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The Sponge Construction



Modern Definition of Hashing

arbitrarily length message,

requested output size ν

}
XOF arbitrarily length digest\

∗

\

ν

• Function XOF from {0, 1}∗ to {0, 1}∞

• Variable-length input

• Variable-length output

• User specifies output length ν when calling the function
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The Sponge Construction [BDPV07]
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IV r
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\
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• State of size b = r + c bits:

• rate r (efficiency parameter)

• capacity c (security parameter)

• M1∥ · · · ∥Mα is the message padded into r-bit blocks (e.g., 10∗ padding)

• SHA-3, Ascon-Hash

• Can squeeze at a larger rate [GPP11]
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Classical security requirements

Preimage

M H h\

∗

\

ν

Given h, find M
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Given M , find M ′ ̸= M

gCollisiong

M

M ′

H

H
h

\

∗

\

ν

\

∗

\

ν

Find M ̸= M ′

• Consider the everywhere variants of (second) preimage [RS04] with H based on a

random primitive.

• Not always sufficient, e.g., MAC(k,m) = H(k∥m) with H = plain MD

• Hash function should behave like a random oracle
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Indifferentiability [MRH04, CDMP05]

real world simulated world

H P SRO

D

• (HP ,P) for a random primitive P should behave like a random oracle RO paired

with a simulator S that maintains construction-primitive consistency

• H is indifferentiable from RO for some simulator S whenever any D can

distinguish the two worlds only with a negligible probability

• In our case: P is a random permutation; let N be the number of P-calls that the
queries would induce in the real world

=⇒ For atk ∈ {col, sec, pre}, we have [AMP10]

Advatk
H (A) ≤ Adviff

H (A′) +Advatk
RO(A′′)
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Indifferentiability of the Sponge Construction

• The sponge construction was proven indifferentiable with a tight bound [BDPV08]

Adviff
Sponge(N ) ≤ N (N + 1)

2c

• The generalized sponge construction was proven indifferentiable with

bound [NO14]

Õ
(
N
2c′

+
N (N + 1)

2c

)
=⇒ c′ may be set to ≈ c/2 bits
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Collision and (Second) Preimage Resistance of the Sponge

• Security of sponge truncated to ν bits against classical attacks [AMP10]

(assuming c′ ≥ c/2):

Collision resistance: N 2/2c + N 2/2ν+1

← attack in min{2c/2, 2ν/2}

Second preimage resistance: N 2/2c + N/2ν

← attack in min{2c/2, 2ν}

Preimage resistance: N 2/2c + N/2ν

← attack in min{2ν−r′ + 2c/2, 2ν}

−−→ −−→

distance from sponge to RO classical attacks against RO

(N is # primitive evaluations) (N is # oracle evaluations)

• Attacks already described in [BDPV07]

• In [LM22], this gap was closed
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Collision Attack on the Sponge [BDPV11a]

IV l

IV r

P P

· · ·

· · ·
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M (i)

Z
(i)
1 = Z

(j)
1 Z

(i)
2 = Z

(j)
2

Y (i) c
= Y (j) Z(i) = Z(j)

• Absorb 2c/2 different messages

• With high probability, there exists Y (i) ̸= Y (j) that collide on their inner part

• Compensate the difference in next absorb call

• Triggers a full state collision =⇒ collision in digests
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Second Preimage Attack on the Sponge [BDPV11a]
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YIV

• Let M1∥M2∥ · · · ∥Mα be the first preimage blocks

• Retrieve Y , the state right before squeezing

• Connect the Y and IV with an inner collision

• Cost: ≈ 2c/2
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First Preimage Attack on the Sponge [BDPV11a]
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• Let Z1∥Z2∥ · · · ∥Zℓ be the image

• No intermediate state Y is given: need to find it

• Start from a Y1 with correct outerpart, make ℓ− 1 forward queries: one attempt

succeeds with probability ≈ 1
2ν−r′

• Total attack costs ≈ 2ν−r′ + 2c/2 queries
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Improved First Preimage Resistance

