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The Sponge Construction



Modern Definition of Hashing

requested output size v

bitrarily length , o :
ardtrartly fength message } — XOF —— arbitrarily length digest

e Function XOF from {0, 1}* to {0,1}>
® Variable-length input
® Variable-length output
® User specifies output length v when calling the function
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The Sponge Construction [BDPV07]

M1 M2 M3 Ma Z1 ZQ
IV[ i I 1 L
P P P P
v,
® N — — N

® State of size b = r + ¢ bits:

® rate r (efficiency parameter)

® capacity ¢ (security parameter)
® Mjl|---||M, is the message padded into r-bit blocks (e.g., 10* padding)
® SHA-3, Ascon-Hash
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The Sponge Construction [BDPV07]

M1 M2 M3 Ma Z1 ZQ
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v,
c _J /) N N

State of size b = r + ¢ bits:
® rate r (efficiency parameter)
® capacity ¢ (security parameter)
M| - - || M, is the message padded into r-bit blocks (e.g., 10* padding)
SHA-3, Ascon-Hash
e Can squeeze at a larger rate [GPP11]
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Classical security requirements

Second Preimage
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Classical security requirements

Preimage Second Preimage Collision

]\Jﬂ'—’H“u\h M?Hj\\h
J J

v —— H = m— H &

Given 1, find M Given M, find M’ # M Find M # M’

M—— H =

¢ Consider the everywhere variants of (second) preimage [RS04] with # based on a
random primitive.
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Classical security requirements

Preimage Second Preimage Collision

]\Jﬂ'—’H“u\h M?Hj\\h
J J

m—— H m— H &

Given 1, find M Given M, find M’ # M Find M # M’

M —— H

¢ Consider the everywhere variants of (second) preimage [RS04] with # based on a
random primitive.
® Not always sufficient, e.g., MAC(k,m) = H(k|m) with H = plain MD
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Classical security requirements

Preimage Second Preimage Collision

Mﬂ—’H“y\ M#’H‘}\\

m—— H m— H &

Given 1, find M Given M, find M’ # M Find M # M’

¢ Consider the everywhere variants of (second) preimage [RS04] with # based on a
random primitive.
® Not always sufficient, e.g., MAC(k,m) = H(k|m) with H = plain MD

® Hash function should behave like a random oracle
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Indifferentiability [MRH04, CDMPO05]

real world simulated world

D

H

® (H7,P) for a random primitive P should behave like a random oracle RO paired
with a simulator § that maintains construction-primitive consistency

® 7 is indifferentiable from RO for some simulator S whenever any D can
distinguish the two worlds only with a negligible probability
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real world simulated world

D

H

® (H7,P) for a random primitive P should behave like a random oracle RO paired
with a simulator § that maintains construction-primitive consistency
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distinguish the two worlds only with a negligible probability

® |n our case: P is a random permutation; let A/ be the number of P-calls that the
queries would induce in the real world
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Indifferentiability [MRH04, CDMPO05]

real world simulated world

D

H

® (H7,P) for a random primitive P should behave like a random oracle RO paired
with a simulator § that maintains construction-primitive consistency

® 7{ is indifferentiable from RO for some simulator & whenever any D can
distinguish the two worlds only with a negligible probability

® |n our case: P is a random permutation; let A/ be the number of P-calls that the

queries would induce in the real world
= For atk € {col, sec, pre}, we have [AMP10]

AdviE(A) < AdviT(A) + Adviss (A7)
6/33



Indifferentiability of the Sponge Construction

® The sponge construction was proven indifferentiable with a tight bound [BDPV08]

NN +1)

Advilt (V) < 5

Sponge
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Indifferentiability of the Sponge Construction

® The sponge construction was proven indifferentiable with a tight bound [BDPV08]

NN +1)

Advilt (V) < 5

Sponge

® The generalized sponge construction was proven indifferentiable with
bound [NO14]

A <é\6/, N(./\;’:r 1)>

= ¢ may be set to = ¢/2 bits
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Collision and (Second) Preimage Resistance of the Sponge

