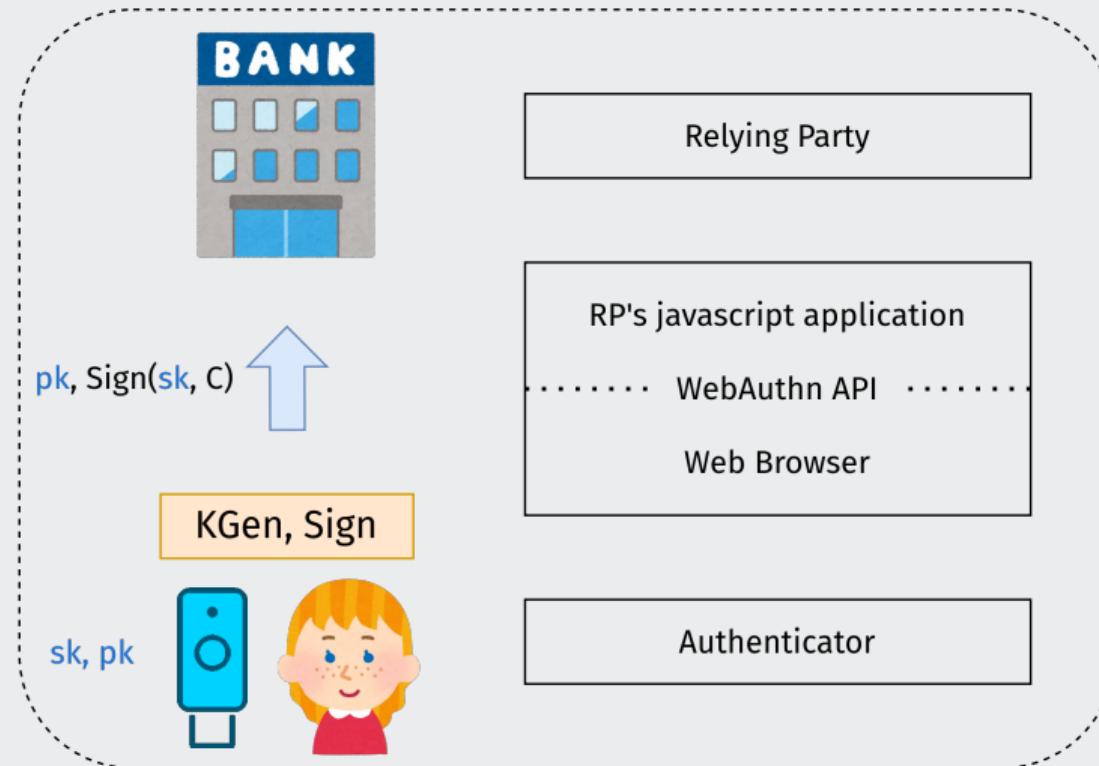
WebAuthn: registration



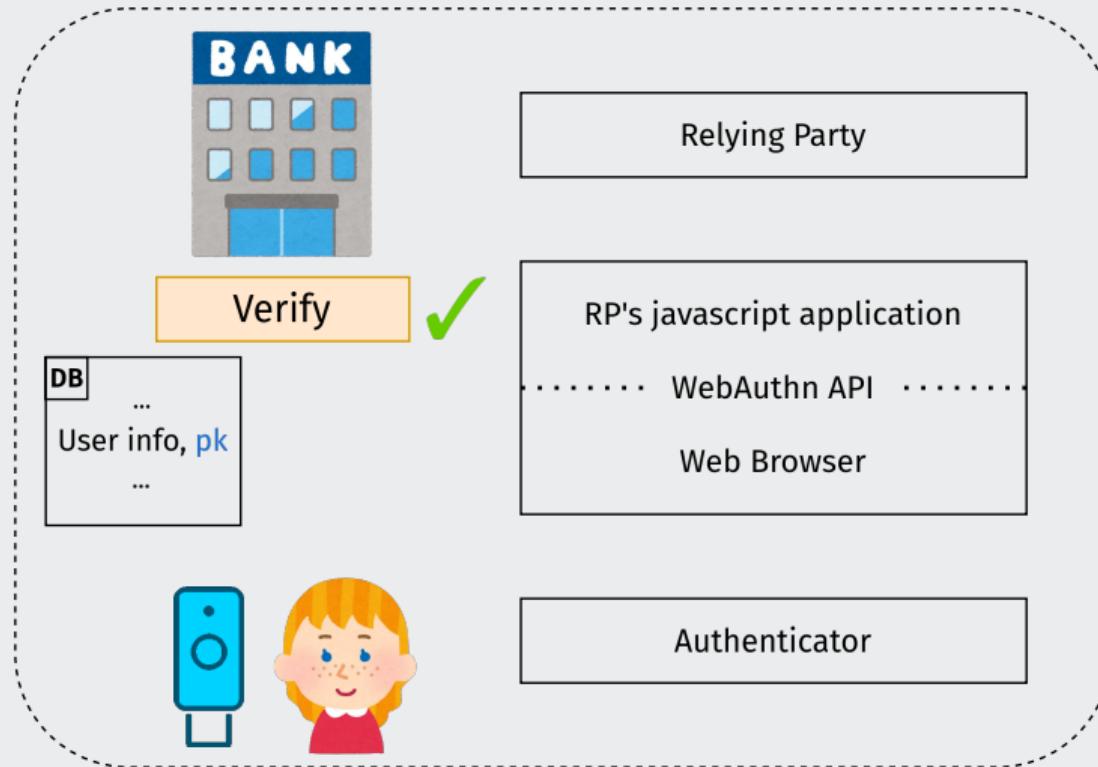
WebAuthn: registration



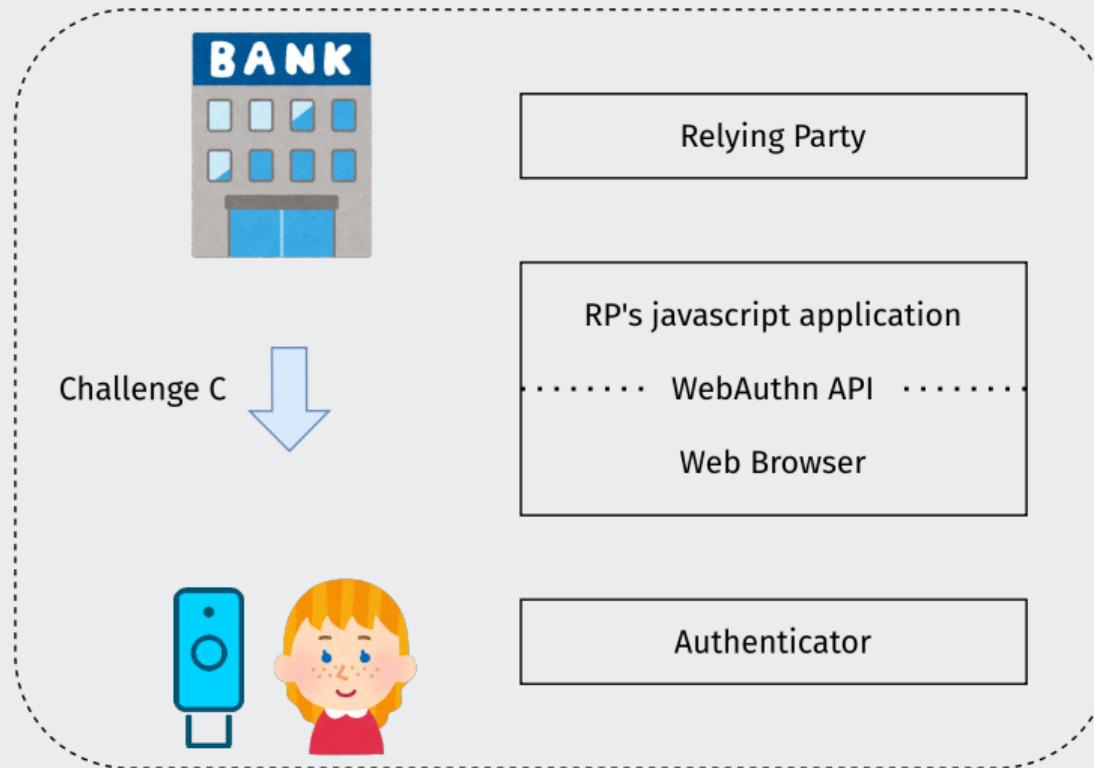
WebAuthn: registration



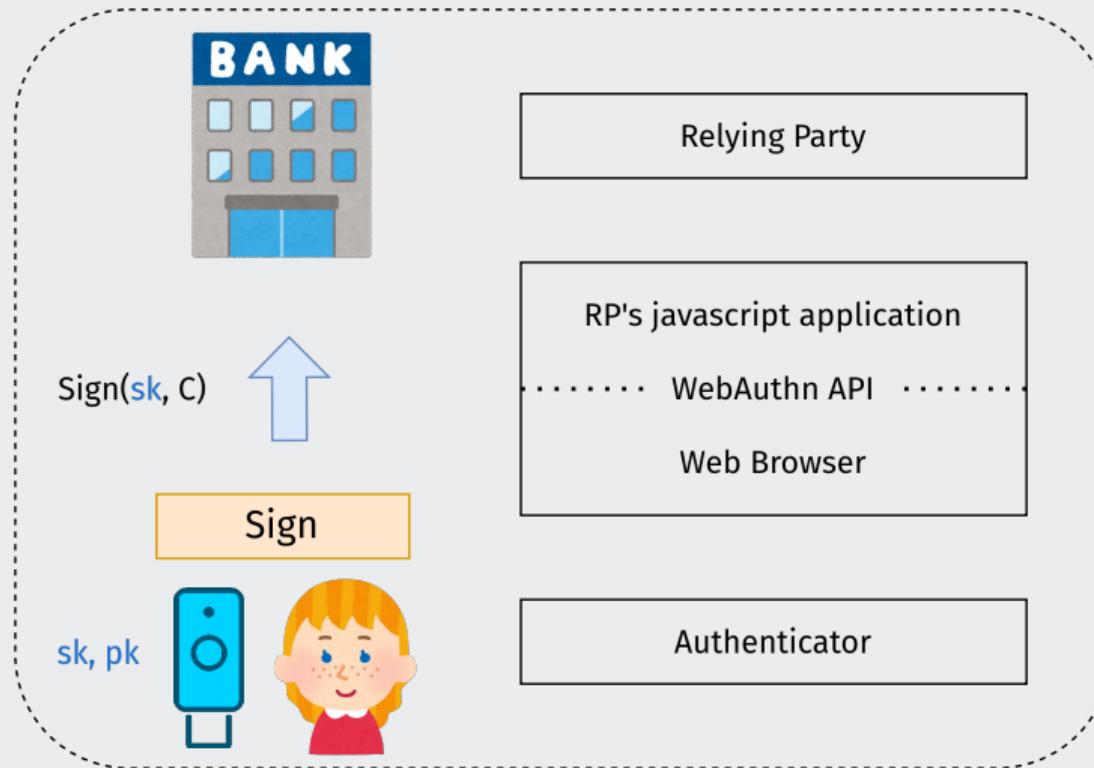
WebAuthn: registration



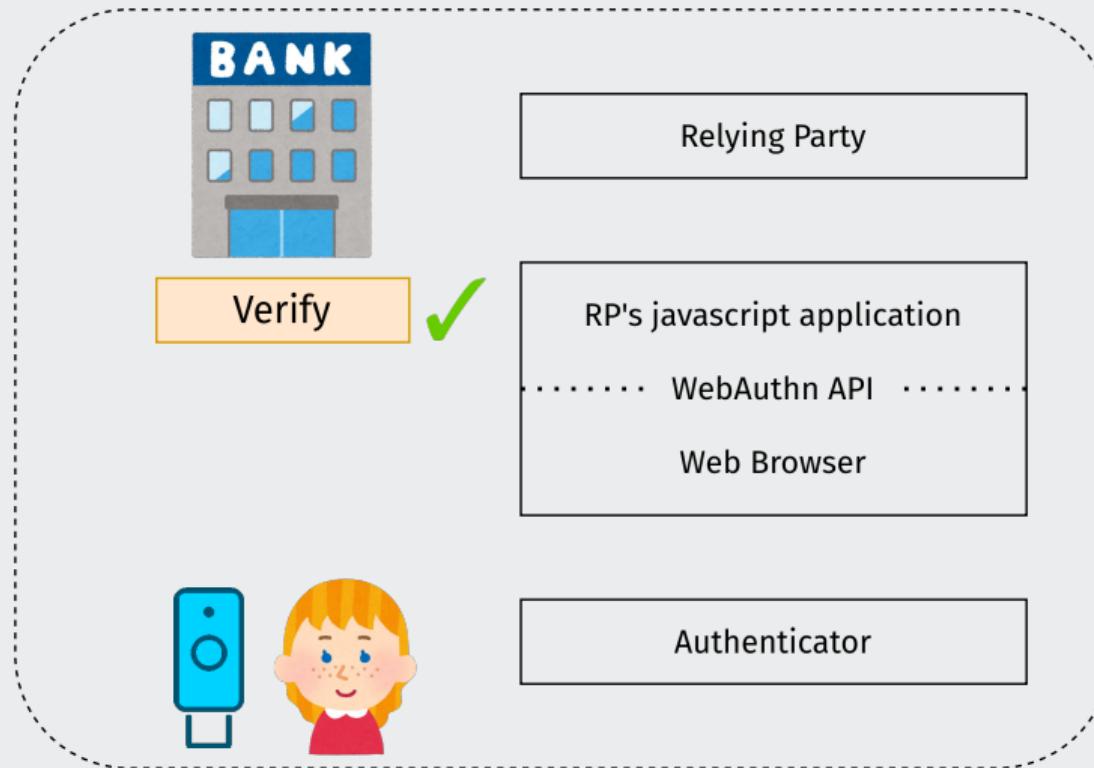
WebAuthn: authentication



WebAuthn: authentication



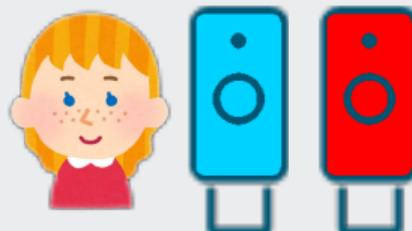
WebAuthn: authentication



Dealing with authenticator loss

Dealing with authenticator loss

Solution: always carry a backup authenticator and register both



Dealing with authenticator loss

Solution: always carry a backup authenticator and register both

They may be lost simultaneously.

Dealing with authenticator loss

Better solution: Asynchronous Remote Key Generation (ARKG).

Introduced at ACM CCS 2020 by Frymann et al.

Multiple authenticators, only one is used during registration.

Where unlinkability and asynchrony are required.

Examples

- WebAuthn/FIDO2
- Unlinkable delegation of accounts
- Stealth addresses and signatures
- Anonymous encryption/KEM

Standardization: IETF draft currently being written.

Asynchronous Remote Key Generation (ARKG)

Setting: `main` and the `backup` or `proxy`.

Asynchronous Remote Key Generation (ARKG)

Setting: `main` and the `backup` or `proxy`.

Syntax

1. $\text{KGen}(1^\lambda) \rightarrow (\text{sk}, \text{pk})$

Asynchronous Remote Key Generation (ARKG)

Setting: `main` and the `backup` or `proxy`.

Syntax

1. $\text{KGen}(1^\lambda) \rightarrow (\text{sk}, \text{pk})$
2. $\text{DerivePK}(\text{pk}) \rightarrow (\text{pk}', \text{cred}) \rightsquigarrow \text{stored on server under } (\text{User Info}, \text{pk}, (\text{pk}', \text{cred}))$

Asynchronous Remote Key Generation (ARKG)

Setting: `main` and the `backup` or `proxy`.

Syntax

1. $\text{KGen}(1^\lambda) \rightarrow (\text{sk}, \text{pk})$
2. $\text{DerivePK}(\text{pk}) \rightarrow (\text{pk}', \text{cred}) \rightsquigarrow \text{stored on server under } (\text{User Info}, \text{pk}, (\text{pk}', \text{cred}))$
3. $\text{DeriveSK}(\text{sk}, \text{cred}) \rightarrow \text{sk}'$

Asynchronous Remote Key Generation (ARKG)

Setting: `main` and the `backup` or `proxy`.

Syntax

1. $\text{KGen}(1^\lambda) \rightarrow (\text{sk}, \text{pk})$
2. $\text{DerivePK}(\text{pk}) \rightarrow (\text{pk}', \text{cred}) \rightsquigarrow \text{stored on server under } (\text{User Info}, \text{pk}, (\text{pk}', \text{cred}))$