• Best known attack has cost ≈ min
{
2ν , 2ν−r′ + 2c/2

}
• Indifferentiability guarantees security up to ≈ min

{
2ν , 2c/2

}
queries

=⇒ Bound is not tight when c/2 ≤ ν − r′

• [LM22]: preimage resistance proven with bound

Õ
(
N
2ν

+min

{
N

2ν−r′
,
N 2

2c

} )
=⇒ Optimality of the attack

• The proof relies on decomposing the bad events triggered by adversary by

following the aforementioned attack
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Application

• No impact on SHA-3 members, as they squeeze in one block

• Ascon-Hash parameters:

• (b, c, r, ν) = (320, 256, 64, 256)

• Generic preimage resistance improved from 128 to 192 bits of security

• Other lightweight sponges may also benefit (e.g., NIST LWC finalists, Spongent,

Photon)
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Permutation-Based Hashing with

Stronger (Second) Preimage

Resistance



Stronger (Second) Preimage Resistance

• Some applications require strong security guarantees, such as hash-based

post-quantum signature schemes

• Example: the National Institute of Commercial Cryptography Standards (NICCS)

of China calls for hash functions with 1024-bit preimage and second-preimage

resistance

• To achieve this with a sponge, the capacity must be at least 2048 bits

• As a result, Keccak-p[1600,24] is not suitable for this scenario
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Double Sponge

• One possibility: use the double sponge construction [LM24]

IV t

r

c

M1

IV b

r

c

M1

P t

MIX

M2

Pb

M2

P t

MIX

Z1

Pb

P t

MIX

Z2

Pb

• Indifferentiable up to ≈ 2
2c
3 queries

=⇒ With Keccak-p[1600,24] (c = 1536, r = 64), we get 1024 bits of indifferentiability

security

• Not the most efficient approach

• Instead, aim to achieve λ-bit security for both preimage and second preimage

using a sponge with λ-bit capacity
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Sponge with a Random Transformation

IV l

IV r

P P
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\

r

\
c

m1/m
′
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′
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M1 M2 Mα

YIV
• The attacks on sponge for (second) preimage rely on the invertibility of P

• Foekens [Foe23] proved that sponge with a random transformation has:

• Preimage resistance up to ≈ 2ν queries

• Second preimage resistance up to ≈ min{2ν , 2c/α} queries (α: size of first

preimage)

• But non-invertible functions more scarce than permutations
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Sponge with a Feed-Forward: SPONGE-DM

IV l
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\
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c

\
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• Alternative: add a feed-forward only during absorption (independent related

work: [GHF+25])

• This construction, named SPONGE-DM, achieves

• Preimage resistance up to ≈ 2ν queries

• Second preimage resistance up to min{2ν , 2c/α} queries
• Indifferentiability up to sponge’s bound

• Cost: adds a extra b-bit state =⇒ can we lower the size of the feed-forward?
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• Second preimage resistance up to min{2ν , 2c/α} queries
• Indifferentiability up to sponge’s bound

• Cost: adds a extra b-bit state =⇒ can we lower the size of the feed-forward?
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Sponge with a Feed-Forward: Attempt to Reduce Size of Feed-Forward

IV l
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• Intuition: the adversary has control on the outer part of the state

, so feeding it

forward seems unnecessary

• This intuition is incorrect: can mount to attack in ≈ 2c/2 queries when n ≤ r
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SPONGE-EDMa for a = {0, . . . , b}

IV l

IV r

f g f g

· · ·

· · ·

· · · f g h

· · ·

· · ·

M1 M2 M3 Mα Z1 Z2

\

c− a

\

r

\

a

• Idea: augment absorbing phase by one extra permutation call (may have a ≥ c)

• May use round-reduced permutations

• We proved:

