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Solving linear systems

Original problem

Given an invertible sparse A of dimension n over the Euclidean ring R, solve Ax = y over
the fraction field. The coordinates of x are fractions with denominator det A.
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Solving linear systems

Original problem

Given an invertible sparse A of dimension n over the Euclidean ring R, solve Ax = y over
the fraction field. The coordinates of x are fractions with denominator det A.

New problem

Given an invertible sparse A over the Euclidean ring R, solve over R the equation
Ax + By =z € R". The random matrix B has m = \/n columns; coordinates of x, y
have +/n bits.

Objective
Find the class group of Q[v/A] in time:

exp ((1 +0(1))y/In(JA]) Inln |A|) :

.
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The overall method is to solve Ax = y with high precision and then recover the exact
solution.
® Ursic-Patarra '76: solve x = A_ly over reals, use continued fractions on each

coordinate
3 14\ (65\ (831818 _ [ 83+2/11
15 92 35) 7\ —13.1818 S \—13-2/11
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The overall method is to solve Ax = y with high precision and then recover the exact
solution.
® Ursic-Patarra '76: solve x = A_ly over reals, use continued fractions on each

coordinate
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® Moenck-Carter '79: over X-adics/p-adics, solve A~1y mod p* one p-adic digit after

another
® Dixon '82: same over p-adics but with correct complexity: O (n3)
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The overall method is to solve Ax = y with high precision and then recover the exact
solution.
® Ursic-Patarra '76: solve x = A_ly over reals, use continued fractions on each

coordinate
3 14\ (65\ (831818 _ [ 83+2/11
15 92 35)  \—13.1818 S \—13-2/11
® Moenck-Carter '79: over X-adics/p-adics, solve A~1y mod p* one p-adic digit after

another
® Dixon '82: same over p-adics but with correct complexity: O (n3)

-1
3 14 1 -1
-1 _ —
A _<15 92> _<_2 3)mod13

3014\ 7T (65) _ (4+12:1349-132 44138\ o,
15 92 35) " \1+6-13+3.13248-133 ) ™

e Storjohann '00: solve n systems in parallel, (N)(nw) 3/2
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Old iterative algorithms

Sparse matrix

We consider A sparse so that computing Ax has a complexity of O (n).

5/24



Old iterative algorithms

Sparse matrix

We consider A sparse so that computing Ax has a complexity of O (n).

Iterative refinement (Hensel, Wilkinson, . ..
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Old iterative algorithms

Sparse matrix

We consider A sparse so that computing Ax has a complexity of O (n).

Iterative refinement (Hensel, Wilkinson, . ..

If we can find x” such that Ax’ = y, the solution is x = x’ + A=1(y — AX/).

(15 22) () = () + (1)
(15 52) (130) = (i) (1)

If A~ D, select x' =D~ y. If Vi, |A; ;| > K> iz |Aij|, the error is divided by K.

Jacobi’s solver
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Conjugate gradient

Conjugate gradient, Lanczos 50s

For G > 0 (positive symmetric definite), let xk = ’/\\':]a"' we fix Amin = 1.
Accelerated gradient descent/Conjugate gradient: +/k log(e~!) matrix-vector products.

Proof: appendix.
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Our algorithm, Cholesky decomposition step

Norm equation

If we have A'Ax = Aty then Ax = y. Split the matrix A vertically into two matrices
(E F) with F having K < n columns.
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Our algorithm, Cholesky decomposition step

If we have A'Ax = Aty then Ax = y. Split the matrix A vertically into two matrices
(E F) with F having K < n columns.

| .

LDL decomposition of A*A
With Do = E*E, the Schur complement D; = FtF — (F!E)D,!(F*E)? and L = F'ED,*
of dimension K x (n — K), the block LDL decomposition of A*A is

Id,_ 0 D 0 Id,_ Lt
tpn n—K 0 n—K
AA‘( L IdK>(0 D1)< 0 IdK>

with D1 a K x K matrix.
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Cholesky decomposition

With L = F*ED,*:

Id, x L%\ /D7! 0 Id,_ 0
tay\—1 __ n—K 0 n—K
(AA)™ = < 0 IdK> < 0 D;l) ( -L IdK>'

Two multiplications by Dy!, one by Dy %, plus negligible (E, F sparse).
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Our fast random matrix solver

Conditioning

We solve by Dy = E*E using the conjugate gradient. It is believed that x ~ ;}—22 since E is
sparse, the complexity is O (v/k - n) = O (n?/K).
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Our fast random matrix solver

Conditioning

We solve by Dy = E*E using the conjugate gradient. It is believed that x ~ 2—22 since E is
sparse, the complexity is O (v/k - n) = O (n?/K).

Precomputation step of our algorithm

Precompute the dense K x K matrix Dy = F'F — (F'E)D, *(F'E)" with K calls to D;*
for a cost of O (K . n2/K) =0 (n2). Precompute the inverse Dfl, with complexity

O (K¥).
v

Use standard multiplication for D;l, with complexity O (KQ).

It is faster for numerous vectors at the same time, AX =Y.
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Our results

Diagonally-dominant case

If A is a diagonally-dominant matrix, we have O (n) per system and bit.
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Our results

Diagonally-dominant case

If A is a diagonally-dominant matrix, we have O (n) per system and bit.
Take K = n?/3 and after a precomputation of complexity 0 (nz) we have a complexity in
O (n?/K + K2) = O (n*3) per system and bit.

A
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Our results

Diagonally-dominant case

If A is a diagonally-dominant matrix, we have O (n) per system and bit.

Take K = n?/3 and after a precomputation of complexity O (n?) we have a complexity in
0 (n2/K + K2) =0 (n4/3) per system and bit.