3. $\text{DeriveSK}(\text{sk}, \text{cred}) \rightarrow \text{sk}'$
4. $\text{Check}(\text{sk}, \text{pk}) \rightarrow \top/\perp$

DLog-based ARKG instantiation

Setting: key pairs of the form $(\text{sk}, \text{pk}) = (s, g^s)$, examples: Schnorr, ECDSA, ElGamal.

DLog-based ARKG instantiation

Setting: key pairs of the form $(\text{sk}, \text{pk}) = (s, g^s)$, examples: Schnorr, ECDSA, ElGamal.

DerivePK(pk)

1: $(e, E) \leftarrow \text{KGen}(1^\lambda)$

2: $k \leftarrow \text{KDF}_1(\text{pk}^e)$

3: $P \leftarrow g^k \cdot \text{pk}$

4: **return** $\text{pk}' = P, \text{cred} = E$

DeriveSK(sk, cred = E)

1: $k \leftarrow \text{KDF}_1(E^{\text{sk}})$

2: **return** $\text{sk}' = k + \text{sk}$

General(?) ARKG instantiation (using KEM)

Setting: key pairs $(\text{sk}_\Delta, \text{pk}_\Delta)$ for a (signature) scheme Δ and $(\text{sk}_\Pi, \text{pk}_\Pi)$ for a KEM Π .

General(?) ARKG instantiation (using KEM)

Setting: key pairs $(\text{sk}_\Delta, \text{pk}_\Delta)$ for a (signature) scheme Δ and $(\text{sk}_\Pi, \text{pk}_\Pi)$ for a KEM Π .

DerivePK($\text{pk} = (\text{pk}_\Delta, \text{pk}_\Pi)$)

- 1: $(K, \text{ct}) \leftarrow \text{KEM.Encaps}(\text{pk}_\Pi)$
- 2: $k \leftarrow \text{KDF}_1(K)$
- 3: $P \leftarrow \text{BlindPK}(\text{pk}_\Delta, k)$
- 4: **return** $\text{pk}'_\Delta = P, \text{cred} = \text{ct}$

DeriveSK($\text{sk} = (\text{sk}_\Delta, \text{sk}_\Pi), \text{cred} = \text{ct}$)

- 1: $K \leftarrow \text{KEM.Decaps}(\text{sk}_\Pi, \text{ct})$
- 2: $k \leftarrow \text{KDF}_1(K)$
- 3: **return** $\text{sk}'_\Delta = \text{BlindSK}(\text{sk}_\Delta, k)$

Security of ARKG

Must follow the WebAuthn requirements.

Must follow the WebAuthn requirements.

Secret-Key Secrecy

An adversary cannot generate valid $(\text{sk}', \text{pk}', \text{cred})$.

Multiple variants: honest/malicious and weak/strong.

$$\text{ms} \Rightarrow \text{mw} \Rightarrow \text{hw} \text{ and } \text{ms} \Rightarrow \text{hs} \Rightarrow \text{hw}.$$

Must follow the WebAuthn requirements.

Secret-Key Secrecy

An adversary cannot generate valid $(\text{sk}', \text{pk}', \text{cred})$.

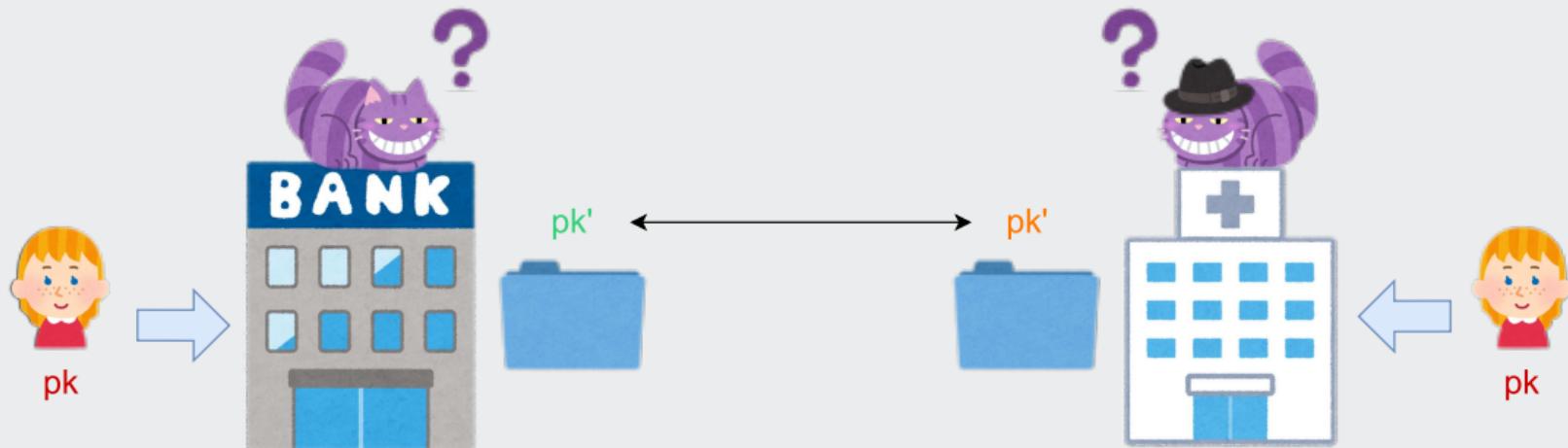
Multiple variants: honest/malicious and weak/strong.

$$\text{ms} \Rightarrow \text{mw} \Rightarrow \text{hw} \text{ and } \text{ms} \Rightarrow \text{hs} \Rightarrow \text{hw}.$$

Public-Key Unlinkability

An adversary with access to pk cannot tell derived keys pk' from freshly generated ones.