• ≈ min{ν,max{ν − r′, a,min{a+c
2 , b+c

3 }}} bits of preimage security

• ≈ min{ν, c− log2(α),max{a,min{a+c
2 , b+c

3 }}} bits of second preimage

security
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SPONGE-EDMa: First Preimage Attack

Fa(x) = f(x)⊕ 0b−a∥⌊x⌋a security: min{ν,max{ν − r′, a,min{a+c
2 , b+c

3 }}}

IV l

IV r

Fa g Fa g h

· · ·

· · ·

Z1 Z2

\

r

\
c

M1 M2

SYi

1 Find a squeezing state S (cost: 2ν−r′)

2 Invert Fa several times (costs 2a per inversion, do 2min{0, c−a
2

} inversions)

3 Find an inner collision between some Yi and a forward query (cost:

min{2c, 2
a+c
2 })

4 Overall cost: 2ν−r′ +max{2a, 2
a+c
2 }
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Application

• Using Keccak-p[1600] inside SPONGE-EDMc with c = 1088, ν = 1024 (f and g

with each 12 rounds) meets NICCS requirements:

• generic collision resistance ≈ 512 bits

• generic preimage resistance ≈ 1024 bits

• generic second-preimage resistance ≈ 1024 bits assuming α < 264

• Ascon-Sign (PQC submission) uses Ascon-Hash within SPHINCS+ framework:

(Ascon-Hash parameters: (b, c, r, ν) = (320, 256, 64, 256))

• Submission claimed 192-bit security, but generic second preimage resistance

at best c/2 = 128 bits =⇒ did not advance second round

• Instantiating the hash construction with SPONGE-DM remedies this gap =⇒
192-bit generic security

• Future work: what about the setting of a quantum adversary?

21 / 33



Application

• Using Keccak-p[1600] inside SPONGE-EDMc with c = 1088, ν = 1024 (f and g

with each 12 rounds) meets NICCS requirements:

• generic collision resistance ≈ 512 bits

• generic preimage resistance ≈ 1024 bits

• generic second-preimage resistance ≈ 1024 bits assuming α < 264

• Ascon-Sign (PQC submission) uses Ascon-Hash within SPHINCS+ framework:

(Ascon-Hash parameters: (b, c, r, ν) = (320, 256, 64, 256))

• Submission claimed 192-bit security, but generic second preimage resistance

at best c/2 = 128 bits =⇒ did not advance second round

• Instantiating the hash construction with SPONGE-DM remedies this gap =⇒
192-bit generic security

• Future work: what about the setting of a quantum adversary?

21 / 33



Application

• Using Keccak-p[1600] inside SPONGE-EDMc with c = 1088, ν = 1024 (f and g

with each 12 rounds) meets NICCS requirements:

• generic collision resistance ≈ 512 bits

• generic preimage resistance ≈ 1024 bits

• generic second-preimage resistance ≈ 1024 bits assuming α < 264

• Ascon-Sign (PQC submission) uses Ascon-Hash within SPHINCS+ framework:

(Ascon-Hash parameters: (b, c, r, ν) = (320, 256, 64, 256))

• Submission claimed 192-bit security, but generic second preimage resistance

at best c/2 = 128 bits =⇒ did not advance second round

• Instantiating the hash construction with SPONGE-DM remedies this gap =⇒
192-bit generic security

• Future work: what about the setting of a quantum adversary?

21 / 33



Application

• Using Keccak-p[1600] inside SPONGE-EDMc with c = 1088, ν = 1024 (f and g

with each 12 rounds) meets NICCS requirements:

• generic collision resistance ≈ 512 bits

• generic preimage resistance ≈ 1024 bits

• generic second-preimage resistance ≈ 1024 bits assuming α < 264

• Ascon-Sign (PQC submission) uses Ascon-Hash within SPHINCS+ framework:

(Ascon-Hash parameters: (b, c, r, ν) = (320, 256, 64, 256))

• Submission claimed 192-bit security, but generic second preimage resistance

at best c/2 = 128 bits =⇒ did not advance second round

• Instantiating the hash construction with SPONGE-DM remedies this gap =⇒
192-bit generic security

• Future work: what about the setting of a quantum adversary?