® Security of sponge truncated to v bits against classical attacks [AMP10]
(assuming ¢ > ¢/2):

Collision resistance: NZ/2¢ + N2 /jovt!
Second preimage resistance: N?2j2¢ + N J2¥
Preimage resistance: N2j2¢ + N J2¥
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Collision and (Second) Preimage Resistance of the Sponge

® Security of sponge truncated to v bits against classical attacks [AMP10]
(assuming ¢ > ¢/2):

Collision resistance: NZj2e + N2 jov+l
Second preimage resistance: N?2j2¢ + N J2¥
Preimage resistance: N2j2¢ + N J2¥
distance from sponge to RO classical attacks against RO
(N is # primitive evaluations) (N is # oracle evaluations)
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Collision and (Second) Preimage Resistance of the Sponge

® Security of sponge truncated to v bits against classical attacks [AMP10]
(assuming ¢ > ¢/2):

Collision resistance: N2/2¢ 4 N2/2v+1  attack in min{2¢/2, 2/2}
Second preimage resistance: NZj2¢ + N /J2v + attack in min{2¢/2, 2"}
Preimage resistance: NZ/2¢ + N J2¥ <+ attack in min{2"~"" 4 2¢/2 2v}
distance from sponge to RO classical attacks against RO
(N is # primitive evaluations) (N is # oracle evaluations)

® Attacks already described in [BDPV07]
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Collision and (Second) Preimage Resistance of the Sponge

® Security of sponge truncated to v bits against classical attacks [AMP10]
(assuming ¢ > ¢/2):

Collision resistance: N2/2¢ 4 N2/2v+1  attack in min{2¢/2, 2/2}
Second preimage resistance: NZj2¢ + N /J2v + attack in min{2¢/2, 2"}
Preimage resistance: NZ/2¢ + N J2¥ <+ attack in min{2"~"" 4 2¢/2 2v}
distance from sponge to RO classical attacks against RO
(N is # primitive evaluations) (N is # oracle evaluations)

® Attacks already described in [BDPV07]
® In [LM22], this gap was closed
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Collision Attack on the Sponge [BDPV11a]

M@
P P R PN R
1V, 1 i i i )
P P P P
1V,
c N N N4 N

e Absorb 2¢/2 different messages
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Collision Attack on the Sponge [BDPV11a]

M(i)/M(j)

PN PN Y PN Ry
1V, 1 i i 1 -
P P P P
1V,
c N N N4 N
Y@ £ y©)

e Absorb 2¢/2 different messages

e With high probability, there exists Y (") £ Y () that collide on their inner part
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Collision Attack on the Sponge [BDPV11a]

MO /MG AG/AG) z0 = 70 z0) = 7
v, 1 1 D—> - 1 .
P P P P
v,
c _J _J N NI

v £ y6) 76) — z06)

Absorb 2¢/2 different messages

With high probability, there exists Y (") £ Y'() that collide on their inner part

e Compensate the difference in next absorb call

Triggers a full state collision = collision in digests
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Second Preimage Attack on the Sponge [BDPV11a]

]\/[1 ]\/[2 Afa Zl Z2
L~ AT A
IV, +& S— - —0
T 7‘/
P P P
IV,
c \ ) < NI

® Let M| Ml ---||M, be the first preimage blocks
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Second Preimage Attack on the Sponge [BDPV11a]

Z Zy
IV, +1& & —D ,
P P P
v,
@ ) _Jd N
v Y
® Let M| Ml ---||M, be the first preimage blocks

® Retrieve Y, the state right before squeezing
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Second Preimage Attack on the Sponge [BDPV11a]

my/m} A/A ma,/mb 71 7
1V, © © S
T 7‘/
P P P P
v, < >
c N _J X N
— —
\Y] Y

Let My ||Ms]|--- || My be the first preimage blocks
Retrieve Y, the state right before squeezing

Connect the Y and IV with an inner collision
Cost: ~ 2¢/2
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First Preimage Attack on the Sponge [BDPV11a]