PK-Unlinkability



Current State of ARKG: Existing Schemes

Discrete Logarithm and Bilinear Keys

- [FGKLMN20] original Dlog-based scheme.
- [FGMN23] general framework for pairings.
- [MN25] distributed ARKG.

Targeting Dilithium signature scheme (lattice-based)

- [FGM23] based on split-KEMs and rejection sampling (Kyber).
- [BCF23] using only KEM to share randomness (Kyber, fully trusted delegator)

Targeting variants of CSI-FiSh, Dilithium and LegRoast

- [W23] also uses Kyber, focuses on blinding schemes.

Digression: An Annoying Obstruction

Blinding keys: $\text{pk}' \leftarrow \text{BlindPK}(\text{pk}, k)$.

Digression: An Annoying Obstruction

Blinding keys: $\text{pk}' \leftarrow \text{BlindPK}(\text{pk}, k)$.

For DLog: $\text{pk}' \leftarrow \text{pk} \cdot g^k$ or pk^k .

Digression: An Annoying Obstruction

Blinding keys: $\text{pk}' \leftarrow \text{BlindPK}(\text{pk}, k)$.

For DLog: $\text{pk}' \leftarrow \text{pk} \cdot g^k$ or pk^k .

For isogenies: $\text{pk}' \leftarrow \phi_k \cdot \text{pk}$.

Digression: An Annoying Obstruction

Blinding keys: $\text{pk}' \leftarrow \text{BlindPK}(\text{pk}, k)$.

For DLog: $\text{pk}' \leftarrow \text{pk} \cdot g^k$ or pk^k .

For isogenies: $\text{pk}' \leftarrow \phi_k \cdot \text{pk}$.

For lattices:

$$\text{pk}' \leftarrow (A, (A \cdot \text{sk} + \mathbf{e}) + (A \cdot \mathbf{k})) = (A, A \cdot (\text{sk} + \mathbf{k}) + \mathbf{e})$$

Digression: An Annoying Obstruction

Blinding keys: $\text{pk}' \leftarrow \text{BlindPK}(\text{pk}, k)$.

For DLog: $\text{pk}' \leftarrow \text{pk} \cdot g^k$ or pk^k .

For isogenies: $\text{pk}' \leftarrow \phi_k \cdot \text{pk}$.

For lattices:

$$\text{pk}' \leftarrow (A, (A \cdot \text{sk} + \mathbf{e}) + (A \cdot \mathbf{k})) = (A, A \cdot (\text{sk} + \mathbf{k}) + \mathbf{e})$$

with \mathbf{e} and sk vectors sampled from Gaussian distributions.

Digression: An Annoying Obstruction

Blinding keys: $\text{pk}' \leftarrow \text{BlindPK}(\text{pk}, k)$.

For DLog: $\text{pk}' \leftarrow \text{pk} \cdot g^k$ or pk^k .

For isogenies: $\text{pk}' \leftarrow \phi_k \cdot \text{pk}$.

For lattices:

$$\text{pk}' \leftarrow (A, (A \cdot \text{sk} + \mathbf{e}) + (A \cdot \mathbf{k})) = (A, A \cdot (\text{sk} + \mathbf{k}) + \mathbf{e})$$

with \mathbf{e} and sk vectors sampled from Gaussian distributions.

What about the distribution of sk' ?

Digression: An Annoying Obstruction

Blinding keys: $\text{pk}' \leftarrow \text{BlindPK}(\text{pk}, k)$.

For DLog: $\text{pk}' \leftarrow \text{pk} \cdot g^k$ or pk^k .

For isogenies: $\text{pk}' \leftarrow \phi_k \cdot \text{pk}$.

For lattices:

$$\text{pk}' \leftarrow (A, (A \cdot \text{sk} + \mathbf{e}) + (A \cdot \mathbf{k})) = (A, A \cdot (\text{sk} + \mathbf{k}) + \mathbf{e})$$

with \mathbf{e} and sk vectors sampled from Gaussian distributions.

What about the distribution of sk' ?

$$\mathcal{G}_\sigma + \mathcal{G}_\sigma \sim \mathcal{G}_{\sqrt{2}\sigma}$$

So sk' is not distributed in the same way as a fresh key.

Solution: Rejection Sampling

Security of the Dlog-based instantiation

Secret-Key Secrecy

Honest-strong \Leftarrow Dlog assumption in standard model.

Malicious-strong \Leftarrow snPRF-ODH assumption in the ROM.

Public-Key Unlinkability

Follows from the nnPRF-ODH assumption in the ROM.

Security of the Dlog-based instantiation

Secret-Key Secrecy

Honest-strong \Leftarrow Dlog assumption in standard model.

Malicious-strong \Leftarrow snPRF-ODH assumption in the ROM.

Public-Key Unlinkability

Follows from the nnPRF-ODH assumption in the ROM.

snPRF-ODH: introduced to study TLS1.3.

Extension to Pairings: Generic Security Properties

Extension to Pairings: Generic Security Properties

ϕ -AKG: An asymmetric scheme together with a map $\phi : \mathbf{G}_{\text{sk}} \times \mathbf{G}_{\text{pk}} \rightarrow \mathbf{G}_{\text{pk}}$.

Extension to Pairings: Generic Security Properties

ϕ -AKG: An asymmetric scheme together with a map $\phi : \mathbf{G}_{\text{sk}} \times \mathbf{G}_{\text{pk}} \rightarrow \mathbf{G}_{\text{pk}}$.
Let KDF_1 (and KDF_2 , MAC) be a secure function.

Theorem (msKS/mwKS-Secret-Key Secrecy)

If $(\phi\text{-AKG}, \text{KDF}_1)$ is secure under the snPRF-0_ϕ assumption, the compiled ARKG scheme is msKS-secure (and therefore mwKS-secure).

Theorem (Public-Key Unlinkability)

If $(\phi\text{-AKG}, \text{KDF}_1)$ is secure under the nnPRF-0_ϕ assumption, the compiled ARKG scheme satisfies PK-unlinkability.

Instantiation: Bilinear Groups

Instantiation: Bilinear Groups

A description of a bilinear group \mathcal{G} is a tuple $(\mathbf{G}_1, \mathbf{G}_2, \mathbf{G}_T, g_1, g_2, e, \gamma, p)$ such that

- $\mathbf{G}_1, \mathbf{G}_2$ and \mathbf{G}_T are cyclic groups of prime order p ,
- \mathbf{G}_1 (*resp.* \mathbf{G}_2) is generated by element g_1 (*resp.* g_2),
- $e : \mathbf{G}_1 \times \mathbf{G}_2 \rightarrow \mathbf{G}_T$ is a non-degenerate bilinear pairing,
- $\gamma : \mathbf{G}_2 \rightarrow \mathbf{G}_1$ is an isomorphism.

$$e(g_1^a, g_2^b) = e(g_1, g_2^b)^a = e(g_1^a, g_2)^b = e(g_1, g_2)^{ab}.$$

Instantiation: Bilinear Groups

A description of a bilinear group \mathcal{G} is a tuple $(\mathbf{G}_1, \mathbf{G}_2, \mathbf{G}_T, g_1, g_2, e, \gamma, p)$ such that

- $\mathbf{G}_1, \mathbf{G}_2$ and \mathbf{G}_T are cyclic groups of prime order p ,
- \mathbf{G}_1 (*resp.* \mathbf{G}_2) is generated by element g_1 (*resp.* g_2),
- $e : \mathbf{G}_1 \times \mathbf{G}_2 \rightarrow \mathbf{G}_T$ is a non-degenerate bilinear pairing,
- $\gamma : \mathbf{G}_2 \rightarrow \mathbf{G}_1$ is an isomorphism.

$$e(g_1^a, g_2^b) = e(g_1, g_2^b)^a = e(g_1^a, g_2)^b = e(g_1, g_2)^{ab}.$$

Assumptions on \mathbf{G}_1 and \mathbf{G}_2 (CDH, DDH, ...) and on the efficient computability of γ/γ^{-1} (the type of \mathcal{G}): XDH, SXDH, DBDH, ...

Building ϕ and Unlinkability with a Pairing

Asymmetric keys parametrized by exponent vectors: $(\text{sk}(\vec{x}), \text{pk}(\vec{x}))$ with $\vec{x} \in \mathbb{Z}_p^{n_1+n_2+n_T}$.

Building ϕ and Unlinkability with a Pairing

Asymmetric keys parametrized by exponent vectors: $(\text{sk}(\vec{x}), \text{pk}(\vec{x}))$ with $\vec{x} \in \mathbb{Z}_p^{n_1+n_2+n_T}$.

Example: Type-1 group with $\vec{x} = (x_1, x_2)$ and $(\text{sk}(\vec{x}), \text{pk}(\vec{x})) = ((x_1, x_2), (g^{x_1}, g^{x_2}))$

Building ϕ and Unlinkability with a Pairing

Asymmetric keys parametrized by exponent vectors: $(\text{sk}(\vec{x}), \text{pk}(\vec{x}))$ with $\vec{x} \in \mathbb{Z}_p^{n_1+n_2+n_T}$.

Example: Type-1 group with $\vec{x} = (x_1, x_2)$ and $(\text{sk}(\vec{x}), \text{pk}(\vec{x})) = ((x_1, x_2), (g^{x_1}, g^{x_2}))$

Under nnPRF- \mathcal{O}_ϕ :

$$\begin{aligned} \text{PK-Unlinkability} &\Leftarrow \text{PRF}(\phi(\text{sk}(\vec{x}), \text{pk}(\vec{y}))) \sim z \xleftarrow{\$} \mathbf{G}_{\text{sk}} \\ &\Leftrightarrow \phi(\text{sk}(\vec{x}), \text{pk}(\vec{y})) \sim Z' \xleftarrow{\$} \mathbf{G}_T. \end{aligned}$$

Building ϕ and Unlinkability with a Pairing

Asymmetric keys parametrized by exponent vectors: $(\text{sk}(\vec{x}), \text{pk}(\vec{x}))$ with $\vec{x} \in \mathbb{Z}_p^{n_1+n_2+n_T}$.