21 / 33



Application

• Using Keccak-p[1600] inside SPONGE-EDMc with c = 1088, ν = 1024 (f and g

with each 12 rounds) meets NICCS requirements:

• generic collision resistance ≈ 512 bits

• generic preimage resistance ≈ 1024 bits

• generic second-preimage resistance ≈ 1024 bits assuming α < 264

• Ascon-Sign (PQC submission) uses Ascon-Hash within SPHINCS+ framework:

(Ascon-Hash parameters: (b, c, r, ν) = (320, 256, 64, 256))

• Submission claimed 192-bit security, but generic second preimage resistance

at best c/2 = 128 bits =⇒ did not advance second round

• Instantiating the hash construction with SPONGE-DM remedies this gap =⇒
192-bit generic security

• Future work: what about the setting of a quantum adversary?

21 / 33



Sponge-Based PRFs



Pseudorandom Function (PRF)

arbitrarily length message,

requested output size ν

}
FK arbitrarily length output\

∗

\

ν

• Keyed function FK from {0, 1}∗ to {0, 1}∞

• Variable-length input

• Ideally: variable-length output, where user specifies output length ν

when calling the function
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Indistinguishability in the Ideal Model

real world ideal world

FK P PRO

D

• FP
K for a random primitive P and key K should behave like a random oracle RO

• In our case: P is a random permutation, and let:

• N number of P-queries,
• M online complexity (number of blocks),

• µ number of users
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Turning a Sponge into a PRF

IV l

IV r

P P P P P P P

padb outerν Z

\

r

\

c

\

r

\

c

\

ν

• Black-box approaches to keying a sponge:

• Outer-Keyed Sponge (OKS) [BDPV11b]

• Suffix-Keyed Sponge [BDPV11a, DM19, DM20]

• Sandwich Keyed Sponge [Nai16]

• These variants give different security guarantees; here we focus on OKS

24 / 33



Turning a Sponge into a PRF

IV l

IV r

P P P P P P P

K∥M padb outerν Z

\

r

\

c

\

r

\

c

\

ν

• Black-box approaches to keying a sponge:

• Outer-Keyed Sponge (OKS) [BDPV11b]

• Suffix-Keyed Sponge [BDPV11a, DM19, DM20]

• Sandwich Keyed Sponge [Nai16]

• These variants give different security guarantees; here we focus on OKS

24 / 33



Turning a Sponge into a PRF

IV l

IV r

P P P P P P P

M∥K padb outerν Z

\

r

\

c

\

r

\

c

\

ν

• Black-box approaches to keying a sponge:

• Outer-Keyed Sponge (OKS) [BDPV11b]

• Suffix-Keyed Sponge [BDPV11a, DM19, DM20]

• Sandwich Keyed Sponge [Nai16]

• These variants give different security guarantees; here we focus on OKS

24 / 33



Turning a Sponge into a PRF

IV l

IV r

P P P P P P P

K∥M∥K padb outerν Z

\

r

\

c

\

r

\

c

\

ν

• Black-box approaches to keying a sponge:

• Outer-Keyed Sponge (OKS) [BDPV11b]

• Suffix-Keyed Sponge [BDPV11a, DM19, DM20]

• Sandwich Keyed Sponge [Nai16]

• These variants give different security guarantees; here we focus on OKS

24 / 33



Turning a Sponge into a PRF

IV l

IV r

P P P P P P P

K∥M padb outerν Z

\

r

\

c

\

r

\

c

\

ν

• Black-box approaches to keying a sponge:

• Outer-Keyed Sponge (OKS) [BDPV11b]

• Suffix-Keyed Sponge [BDPV11a, DM19, DM20]