Zy Zy Zp—1 Zy

|

o l‘ ) l‘ ) l‘ /ﬂ/‘ ) ‘ ‘ /j
P P P P j
v, y
@ N N NS N

® Let Z1||Zs| - - || Z¢ be the image
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First Preimage Attack on the Sponge [BDPV11a]

Zy Zy Zp—1 Zy
o l‘ ) l‘ ) l‘ ) : ‘ ) ‘ ‘ /j [
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1V, 4
e N N NS N

® Let Z1||Zs| - - || Z¢ be the image

® No intermediate state Y is given: need to find it
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First Preimage Attack on the Sponge [BDPV11a]

Zy Zy Zp—1 Zy
v, l‘ ) l} Y l} Y ; ‘ Y ‘ o ‘ /j ‘ [
P P P P P
1V, .
e N N NS N
Y Y Y, Yo Y,
\/\/\_/

® Let Z1||Zs| - - || Z¢ be the image
® No intermediate state Y is given: need to find it
e Start from a Y7 with correct outerpart, make ¢ — 1 forward queries: one attempt

succeeds with probability ~ QVET/
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First Preimage Attack on the Sponge [BDPV11a]

my/mj A/AN ma/mb A Zs Zp—1 )
1w, l} ) l} ) l} /ﬂ// ‘ ) ‘ ‘ /j w
P P P P P
v, 7
¢ N N N N
—_— -—
Y Y, Y, Yo Y,
\M
® Let Z1||Zs| - - || Z¢ be the image
® No intermediate state Y is given: need to find it

Start from a Y7 with correct outerpart, make ¢ — 1 forward queries: one attempt

succeeds with probability ~

/

1
Qu—r
Total attack costs ~ 2/~ + 2¢/2 queries
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Improved First Preimage Resistance

® Best known attack has cost &~ min {2", = L 20/2}

* Indifferentiability guarantees security up to ~ min {2",2¢/2} queries
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Improved First Preimage Resistance

® Best known attack has cost &~ min {2", = L 20/2}

* Indifferentiability guarantees security up to ~ min {2",2¢/2} queries
— Bound is not tight when ¢/2 <v — 7/

® [LM22]: preimage resistance proven with bound

O A—[—I-min L Aﬁ
v qu—r'? 9c

= Optimality of the attack
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Improved First Preimage Resistance

® Best known attack has cost &~ min {2", = L 20/2}

* Indifferentiability guarantees security up to ~ min {2",2¢/2} queries
— Bound is not tight when ¢/2 <v — 7/

® [LM22]: preimage resistance proven with bound
A N . N N2
o T G e

® The proof relies on decomposing the bad events triggered by adversary by

= Optimality of the attack

following the aforementioned attack
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Application

® No impact on SHA-3 members, as they squeeze in one block

® Ascon-Hash parameters:

13/33



Application

® No impact on SHA-3 members, as they squeeze in one block

® Ascon-Hash parameters:
® (b,c,r,v) = (320,256, 64,256)
® Generic preimage resistance improved from 128 to 192 bits of security

® Other lightweight sponges may also benefit (e.g., NIST LWC finalists, Spongent,
Photon)
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Permutation-Based Hashing with
Stronger (Second) Preimage
Resistance




Stronger (Second) Preimage Resistance

® Some applications require strong security guarantees, such as hash-based
post-quantum signature schemes
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Stronger (Second) Preimage Resistance

® Some applications require strong security guarantees, such as hash-based
post-quantum signature schemes

® Example: the National Institute of Commercial Cryptography Standards (NICCS)
of China calls for hash functions with 1024-bit preimage and second-preimage
resistance
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Stronger (Second) Preimage Resistance

® Some applications require strong security guarantees, such as hash-based
post-quantum signature schemes

® Example: the National Institute of Commercial Cryptography Standards (NICCS)
of China calls for hash functions with 1024-bit preimage and second-preimage
resistance

® To achieve this with a sponge, the capacity must be at least 2048 bits
® As a result, Keccak-p[1600,24] is not suitable for this scenario
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Double Sponge

® One possibility: use the double sponge construction [LM24]

uz
A D —- 4> |——|
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4.