Example: Type-1 group with $\vec{x} = (x_1, x_2)$ and $(\text{sk}(\vec{x}), \text{pk}(\vec{x})) = ((x_1, x_2), (g^{x_1}, g^{x_2}))$

Under nnPRF- \mathcal{O}_ϕ :

$$\begin{aligned} \text{PK-Unlinkability} &\Leftarrow \text{PRF}(\phi(\text{sk}(\vec{x}), \text{pk}(\vec{y}))) \sim z \xleftarrow{\$} \mathbf{G}_{\text{sk}} \\ &\Leftrightarrow \phi(\text{sk}(\vec{x}), \text{pk}(\vec{y})) \sim Z' \xleftarrow{\$} \mathbf{G}_T. \end{aligned}$$

Mapping ϕ for Camenisch-Lysyanskaya signatures

Bilinear group \mathcal{G} of type 1: $e : \mathbb{G} \times \mathbb{G} \rightarrow \mathbf{G}_T$

$$\phi(\text{sk}(\vec{x}), \text{pk}(\vec{y})) = \phi((x_1, x_2), (g^{y_1}, g^{y_2})) := e(g^{y_1}, g^{y_2})^{x_1 x_2} = g_T^{x_1 x_2 y_1 y_2}.$$

Building ϕ and Unlinkability with a Pairing

Asymmetric keys parametrized by exponent vectors: $(\text{sk}(\vec{x}), \text{pk}(\vec{x}))$ with $\vec{x} \in \mathbb{Z}_p^{n_1+n_2+n_T}$.

Example: Type-1 group with $\vec{x} = (x_1, x_2)$ and $(\text{sk}(\vec{x}), \text{pk}(\vec{x})) = ((x_1, x_2), (g^{x_1}, g^{x_2}))$

Under nnPRF- \mathcal{O}_ϕ :

$$\begin{aligned}\text{PK-Unlinkability} &\Leftarrow \text{PRF}(\phi(\text{sk}(\vec{x}), \text{pk}(\vec{y}))) \sim z \xleftarrow{\$} \mathbf{G}_{\text{sk}} \\ &\Leftrightarrow \phi(\text{sk}(\vec{x}), \text{pk}(\vec{y})) \sim Z' \xleftarrow{\$} \mathbf{G}_T.\end{aligned}$$

Mapping ϕ for Camenisch-Lysyanskaya signatures

Bilinear group \mathcal{G} of type 1: $e : \mathbb{G} \times \mathbb{G} \rightarrow \mathbf{G}_T$

$$\phi(\text{sk}(\vec{x}), \text{pk}(\vec{y})) = \phi((x_1, x_2), (g^{y_1}, g^{y_2})) := e(g^{y_1}, g^{y_2})^{x_1 x_2} = g_T^{x_1 x_2 y_1 y_2}.$$

$$\text{PK-Unlinkability} \Leftarrow g_T^{Q(\vec{x}, \vec{y})} \sim Z' \xleftarrow{\$} \mathbf{G}_T.$$

Parametrization for Camenisch-Lysyanskaya signatures

4-multivariate polynomial vectors: $\vec{F}, \vec{H}, \vec{K}$ in X_1, X_2, Y_1, Y_2 :

$$\vec{F} = (X_1, X_2), \vec{H} = (Y_1, Y_2), \vec{K} = \emptyset$$

$$Q(X_1, X_2, Y_1, Y_2) = X_1 X_2 Y_1 Y_2.$$

Parametrization for Camenisch-Lysyanskaya signatures

4-multivariate polynomial vectors: $\vec{F}, \vec{H}, \vec{K}$ in X_1, X_2, Y_1, Y_2 :

$$\vec{F} = (X_1, X_2), \vec{H} = (Y_1, Y_2), \vec{K} = \emptyset$$
$$Q(X_1, X_2, Y_1, Y_2) = X_1 X_2 Y_1 Y_2.$$

$(\vec{F}, \vec{H}, \vec{K}, Q)$ -Decisional UBER experiment

Given $g_1^{\vec{F}(\vec{x}, \vec{y})}, g_2^{\vec{H}(\vec{x}, \vec{y})}$ and $g_T^{\vec{K}(\vec{x}, \vec{y})}$, distinguish $g_T^{Q(\vec{x}, \vec{y})}$ from random sampling on G_T .

Reduction to decisional UBER-assumption family

Parametrization for Camenisch-Lysyanskaya signatures

4-multivariate polynomial vectors: $\vec{F}, \vec{H}, \vec{K}$ in X_1, X_2, Y_1, Y_2 :

$$\vec{F} = (X_1, X_2), \vec{H} = (Y_1, Y_2), \vec{K} = \emptyset$$
$$Q(X_1, X_2, Y_1, Y_2) = X_1 X_2 Y_1 Y_2.$$

$(\vec{F}, \vec{H}, \vec{K}, Q)$ -Decisional UBER experiment

Given $g_1^{\vec{F}(\vec{x}, \vec{y})}$, $g_2^{\vec{H}(\vec{x}, \vec{y})}$ and $g_T^{\vec{K}(\vec{x}, \vec{y})}$, distinguish $g_T^{Q(\vec{x}, \vec{y})}$ from random sampling on \mathbf{G}_T .

Read: given $\text{pk}(\vec{x})$ and $E = \text{pk}(\vec{y})$, distinguish $\phi(e = \text{sk}(\vec{y}), \text{pk}(\vec{x}))$ from random sampling on \mathbf{G}_T (\Rightarrow PK-Unlinkability by a reduction result).

DBDH experiment

Given (g^x, g^y, g^z) with $(x, y, z) \leftarrow \mathbb{Z}_p^3$ distinguish g_T^{xyz} from random sampling on \mathbb{G}_T .

DBDH experiment

Given (g^x, g^y, g^z) with $(x, y, z) \leftarrow \mathbb{Z}_p^3$ distinguish g_T^{xyz} from random sampling on \mathbb{G}_T .

DBDH \Rightarrow Decisional $(\vec{F}, \vec{H}, \vec{K}, Q)$ -Decisional UBER assumption \Rightarrow PK-Unlinkability.

More Complicated Keys

Waters signature scheme (type 1):

$$\text{sk} = (g_1^{x_1}, x_2, \dots, x_l), \text{ pk} = (g_T^{x_1}, g_2^{x_2}, \dots, g_2^{x_l})$$

The mapping ϕ used:

$$(g_1^{x_1}, x_2, \dots, x_l), (g_T^{y_1}, g_2^{y_2}, \dots, g_2^{y_l}) \mapsto (g_T^{y_1})^{x_1} e(g_1^{x_1}, g_2^{y_2}) e(g_1^{x_2}, g_2^{y_2}) \cdots e(g_1^{x_l}, g_2^{y_l}).$$

Results: Instantiations of ARKG for Pairing-Based Signature Schemes

Type-1 (DBDH assumption)

- BLS-1 (trusted CRS)
- Camenisch-Lysyanskaya

Type-3 (SXDH assumption)

- BLS-3
- Pointcheval-Sanders
- SPS-EQ
- Waters

Type-1 $((X_1, Y_1), \emptyset, \emptyset, X_1 Y_1 (X_1 + Y_1))$ -UBER

- BLS-1

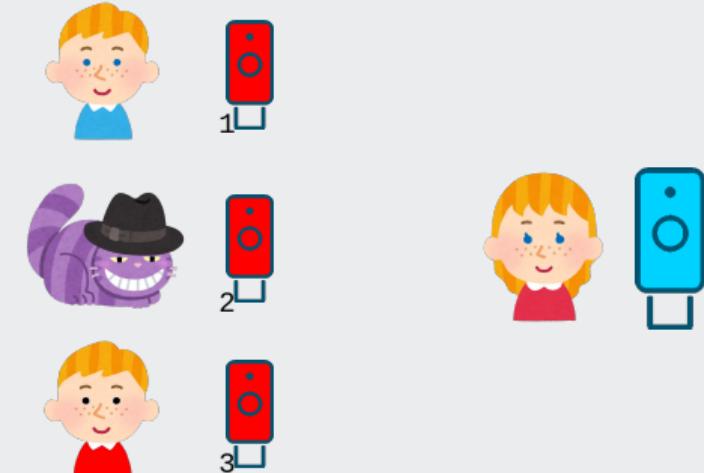
Performances

Table 1: Mean time in milliseconds for each ARKG algorithm. BLS-1/3 and CL are written in C while PS, SPS-EQ and Waters are implemented in python.

	DerivePK	DeriveSK	Check	ARKG total	AKG.KGen
BLS-1	3.56	1.07	0.63	5.26	0.63
BLS-3	2.92	0.99	0.62	4.53	0.61
CL	5.36	0.89	2.21	6.26	2.24
PS	99.23	8.29	0.89	107.52	0.94
SPS-EQ	123.34	17.13	10.89	140.47	5.62
Waters	127.40	17.12	11.52	144.52	8.96

<https://gitlab.surrey.ac.uk/sccs/bp-arkg>

How to backup access to more than one proxy in a thresholded manner?



The Trivial Case: N -out-of- N Threshold

DerivePK(($\text{pk}_1 = g^{s_1}, \dots, \text{pk}_N = g^{s_N}$))

1 : $\text{pk} \leftarrow \text{pk}_1 \cdots \text{pk}_N = g^{\sum_i s_i}$

2 : $(e, E) \leftarrow \text{KGen}$

3 : $k \leftarrow \text{KDF}_1(\text{pk}^e)$

4 : $P \leftarrow g^k \cdot \text{pk}$

5 : **return** $\text{pk}' = P, \text{cred} = E$

DeriveSK(($\text{sk}_1 = s_1, \dots, \text{sk}_N = s_N$), $\text{cred} = E$)

1 : $\text{sk} \leftarrow \sum_i s_i$

2 : $k \leftarrow \text{KDF}_1(E^{\text{sk}})$

3 : **return** $\text{sk}' = k + \text{sk}$

The Trivial Case: N -out-of- N Threshold

DerivePK(($\text{pk}_1 = g^{s_1}, \dots, \text{pk}_N = g^{s_N}$))

- 1 : $\text{pk} \leftarrow \text{pk}_1 \cdots \text{pk}_N = g^{\sum_i s_i}$
- 2 : $(e, E) \leftarrow \text{KGen}$
- 3 : $k \leftarrow \text{KDF}_1(\text{pk}^e)$
- 4 : $P \leftarrow g^k \cdot \text{pk}$
- 5 : **return** $\text{pk}' = P, \text{cred} = E$

DeriveSK(($\text{sk}_1 = s_1, \dots, \text{sk}_N = s_N$), $\text{cred} = E$)

- 1 : $\text{sk} \leftarrow \sum_i s_i$
- 2 : $k \leftarrow \text{KDF}_1(E^{\text{sk}})$
- 3 : **return** $\text{sk}' = k + \text{sk}$

Non-interactive 2-out-of- N ARKG: hard but possible with pairings.