• Sandwich Keyed Sponge [Nai16]

• These variants give different security guarantees; here we focus on OKS

24 / 33



OKS: Security

IV l

IV r

P P P P P P P

K∥M padb outerν Z

\

r

\

c

\

r

\

c

\

ν

• Indifferentiability is overkill, dedicated proofs give tighter security bounds:
assuming that ⌈k/r⌉ is a small constant, we
have [GPT15, ADMV15, NY16, Men18]

Advµ-PRF
OKS = Õ

(
µN
2k

+
MN
2c

)

• The bound is tight

• Concrete example: with b = 320, r = 128, c = 192, k = 128, µ = 1, and

assumingM≪ 264, this gives 128 bits of security
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OKS: Improvements [BDPV11b, BDPV12, CDH+12, ADMV15]

IV l

IV r

P P P P P P P

\

r

\

c

\

k

\

b− k

\

r

\

c

\

k

\

b− k

\

r

\

c

K∥M padb outerν Z\

ν

• V2: Key into the initial state =⇒ more efficient, no security loss

• V3: absorb over the entire state =⇒ Full-State Keyed Sponge (FSKS) [MRV15]

• With some optimizations (e.g., unique IV per user, domain separation), security

can be pushed as far as [DM24, DMV17, Men23]

Advµ-PRF
FSKS∗ = Õ

(
N
2k

+
MN
2b

+
N
2c

)
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MacaKey



The Full-State Keyed Sponge

K

IV

P P P P P P P

M padb outerν Z

Trunc Trunc Trunc
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r

\
c

\

r

\
c

\

ν

• We have: full-state absorption, multi-user security optimized, tight security bounds

• Can we get full-state squeezing? Those inner parts seem wasted..
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Truncation and Summation

EKx

y

\

b

\

r

\

c

EK

EK

x∥0

x∥1

y

\

b

• Holds in the secret permutation setting (i.e., block cipher-based)

• Truncation and Summation: common PRP-to-PRF conversions
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The Summation Truncation Hybrid (STH) [GM20] (1/2)

EKx∥0

y0

EKx∥1

y1

\

b

\

r

\

c

\

b

\

r

\

c

z\

c

• With truncation, discarding truncated parts is wasteful

• Can group the evaluations two by two, sum them together =⇒ get c bits for

free, without sacrificing security
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The Summation Truncation Hybrid (STH) [GM20] (2/12)

EKx∥0

y0

z0

EKx∥1

y1

z1 z0 ⊕ z1

EKx∥2

y2

z2 z0 ⊕ z2

EKx∥3

y3

z3 z0 ⊕ z3

\

b

\

r

\

c

• Can be generalized to larger groups (in a CENC [Iwa06] fashion)

• Group of w evaluations: output of r + b(w − 1) bits =⇒ approaches b bit per

permutation call when w is large
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Incorporating the STH into the FSKS: MacaKey

K[m]

IV [m]

P P P P P P P

M padb outerν1 ZL

outerν2 ZR

innerc

\

k

\

b−k

\

r

\

c

\

ν1

\

ν2

• V1: First call during squeezing phase: r bits of output

After the first call: b bits of output per permutation call

• V2: b bits squeezed per permutation call
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MacaKey: Security

• We prove

AdvPRF
MacaKey(A) = Õ

(
N · uIVmax

2k
+
MN
2b

+
M2

2c
+

(L+ 1)N
2c

)
• uIVmax depends on the choice of the IVs (1 ≤ uIVmax ≤ µ)

• L denotes the number of states where the adversary has control on the outer part

• Concrete example: with b = 320, r = 128, c = 192, k = 128, µ≪ 220, one IV

per user, L = 0 and assumingM≪ 264µ, this gives 128 bits of security
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Conclusions

• Hashing improvements: feed-forward mechanisms enhance (second) preimage

security:

• SPONGE-DM with ideal preimage resistance (≈ 2ν) and significantly improved

second preimage bound,

• SPONGE-EDMa that gives a tunable trade-off

• PRF improvements: STH into FSKS allows full-state squeezing without

sacrificing generic security

• AEAD side: not discussed, design space larger, a lot of possible optimizations

Thank you for your attention!