® |ndifferentiable up to &~ 23 queries
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Double Sponge

® One possibility: use the double sponge construction [LM24]
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® |ndifferentiable up to =~ 2% queries
= With Keccak-p[1600,24] (¢ = 1536, = 64), we get 1024 bits of indifferentiability
security
® Not the most efficient approach

!

S&— =
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Double Sponge

® One possibility: use the double sponge construction [LM24]

\1Z
A —- 4> |——|
vt
¢
4.
M, MIX| \1
A —- 4> |—|
IVL\
¢
4.

® |ndifferentiable up to =~ 2% queries
= With Keccak-p[1600,24] (¢ = 1536, = 64), we get 1024 bits of indifferentiability
security

S—

S&— =

® Not the most efficient approach
® |nstead, aim to achieve \-bit security for both preimage and second preimage

using a sponge with A-bit capacity 15/33



Sponge with a Random Transformation

my/m) AN ma,/mb A Zy
IV[ A ' U
P P P P
v, < >
c J - - J
\Y) Y

® The attacks on sponge for (second) preimage rely on the invertibility of P
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Sponge with a Random Transformation

M1 M2 Ma Z1 ZQ
IV[ A A\ ttt T
F F F
v,
€ N —/ N

® The attacks on sponge for (second) preimage rely on the invertibility of P
® Foekens [Foe23] proved that sponge with a random transformation has:
® Preimage resistance up to ~ 2" queries
® Second preimage resistance up to &~ min{2”,2°/a} queries («: size of first
preimage)
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Sponge with a Random Transformation

M1 M2 Ma Z1 ZQ
IV[ A A\ ttt T
F F F
v,
€ N —/ N

® The attacks on sponge for (second) preimage rely on the invertibility of P
® Foekens [Foe23] proved that sponge with a random transformation has:
® Preimage resistance up to ~ 2" queries
® Second preimage resistance up to &~ min{2”,2°/a} queries («: size of first
preimage)
® But non-invertible functions more scarce than permutations
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Sponge with a Feed-Forward: SPONGE-DM

M,y M, M3 M, 7y Zy

Ul Al A

v, +

IV, ~

¢ Alternative: add a feed-forward only during absorption (independent related
work: [GHF*25])
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Sponge with a Feed-Forward: SPONGE-DM

M,y M, M3 M, 7y Zy

Ul Ul

IV, 4 1 b— - —d

¢ Alternative: add a feed-forward only during absorption (independent related
work: [GHF*25])

® This construction, named SPONGE-DM, achieves

® Preimage resistance up to ~ 2 queries
® Second preimage resistance up to min{2",2¢/a} queries
® |ndifferentiability up to sponge’s bound
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Sponge with a Feed-Forward: SPONGE-DM

M,y M, M3 M, 7y Zy

Ul Ul

IV, 4 1 b— - —d

¢ Alternative: add a feed-forward only during absorption (independent related
work: [GHF*25])
® This construction, named SPONGE-DM, achieves
® Preimage resistance up to ~ 2 queries
® Second preimage resistance up to min{2",2¢/a} queries
® |ndifferentiability up to sponge’s bound
® Cost: adds a extra b-bit state = can we lower the size of the feed-forward?
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Sponge with a Feed-Forward: Attempt to Reduce Size of Feed-Forward

® |ntuition: the adversary has control on the outer part of the state
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Sponge with a Feed-Forward: Attempt to Reduce Size of Feed-Forward

® |ntuition: the adversary has control on the outer part of the state, so feeding it
forward seems unnecessary
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Sponge with a Feed-Forward: Attempt to Reduce Size of Feed-Forward

PLYS) S

inner

® |ntuition: the adversary has control on the outer part of the state, so feeding it
forward seems unnecessary

e This intuition is incorrect: can mount to attack in &~ 2¢/2 queries when n < r
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SPONGE-EDM* for a = {0, ...,

M, My M M, Z Z
1V, 74 f f ;
. f g f Y f g h
v,
a N N N N N N N

® |dea: augment absorbing phase by one extra permutation call (may have a > ¢)