The Trivial Case: N -out-of- N Threshold

DerivePK(($\text{pk}_1 = g^{s_1}, \dots, \text{pk}_N = g^{s_N}$))

- 1 : $\text{pk} \leftarrow \text{pk}_1 \cdots \text{pk}_N = g^{\sum_i s_i}$
- 2 : $(e, E) \leftarrow \text{KGen}$
- 3 : $k \leftarrow \text{KDF}_1(\text{pk}^e)$
- 4 : $P \leftarrow g^k \cdot \text{pk}$
- 5 : **return** $\text{pk}' = P, \text{cred} = E$

DeriveSK(($\text{sk}_1 = s_1, \dots, \text{sk}_N = s_N$), $\text{cred} = E$)

- 1 : $\text{sk} \leftarrow \sum_i s_i$
- 2 : $k \leftarrow \text{KDF}_1(E^{\text{sk}})$
- 3 : **return** $\text{sk}' = k + \text{sk}$

Non-interactive 2-out-of- N ARKG: hard but possible with pairings.

Non-interactive 1-out-of- N ARKG \Rightarrow MP-NIKE \Rightarrow ? iO, multilinear maps.

dARKG: General Goal and Context

Multiple **Proxies** (backups) chosen by one **Delegator** (main).

Multiple **Proxies** (backups) chosen by one **Delegator** (main).

Observations

- Proxy/Delegator interactivity is not an issue.
- Proxy/Proxy interactivity unwanted.

Multiple **Proxies** (backups) chosen by one **Delegator** (main).

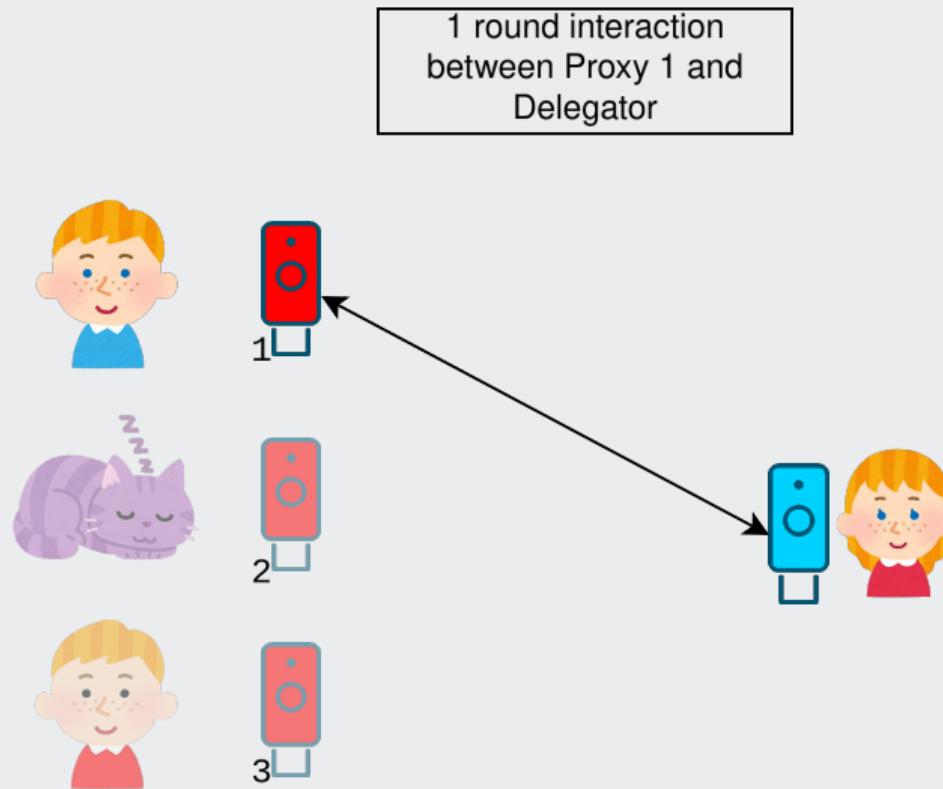
Observations

- Proxy/Delegator interactivity is not an issue.
- Proxy/Proxy interactivity unwanted.

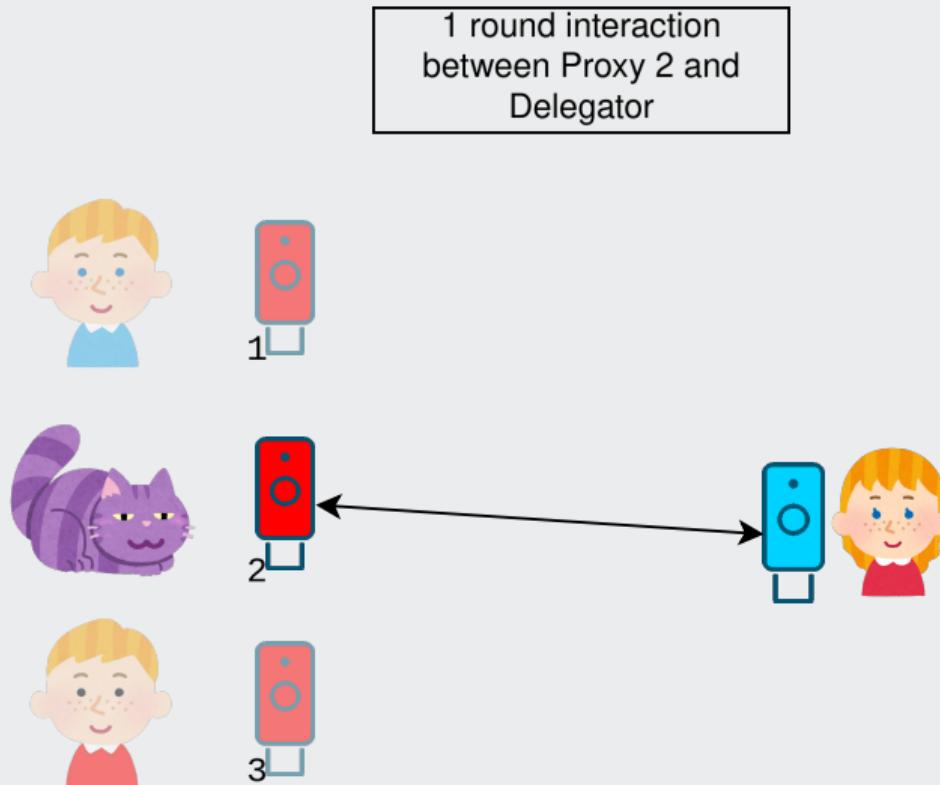
Solution:

- 1-Round Publicly Verifiable Asymmetric Key Agreement (1PVAKA).
- Blinding scheme.
- Threshold secret sharing.