33 / 33



Conclusions

• Hashing improvements: feed-forward mechanisms enhance (second) preimage

security:

• SPONGE-DM with ideal preimage resistance (≈ 2ν) and significantly improved

second preimage bound,

• SPONGE-EDMa that gives a tunable trade-off

• PRF improvements: STH into FSKS allows full-state squeezing without

sacrificing generic security

• AEAD side: not discussed, design space larger, a lot of possible optimizations

Thank you for your attention!
33 / 33



References i

Elena Andreeva, Joan Daemen, Bart Mennink, and Gilles Van Assche.

Security of Keyed Sponge Constructions Using a Modular Proof Approach.

In Gregor Leander, editor, Fast Software Encryption - 22nd International

Workshop, FSE 2015, Istanbul, Turkey, March 8-11, 2015, Revised Selected

Papers, volume 9054 of Lecture Notes in Computer Science, pages 364–384.

Springer, 2015.

Elena Andreeva, Bart Mennink, and Bart Preneel.

Security Reductions of the Second Round SHA-3 Candidates.

In Mike Burmester, Gene Tsudik, Spyros S. Magliveras, and Ivana Ilic, editors,

Information Security - 13th International Conference, ISC 2010, Boca Raton, FL,

USA, October 25-28, 2010, Revised Selected Papers, volume 6531 of Lecture

Notes in Computer Science, pages 39–53. Springer, 2010.

33 / 33



References ii

Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
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In Christina Pöpper and Lejla Batina, editors, Applied Cryptography and Network

Security - 22nd International Conference, ACNS 2024, Abu Dhabi, United Arab

Emirates, March 5-8, 2024, Proceedings, Part II, volume 14584 of Lecture Notes

in Computer Science, pages 460–484. Springer, 2024.

Joan Daemen, Bart Mennink, and Gilles Van Assche.

Full-State Keyed Duplex with Built-In Multi-user Support.

In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology -

ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications

of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017,

33 / 33



References vi

Proceedings, Part II, volume 10625 of Lecture Notes in Computer Science, pages

606–637. Springer, 2017.

Robin Foekens.

Security of the Sponge Construction with a Random Transformation.

Bachelor’s Thesis, 2023.

Chun Guo, Kai Hu, Yanhong Fan, Yong Fu, and Meiqin Wang.

Adding Feeding Forward Back to the Sponge Construction.

IACR Cryptol. ePrint Arch., page 1006, 2025.

33 / 33



References vii

Aldo Gunsing and Bart Mennink.

The Summation-Truncation Hybrid: Reusing Discarded Bits for Free.

In Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology -

CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO

2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part I, volume

12170 of Lecture Notes in Computer Science, pages 187–217. Springer, 2020.

Jian Guo, Thomas Peyrin, and Axel Poschmann.

The PHOTON Family of Lightweight Hash Functions.

In Phillip Rogaway, editor, Advances in Cryptology - CRYPTO 2011 - 31st Annual

Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011.

Proceedings, volume 6841 of Lecture Notes in Computer Science, pages 222–239.

Springer, 2011.

33 / 33



References viii

Peter Gazi, Krzysztof Pietrzak, and Stefano Tessaro.

The Exact PRF Security of Truncation: Tight Bounds for Keyed Sponges

and Truncated CBC.

In Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology -

CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA,

August 16-20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes in

Computer Science, pages 368–387. Springer, 2015.

33 / 33



References ix

Tetsu Iwata.

New Blockcipher Modes of Operation with Beyond the Birthday Bound

Security.