® May use round-reduced permutations
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SPONGE-EDM* for a = {0, ...,

M, My Ms M, 7 Zy
1V, f f f t
! 9 f 9 I 9 h
c—a
v,
a N N N N N N N

® |dea: augment absorbing phase by one extra permutation call (may have a > ¢)
® May use round-reduced permutations

® \We proved:
 ~ min{y, max{v — 1/, a, min{%E<, ©}}} bits of preimage security
* ~ min{v, ¢ — logy(ar), max{a, min{ %<, &<}1}} bits of second preimage

security
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SPONGE-EDM“: First Preimage Attack

Fa(z) = f(z) ® 0% 2],

security: min{v, max{v — ', a, min{ %<, b+C}}}

Zl Z2

~ 1A

S
Fa g Fo g h
— N /) ) _J
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SPONGE-EDM“: First Preimage Attack

Fu(z) = f(x) ® 09| |z]a security: min{v, max{r — r’,a, min{2F¢, &<}}}
Z Zy
IV, f I
I g P g h
v,
C ~— — ~— ~— —
S

@ Find a squeezing state S (cost: 2V~")
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SPONGE-EDM“: First Preimage Attack

Fu(z) = f(x) ® 09| |z]a security: min{v, max{v — r’, a, min{¢5¢, &<}}}
Z Zy
IV, f I
I g P g h
v,
C ~— — ~— ~— —
Y; S

@ Find a squeezing state S (cost: 2V~")

2m1n{0

@® Invert F, several times (costs 2% per inversion, do s inversions)
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SPONGE-EDM“: First Preimage Attack

Fu(z) = f(x) ® 09| |z]a security: min{v, max{v — r’, a, min{¢5¢, &<}}}
]\/Il ]\/[2 Zl Z2

IV, f I
I g P g h

v,

C ~— — ~— ~— —
—_—
Y; S

@ Find a squeezing state S (cost: 2V~")

2m1n{0

@® Invert F, several times (costs 2% per inversion, do s inversions)

® Find an inner collision between some Y; and a forward query (cost:
min{2¢, 2 +C})
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SPONGE-EDM“: First Preimage Attack

Fu(z) = f(x) ® 09| |z]a security: min{v, max{v — r’, a, min{2$<, &<1}}
]\/Il ]\/[2 Zl Z2

IV, f I
I g P g h

v,

C ~— — ~— ~— —
—_—
Y; S

@ Find a squeezing state S (cost: 2V~")

2m1n{0

@® Invert F, several times (costs 2% per inversion, do s inversions)

® Find an inner collision between some Y; and a forward query (cost:
min{2¢, 2 +C})
© Overall cost: 2V + max{2%,2 )

(&

}
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Application

® Using Keccak-p[1600] inside SPONGE-EDM® with ¢ = 1088, v = 1024 (f and g
with each 12 rounds) meets NICCS requirements:
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® Using Keccak-p[1600] inside SPONGE-EDM® with ¢ = 1088, v = 1024 (f and g
with each 12 rounds) meets NICCS requirements:
® generic collision resistance ~ 512 bits

® generic preimage resistance &~ 1024 bits
® generic second-preimage resistance ~ 1024 bits assuming a < 264
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® Using Keccak-p[1600] inside SPONGE-EDM® with ¢ = 1088, v = 1024 (f and g
with each 12 rounds) meets NICCS requirements:

® generic collision resistance ~ 512 bits
® generic preimage resistance &~ 1024 bits
® generic second-preimage resistance ~ 1024 bits assuming a < 264

® Ascon-Sign (PQC submission) uses Ascon-Hash within SPHINCS+ framework:
(Ascon-Hash parameters: (b, c,r,v) = (320,256, 64, 256))
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Application