Asymmetric Key Agreement: Generation

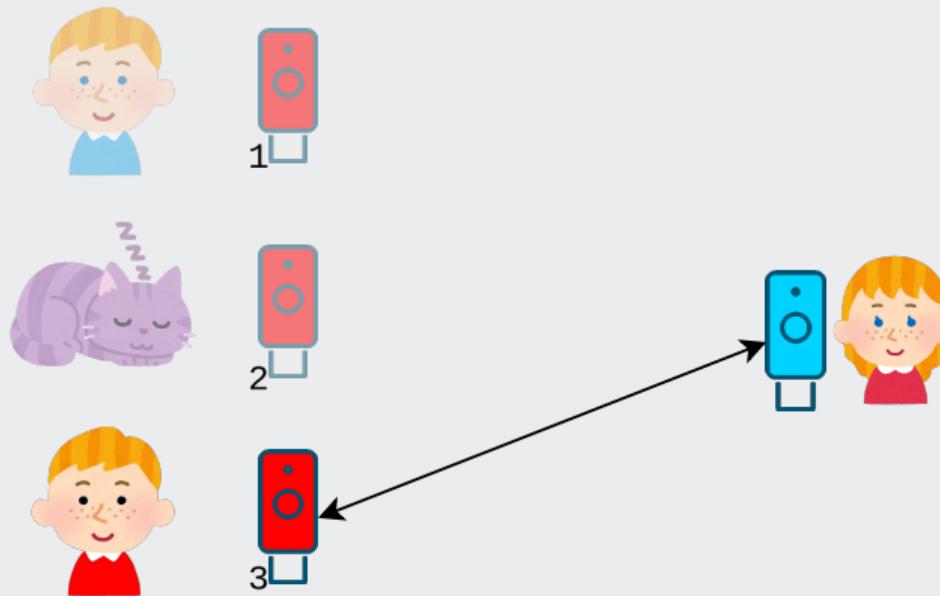


Asymmetric Key Agreement: Generation



Asymmetric Key Agreement: Generation

1 round interaction
between Proxy 3 and
Delegator



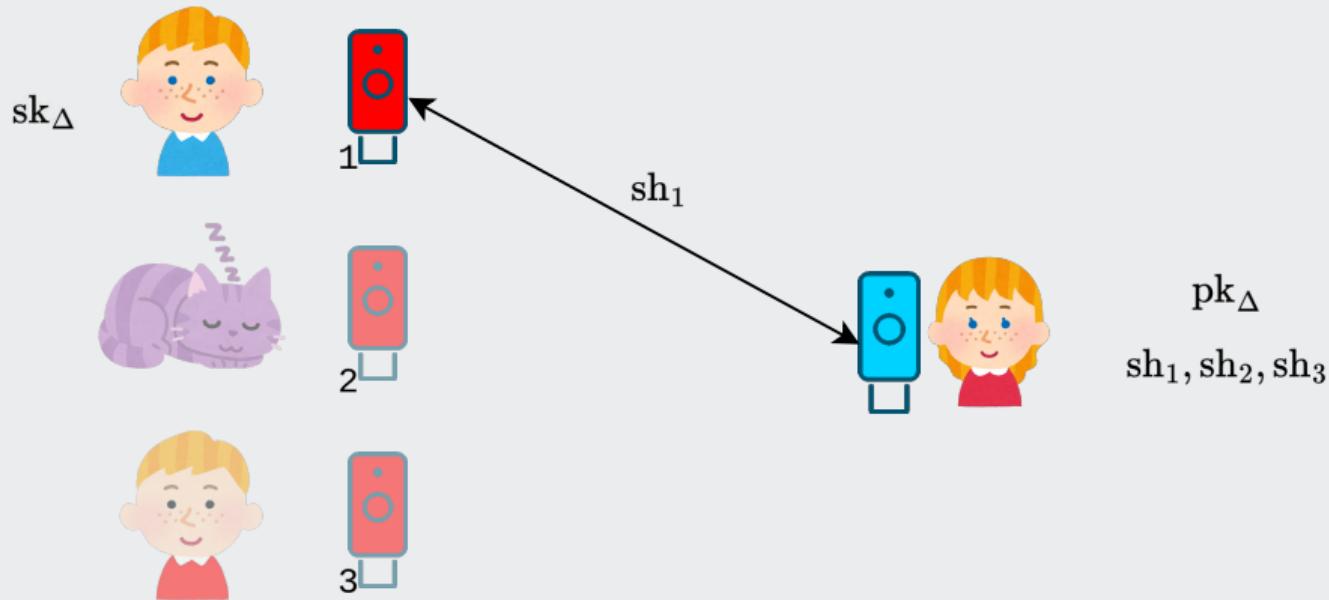
Asymmetric Key Agreement: Aggregation

Construction of a shared
public key and recovery
shares by Delegator

pk_Δ
 $\text{sh}_1, \text{sh}_2, \text{sh}_3$

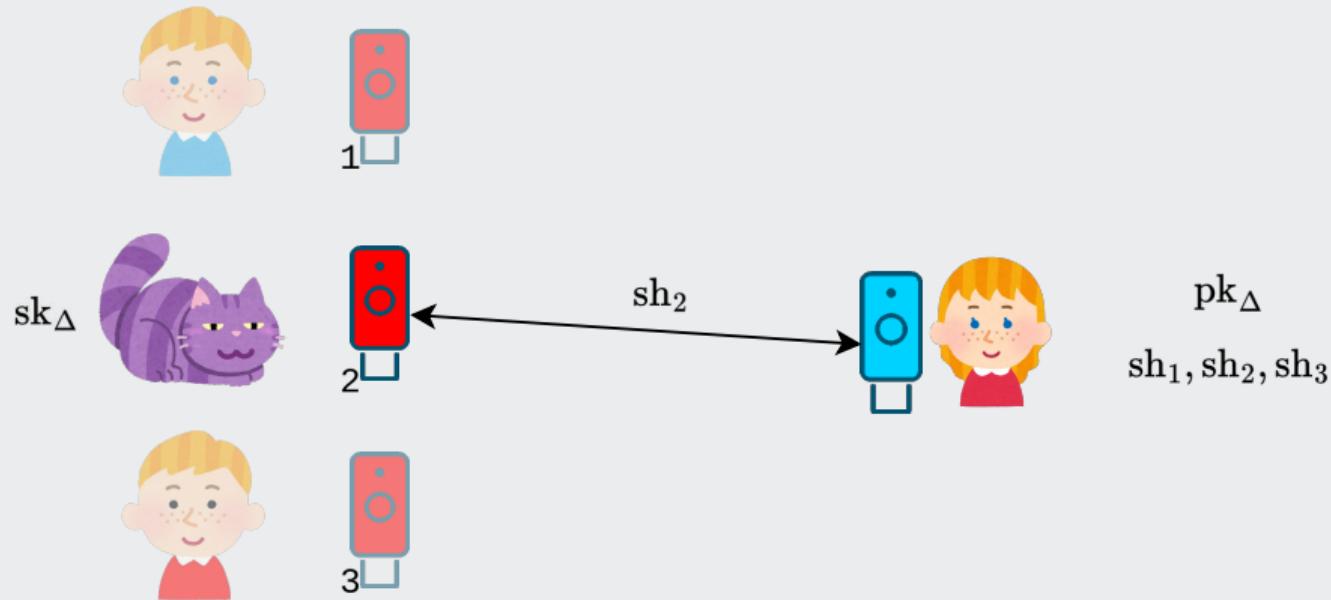
Asymmetric Key Agreement: Recovery

Individual recovery of the secret key by proxies



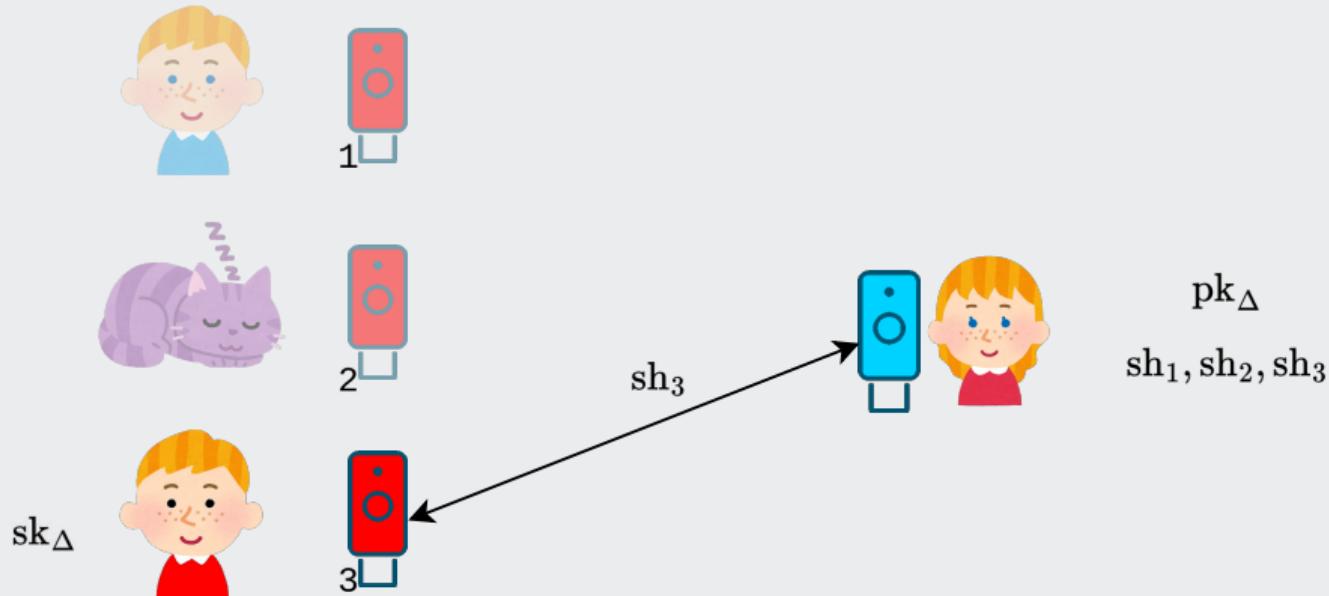
Asymmetric Key Agreement: Recovery

Individual recovery of the secret key by proxies

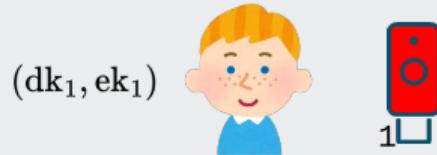


Asymmetric Key Agreement: Recovery

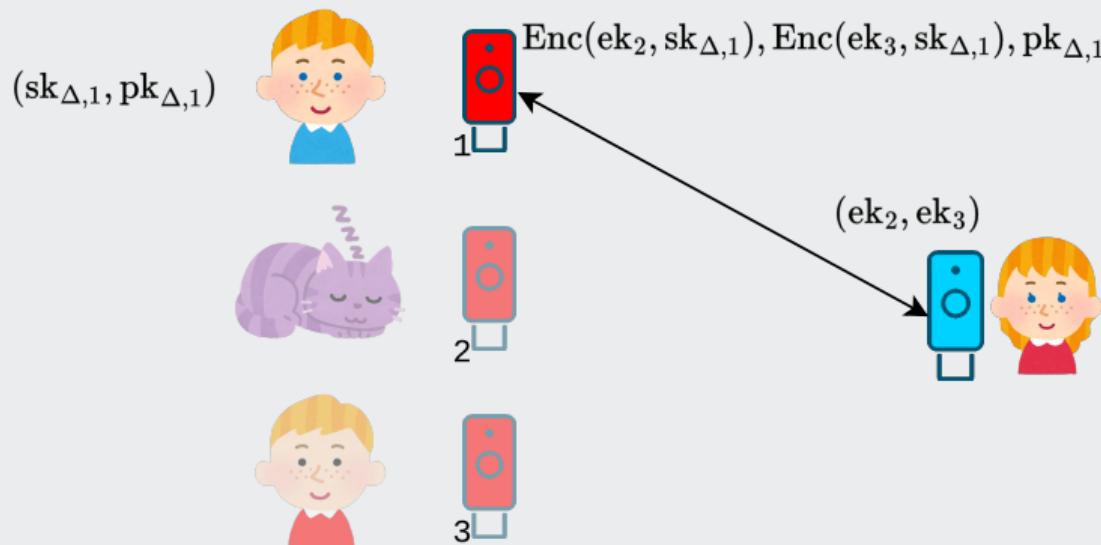
Individual recovery of the secret key by proxies