In Matthew J. B. Robshaw, editor, Fast Software Encryption, 13th International

Workshop, FSE 2006, Graz, Austria, March 15-17, 2006, Revised Selected Papers,

volume 4047 of Lecture Notes in Computer Science, pages 310–327. Springer,

2006.

33 / 33



References x

Charlotte Lefevre and Bart Mennink.

Tight Preimage Resistance of the Sponge Construction.

In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology -

CRYPTO 2022 - 42nd Annual International Cryptology Conference, CRYPTO

2022, Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part IV, volume

13510 of Lecture Notes in Computer Science, pages 185–204. Springer, 2022.

Charlotte Lefevre and Bart Mennink.

Permutation-Based Hashing Beyond the Birthday Bound.

IACR Trans. Symmetric Cryptol., 2024(1):71–113, 2024.

Bart Mennink.

Key Prediction Security of Keyed Sponges.

IACR Trans. Symmetric Cryptol., 2018(4):128–149, 2018.

33 / 33



References xi

Bart Mennink.

Understanding the Duplex and Its Security.

IACR Trans. Symmetric Cryptol., 2023(2):1–46, 2023.

Ueli M. Maurer, Renato Renner, and Clemens Holenstein.

Indifferentiability, Impossibility Results on Reductions, and Applications to

the Random Oracle Methodology.

In Moni Naor, editor, Theory of Cryptography, First Theory of Cryptography

Conference, TCC 2004, Cambridge, MA, USA, February 19-21, 2004, Proceedings,

volume 2951 of Lecture Notes in Computer Science, pages 21–39. Springer, 2004.

33 / 33



References xii

Bart Mennink, Reza Reyhanitabar, and Damian Vizár.

Security of Full-State Keyed Sponge and Duplex: Applications to

Authenticated Encryption.

In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology -

ASIACRYPT 2015 - 21st International Conference on the Theory and Application

of Cryptology and Information Security, Auckland, New Zealand, November 29 -

December 3, 2015, Proceedings, Part II, volume 9453 of Lecture Notes in

Computer Science, pages 465–489. Springer, 2015.

33 / 33



References xiii

Yusuke Naito.

Sandwich Construction for Keyed Sponges: Independence Between

Capacity and Online Queries.

In Sara Foresti and Giuseppe Persiano, editors, Cryptology and Network Security -

15th International Conference, CANS 2016, Milan, Italy, November 14-16, 2016,

Proceedings, volume 10052 of Lecture Notes in Computer Science, pages 245–261,

2016.

33 / 33



References xiv

Yusuke Naito and Kazuo Ohta.

Improved Indifferentiable Security Analysis of PHOTON.

In Michel Abdalla and Roberto De Prisco, editors, Security and Cryptography for

Networks - 9th International Conference, SCN 2014, Amalfi, Italy, September 3-5,

2014. Proceedings, volume 8642 of Lecture Notes in Computer Science, pages

340–357. Springer, 2014.

Yusuke Naito and Kan Yasuda.

New Bounds for Keyed Sponges with Extendable Output: Independence

Between Capacity and Message Length.

In Thomas Peyrin, editor, Fast Software Encryption - 23rd International

Conference, FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected

33 / 33



References xv

Papers, volume 9783 of Lecture Notes in Computer Science, pages 3–22. Springer,

2016.

Phillip Rogaway and Thomas Shrimpton.

Cryptographic Hash-Function Basics: Definitions, Implications, and

Separations for Preimage Resistance, Second-Preimage Resistance, and

Collision Resistance.

In Bimal K. Roy and Willi Meier, editors, Fast Software Encryption, 11th

International Workshop, FSE 2004, Delhi, India, February 5-7, 2004, Revised

Papers, volume 3017 of Lecture Notes in Computer Science, pages 371–388.

Springer, 2004.

33 / 33


	The Sponge Construction
	Permutation-Based Hashing with Stronger (Second) Preimage Resistance
	Sponge-Based PRFs
	MacaKey