® Using Keccak-p[1600] inside SPONGE-EDM® with ¢ = 1088, v = 1024 (f and g
with each 12 rounds) meets NICCS requirements:
® generic collision resistance ~ 512 bits
® generic preimage resistance &~ 1024 bits
® generic second-preimage resistance ~ 1024 bits assuming a < 264
® Ascon-Sign (PQC submission) uses Ascon-Hash within SPHINCS+ framework:
(Ascon-Hash parameters: (b, c,r,v) = (320,256, 64, 256))
® Submission claimed 192-bit security, but generic second preimage resistance
at best ¢/2 = 128 bits = did not advance second round
® |nstantiating the hash construction with SPONGE-DM remedies this gap —
192-bit generic security
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Application

® Using Keccak-p[1600] inside SPONGE-EDM® with ¢ = 1088, v = 1024 (f and g
with each 12 rounds) meets NICCS requirements:
® generic collision resistance ~ 512 bits
® generic preimage resistance &~ 1024 bits
® generic second-preimage resistance ~ 1024 bits assuming a < 264
® Ascon-Sign (PQC submission) uses Ascon-Hash within SPHINCS+ framework:
(Ascon-Hash parameters: (b, c,r,v) = (320,256, 64, 256))
® Submission claimed 192-bit security, but generic second preimage resistance
at best ¢/2 = 128 bits = did not advance second round
® |nstantiating the hash construction with SPONGE-DM remedies this gap —
192-bit generic security
® Future work: what about the setting of a quantum adversary?
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Sponge-Based PRFs




Pseudorandom Function (PRF)

—— arbitrarily length output

arbitrarily length message,
e | __|F
requested output size v

e Keyed function Fx from {0,1}* to {0,1}*
® Variable-length input
® |deally: variable-length output, where user specifies output length v
when calling the function
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Indistinguishability in the Ideal Model

Fr

P

real world ideal world

SV

° ]-}7? for a random primitive P and key K should behave like a random oracle RO
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Indistinguishability in the Ideal Model

Fr P

real world ideal world
—| P RO

D
° ]-}7; for a random primitive P and key K should behave like a random oracle RO

® |n our case: P is a random permutation, and let:

® A number of P-queries,
® M online complexity (number of blocks),

® ;. number of users

23/33



Turning a Sponge into a PRF

® Black-box approaches to keying a sponge:

~
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Turning a Sponge into a PRF

) @Dz
1V, & 5% D D F
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C ) — ) /¢ — )

® Black-box approaches to keying a sponge:

® Outer-Keyed Sponge (OKS) [BDPV11b]

24/33



Turning a Sponge into a PRF
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® Black-box approaches to keying a sponge:
® Outer-Keyed Sponge (OKS) [BDPV11b]
¢ Suffix-Keyed Sponge [BDPV11la, DM19, DM20]
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Turning a Sponge into a PRF
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Black-box approaches to keying a sponge:
Outer-Keyed Sponge (OKS) [BDPV11b]
Suffix-Keyed Sponge [BDPV11la, DM19, DM20]
Sandwich Keyed Sponge [Nail6]
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Turning a Sponge into a PRF

) @Dz
1V, & 5% D D F
P P P P P P P
v, +
C ) — ) /¢ — )

Black-box approaches to keying a sponge:
Outer-Keyed Sponge (OKS) [BDPV11b]
Suffix-Keyed Sponge [BDPV11la, DM19, DM20]
Sandwich Keyed Sponge [Nail6]

These variants give different security guarantees; here we focus on OKS

24/33



OKS: Security

e |ndifferentiability is overkill, dedicated proofs give tighter security bounds:
assuming that [k/r]| is a small constant, we
have [GPT15, ADMV15, NY16, Men18]

uN — MN
2k 28

AdVEPFF _ 5 ( ;
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OKS: Security

e |ndifferentiability is overkill, dedicated proofs give tighter security bounds:

assuming that [k/r]| is a small constant, we
have [GPT15, ADMV15, NY16, Men18]

-PRF ~ (N MN
AdngS = O <2k + 2c )

® The bound is tight
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OKS: Security

e |ndifferentiability is overkill, dedicated proofs give tighter security bounds:
assuming that [k/r]| is a small constant, we
have [GPT15, ADMV15, NY16, Men18]

-PRF ~ (N MN
AdngS = O <2k + 2c )
® The bound is tight
e Concrete example: with b =320, r =128, ¢ =192, £k =128, p =1, and
assuming M < 264 this gives 128 bits of security
25 /33