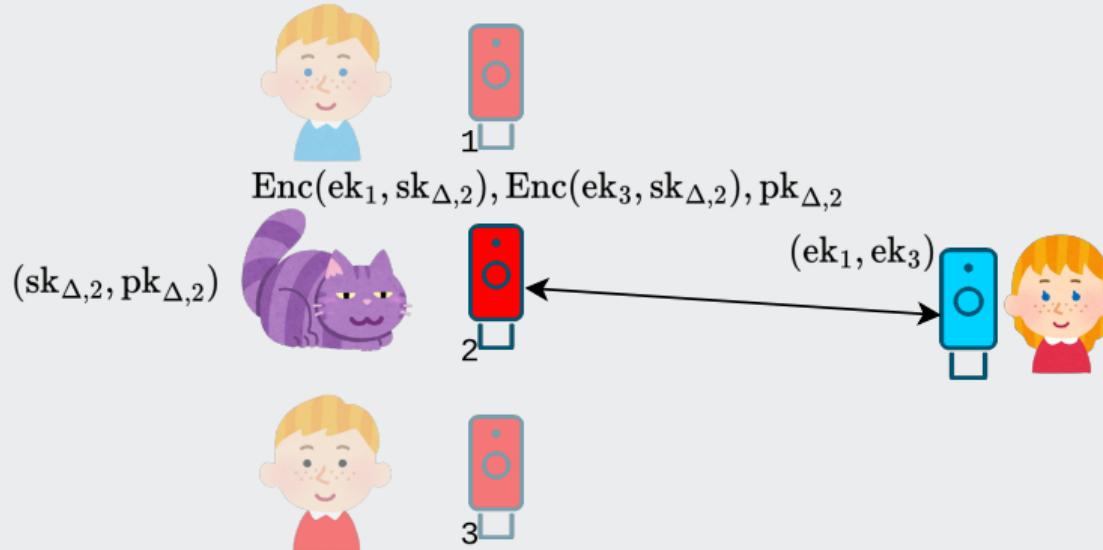
In Practice: Long-Term Encryption Keys



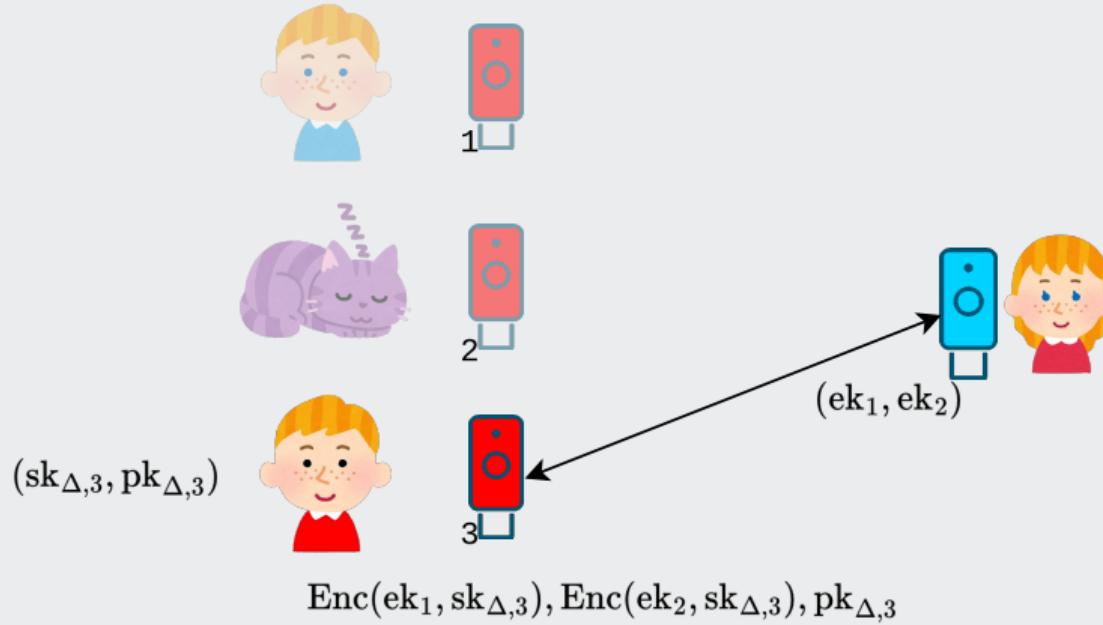
In Practice: Generation



In Practice: Generation

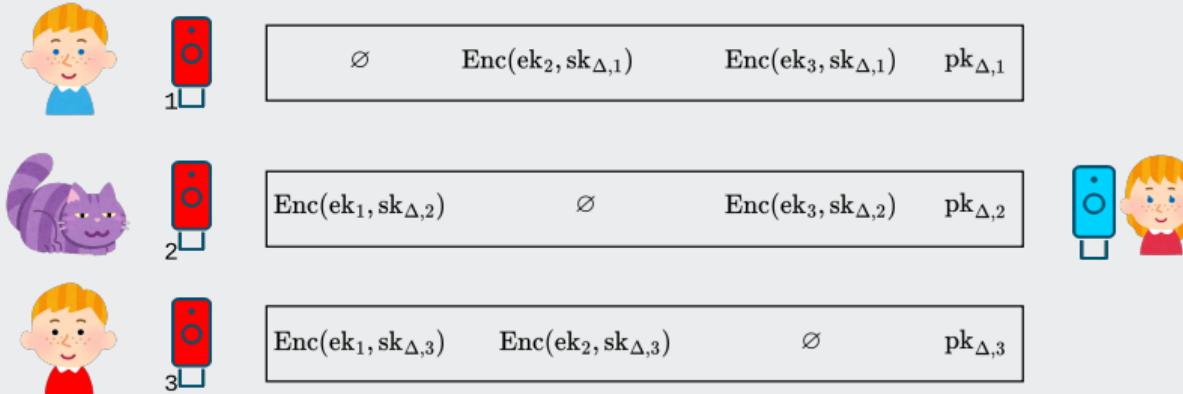


In Practice: Generation



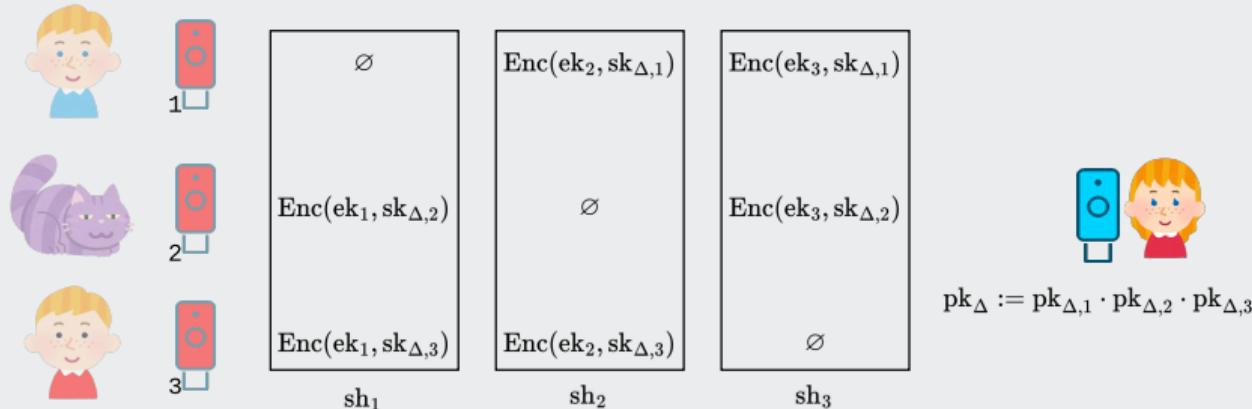
Asymmetric Key Agreement: Generation

Information sent from each proxy:



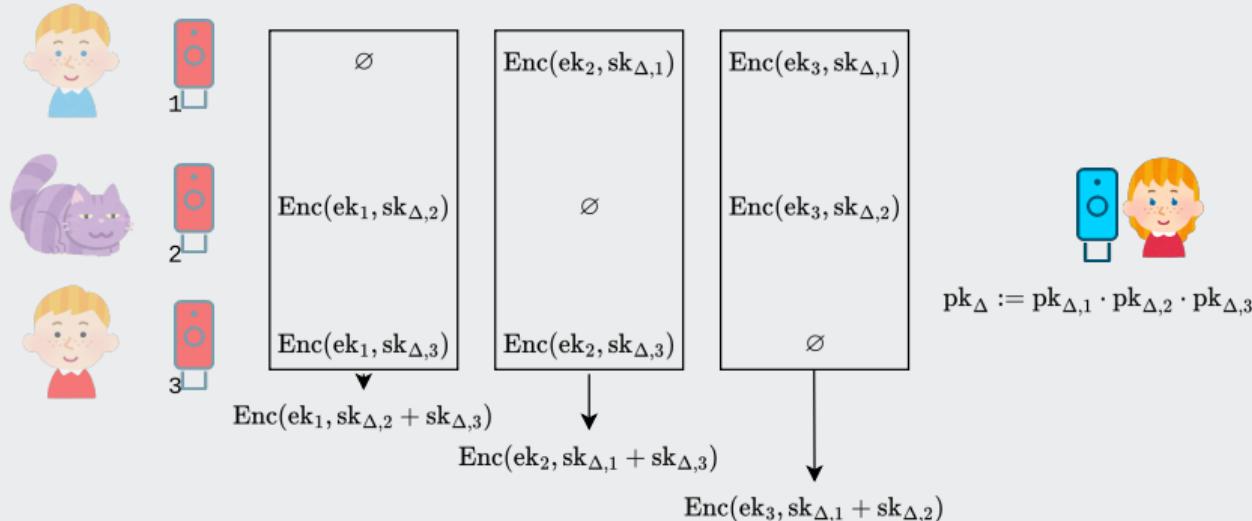
Asymmetric Key Agreement: Aggregation

Aggregation of the public keys and shares by the Delegator:



Asymmetric Key Agreement: Aggregation

Optimization using additively homomorphic encryption:



Recall the General ARKG Algorithms

Setting: key pairs of the form $(\text{sk}_\Delta, \text{pk}_\Delta) = (s, g^s)$.

DerivePK(pk_Δ)

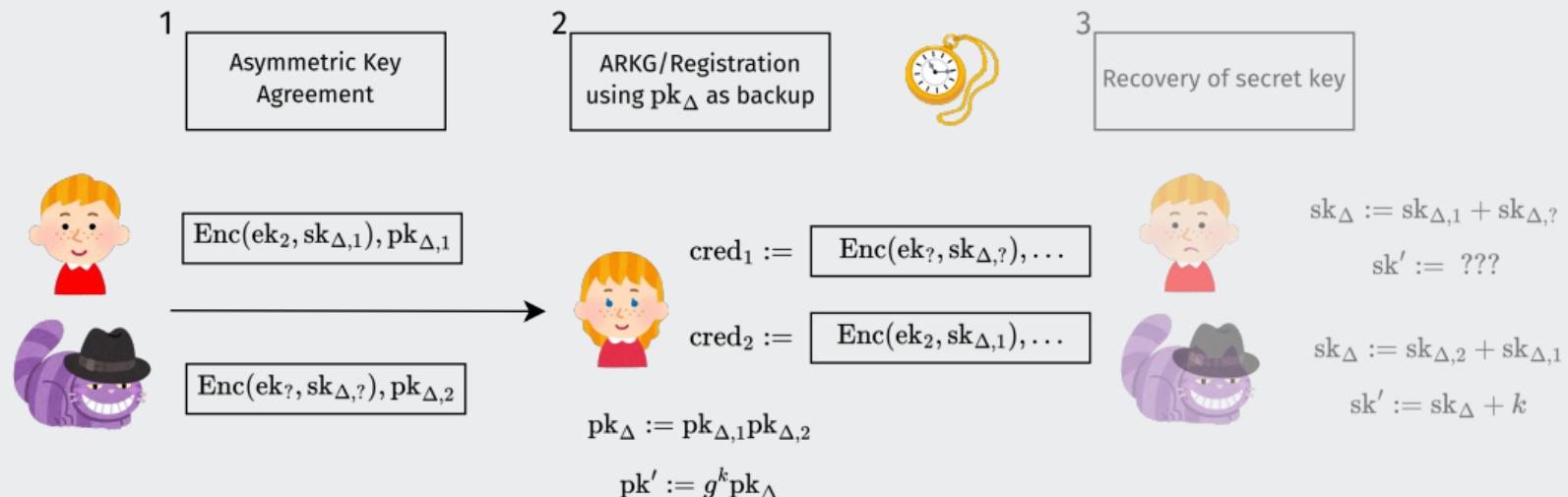
- 1: $(e, E) \leftarrow \text{KGen}$
- 2: $k \leftarrow \text{KDF}_1(\text{pk}_\Delta^e)$
- 3: $P \leftarrow g^k \cdot \text{pk}_\Delta$ **return** $\text{pk}' = P, \text{cred} = E$