OKS: Improvements [BDPV11b, BDPV12, CDH"12, ADMV15]
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OKS: Improvements [BDPV11b, BDPV12, CDH"12, ADMV15]

=
&
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&

® V2: Key into the initial state = more efficient, no security loss
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OKS: Improvements [BDPV11b, BDPV12, CDH"12, ADMV15]
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OKS: Improvements [BDPV11b, BDPV12, CDH"12, ADMV15]

M pad,

a AVARuSRbA;
w U U U

® V2: Key into the initial state = more efficient, no security loss

® V/3: absorb over the entire state = Full-State Keyed Sponge (FSKS) [MRV15]

e With some optimizations (e.g., unique IV per user, domain separation), security
can be pushed as far as [DM24, DMV17, Men23]

<N MN J\/)

VHPRF _

20 2
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The Full-State Keyed Sponge

M pad,
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® We have: full-state absorption, multi-user security optimized, tight security bounds
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The Full-State Keyed Sponge

M pad,

LD
U U U

Trunc Trunc Trunc

® We have: full-state absorption, multi-user security optimized, tight security bounds

® Can we get full-state squeezing? Those inner parts seem wasted..
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Truncation and Summation

)

IHl EK

C

)

IHO EK

b

/
® Holds in the secret permutation setting (i.e., block cipher-based)

® Truncation and Summation: common PRP-to-PRF conversions
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The Summation Truncation Hybrid (STH) [GM20] (1/2)

Yo

2|0 —

TN

z||1

b

e With truncation, discarding truncated parts is wasteful
® Can group the evaluations two by two, sum them together — get ¢ bits for
free, without sacrificing security
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The Summation Truncation Hybrid (STH) [GM20] (2/12)

=%

 E———CP]

z||1

® Can be generalized to larger groups (in a CENC [Iwa06] fashion)

® Group of w evaluations: output of r + b(w — 1) bits = approaches b bit per
permutation call when w is large
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Incorporating the STH into the FSKS: MacaKey

K|[m] +——

AL RLE
J U UG

IV [m] +——

N

5 Zn

e V1: First call during squeezing phase: r bits of output

After the first call: b bits of output per permutation call
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Incorporating the STH into the FSKS: MacaKey

‘=$
&

e V1: First call during squeezing phase: r bits of output

K|[m] +——

After the first call: b bits of output per permutation call

® \/2: ) bits squeezed per permutation call
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MacaKey: Security

® \We prove

~ (N -ul¥V o MN M2 (L+ DN
Adviile, (A) =0 ( T T T )
e 41V depends on the choice of the IVs (1 < ulV < )

® [ denotes the number of states where the adversary has control on the outer part
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MacaKey: Security

® \We prove

AdVERE . (A) = O (

N -ul¥ L MN M? L LN
iz 7P 7 7

v

max

ulV depends on the choice of the IVs (1 < ulV < 1)

max

L denotes the number of states where the adversary has control on the outer part

Concrete example: with b =320, r =128, ¢ =192, k = 128, u < 2%°, one IV
per user, £ = 0 and assuming M < 2641, this gives 128 bits of security
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Conclusions

¢ Hashing improvements: feed-forward mechanisms enhance (second) preimage
security:
® SPONGE-DM with ideal preimage resistance (= 2¥) and significantly improved
second preimage bound,
® SPONGE-EDM” that gives a tunable trade-off
® PRF improvements: STH into FSKS allows full-state squeezing without

sacrificing generic security

e AEAD side: not discussed, design space larger, a lot of possible optimizations
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Conclusions

¢ Hashing improvements: feed-forward mechanisms enhance (second) preimage
security:

® SPONGE-DM with ideal preimage resistance (= 2¥) and significantly improved
second preimage bound,
® SPONGE-EDM” that gives a tunable trade-off

® PRF improvements: STH into FSKS allows full-state squeezing without
sacrificing generic security

e AEAD side: not discussed, design space larger, a lot of possible optimizations

Thank you for your attention!
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