DeriveSK($\text{sk}_\Delta, \text{cred} = E$)

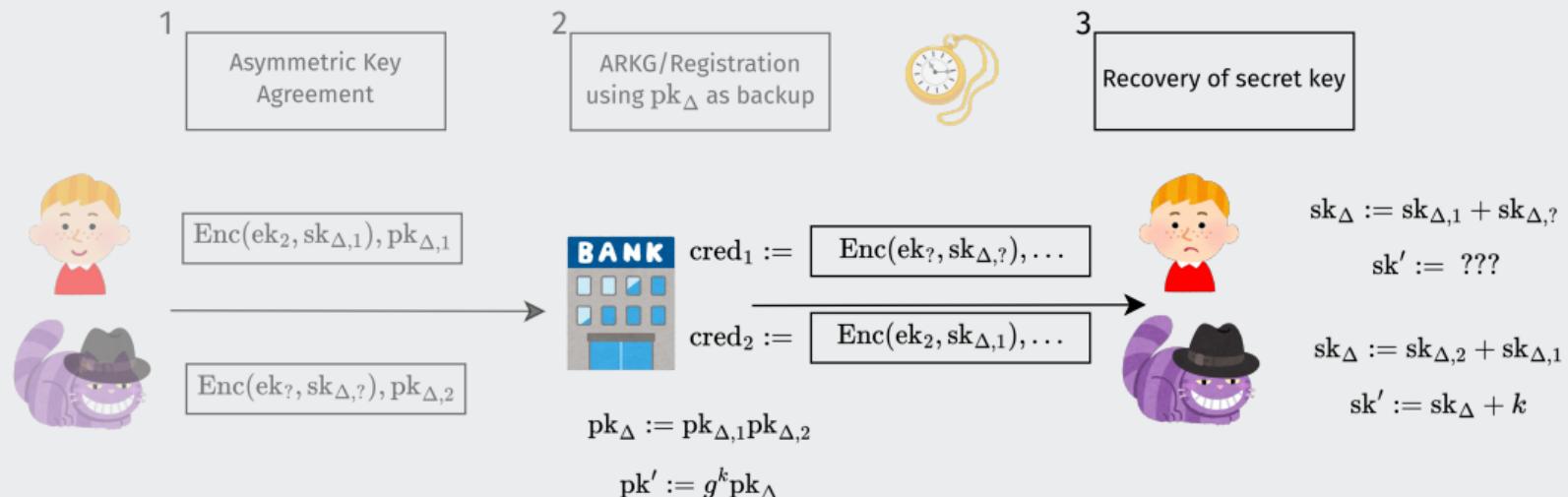
- 1: $k \leftarrow \text{KDF}_1(E^{\text{sk}_\Delta})$
- 2: **return** $\text{sk}' = k + \text{sk}_\Delta$

In dARKG, generate pk_Δ using AKA and add the shares to the credentials.
Yields a 1-out-of- N dARKG construction with minimal interactions.

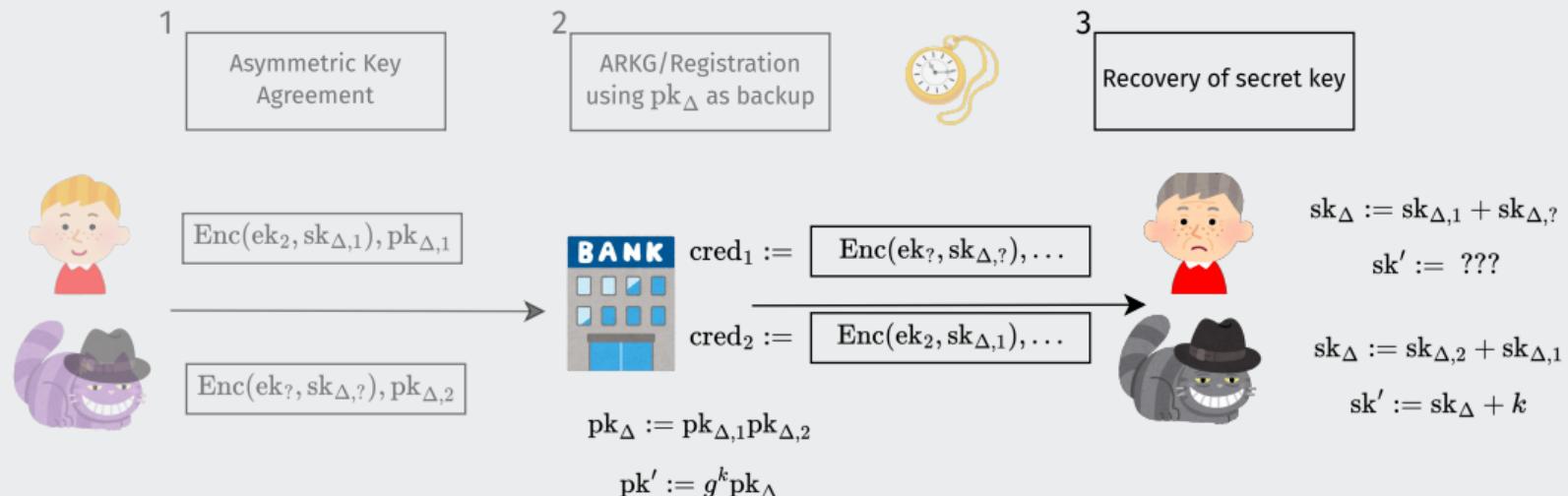
Robustness: Malicious Proxy During AKA Generation



Robustness: Malicious Proxy During AKA Generation



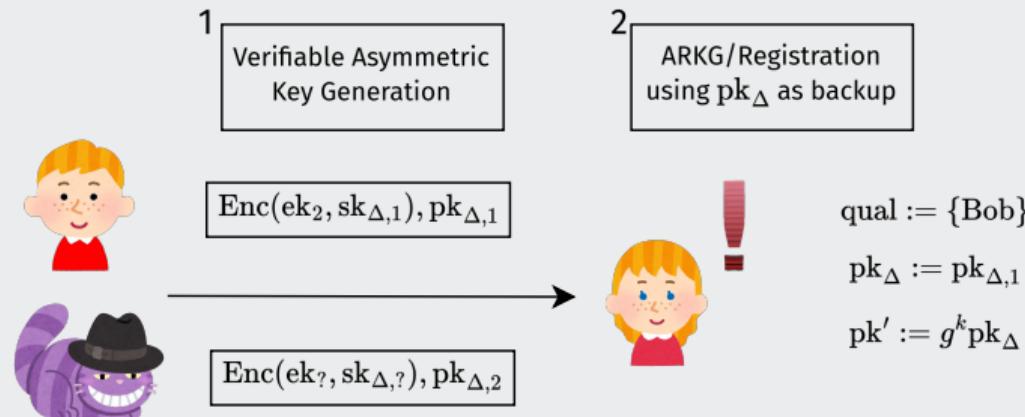
Robustness: Malicious Proxy During AKA Generation



Robustness Using Verifiable Encryption (VE)

Witness/statement relation:

$$\begin{aligned} & (\text{sk}_{\Delta,i}) \mathcal{R} (\text{ek}_i, \text{pk}_{\Delta,i}, \text{ct}) \\ \Leftrightarrow & \text{ct} = \text{Enc}(\text{ek}_i, \text{sk}_{\Delta,i}) \text{ with } g^{\text{sk}_{\Delta,i}} = \text{pk}_{\Delta,i}. \end{aligned}$$



Shared key pk_{Δ} : created via 1-Round Publicly-Verifiable AKA using the delegator as relay.

Shared key pk_{Δ} : created via 1-Round Publicly-Verifiable AKA using the delegator as relay.

VE: Multi-recipient encryption + custom NIZK.

Additively homomorphic encryption to compress ciphertexts and thus credentials.

Shared key pk_{Δ} : created via 1-Round Publicly-Verifiable AKA using the delegator as relay.

VE: Multi-recipient encryption + custom NIZK.

Additively homomorphic encryption to compress ciphertexts and thus credentials.

Blinding k : for unlinkability.

Shared key pk_{Δ} : created via 1-Round Publicly-Verifiable AKA using the delegator as relay.

VE: Multi-recipient encryption + custom NIZK.

Additively homomorphic encryption to compress ciphertexts and thus credentials.

Blinding k : for unlinkability.

Threshold k' : shared blinding factor created by the delegator.

Shared key pk_Δ : created via 1-Round Publicly-Verifiable AKA using the delegator as relay.

VE: Multi-recipient encryption + custom NIZK.

Additively homomorphic encryption to compress ciphertexts and thus credentials.

Blinding k : for unlinkability.

Threshold k' : shared blinding factor created by the delegator.

Encrypted for each proxy using standard PKE.

$$\text{pk}_\Delta = \prod_{i \in \text{qual}} \text{pk}_{\Delta,i} \quad \text{pk}' = g^k \cdot g^{k'} \cdot \text{pk}_\Delta$$

$$\text{cred}_i = \{\text{VE}.\text{Enc}(\text{ek}_i, \text{sk}_{\Delta,i}), \text{Enc}(\text{ek}_i, \text{sh}_i), \text{MAC}(\dots), \dots\}$$

$$\text{sk}' = \sum_{i \in \text{qual}} \text{sk}_{\Delta,i} + k' + k.$$

1PVAKA, Threshold, Blinding.

dARKG: Results and Performances

New syntax and security models for 1PVAKA and dARKG along with generic constructions.
Instantiation based on additive ElGamal and pairing-friendly curve BLS12-381.

<https://gitlab.com/rv5MDg/jupyter-notebook-darkg>

N, t	2,1	4,1	4,3	8,1	8,7	16,1	16,15
KGenProxy	0.5	1.0		2.1		4.0	
DeriveSK	0.01	0.01	0.3	0.1	0.7	0.1	1.4

Table 2: Each proxy's runtime (in sec). N : number of proxies, t : threshold.

N, t	2,1	4,1	4,3	8,1	8,7	16,1	16,15
KGenDeleg	0.7	3.2		14.4		54.3	
DerivePK	0.3	0.6	0.6	1.4	1.4	2.4	2.8

Table 3: Delegator's runtime (in sec). N : number of proxies, t : threshold.

Thank You for Your Attention!

Eibsee