We want to solve n linear systems with /n bits.
Use Storjohann’s high-order lifting: we solve n'3 systems with precision n%?2 bits.
Take K = n%®7, use fast rectangular matrix multiplication, and we obtain n'13 per

system and bit.
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Introduction

Given an invertible A over the Euclidean ring R, solve Ax + By = z € R", namely
x+A" By =A"1z

Since x € R™ and y € R, this is a lattice problem of dimension n + m.
Precomputations use z = 0.

12/24



Introduction

Problem

Given an invertible A over the Euclidean ring R, solve Ax + By = z € R", namely
x+A" By =A"1z

Since x € R™ and y € R, this is a lattice problem of dimension n + m.
Precomputations use z = 0.

| A\

Projection

We sample a matrix Pt in R, and solve instead P!Ax + P!By = P!z, or
x' +P!A"IBy = PtA1z.
With m columns, we now have a lattice of dimension 2m =~ 2./n.

A

12/24



Precomputation

Our algorithm, precomputation of NTRU lattice

We compute C ~ C = PtA~1B. Then with € = ||C — C|| we reduce the lattice

Id, C om
(0 eldm)R '
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Precomputation
Our algorithm, precomputation of NTRU lattice

We compute C ~ C = PtA~1B. Then with € = ||C — C|| we reduce the lattice

Id, C .
(o eldm)R '

Property
Suppose the columns of B generate R"/AR". Then the lattice of x + A"!By = 0 has

volume vol(A) = |det A|.
We expect to find the sublattice of all y in the NTRU lattice:

<(C ;yC)y) '

| A\

Proof next slide.
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Proof of precomputation success

Linear combinations By cover R"/AR" with |ly|| < M; same for P and A°.
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Linear combinations By cover R"/AR" with |ly|| < M; same for P and A°.

Proof of assumption by the Gaussian technique, from Hildebrand

Only if the rank of R"/AR" is less than m — 2.
Sample y according to a discrete Gaussian with standard deviation
~ vol(A)/™ < ||A||"/™. Then if B mod A is sampled uniformly, By is uniform modulo A.
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Proof of precomputation success

Linear combinations By cover R"/AR" with |ly|| < M; same for P and A°.

Proof of assumption by the Gaussian technique, from Hildebrand

Only if the rank of R"/AR" is less than m — 2.
Sample y according to a discrete Gaussian with standard deviation
~ vol(A)/™ < ||A||"/™. Then if B mod A is sampled uniformly, By is uniform modulo A.

Lattice property

Let |ley]|, ||Ix" 4+ Cy|| < 1/(3nM||A||). Consider Pz = ¢; + Atw, ||z]] < M.
Then (A~1By); = efA71By = (2Pt — w!A)A~1By which is

z'Cy — w'By = z/(x’ + Cy) mod 1

but By = A(A~!By) € R" so A"1By € R".
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Our fast solver

Precomputation complexity

We have m systems to be solved with precision ||A||~"/™. If A is diagonally-dominant this

takes O (n?).
Reducing a dimension 2m lattice with precision n/m takes time O (m“ - n/m).
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Our fast solver

Precomputation complexity

We have m systems to be solved with precision ||A||~"/™. If A is diagonally-dominant this
takes O (n?).
Reducing a dimension 2m lattice with precision n/m takes time O (m“ - n/m).

Extracting a solution

Suppose there is a solution Ax + By = z. This leads to a solution of the form
x' + Cy = PtA~1z, given by a lattice point close to

PIA-1z\ (x4 Cy
0 - ey ’
Then x = A~1(z — By).

We need to solve a system with precision \/n.
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Miscellaneous

Invariant factors

If B generates R"/AR", we obtain the invariant factors from lattice reduction, in
particular | det A|.
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Block Wiedemann (Coppersmith, Villard, Kaltofen)

Take R = K[X], for example K = [F,. For solving —Ex =y, choose A = XId, — E and
reduce modulo X the solution. A is diagonally-dominant and A~! = Yo X1E We
obtain Eberly et al.’s 2007 solver with complexity O (n'®).
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Miscellaneous

Invariant factors

If B generates R"/AR", we obtain the invariant factors from lattice reduction, in
particular | det A|.

Block Wiedemann (Coppersmith, Villard, Kaltofen)

Take R = K[X], for example K = [F,. For solving —Ex =y, choose A = XId, — E and
reduce modulo X the solution. A is diagonally-dominant and A~! = Yo X1E We
obtain Eberly et al.’s 2007 solver with complexity O (n'®).

Peng-Vempala, Nie
With K = Q, R = Q[X], B, P sampled according to Gaussians, polynomial lattice

reduction is well-conditioned. We can compute det E within 1.1 in time O (n2‘34).
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Definition

Problems
Consider K = Q[x]/f(x) a number field, with Ok its maximal order of integers.
® Find ideals g1, ..., gk generating the class group and their order o, in the class group
with o1 | - -+ | o such that the class group is isomorphic to Hfﬂ(g;)

® Given a basis of an ideal a, find a decomposition of it, which is the class group
exponents aj, ..., ax and a generator g € K where a = (g) Hf-(zl )

® Find the rg + rc — 1 generators u; of O, the unit group
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Definition

Problems
Consider K = Q[x]/f(x) a number field, with Ok its maximal order of integers.

® Find ideals g1, ..., gk generating the class group and their order o, in the class group
with o1 | - -+ | o such that the class group is isomorphic to Hfﬂ(g;)

® Given a basis of an ideal a, find a decomposition of it, which is the class group
exponents aj, ..., ax and a generator g € K where a = (g) Hf-(zl )

® Find the rg + rc — 1 generators u; of O, the unit group

We consider a field with small degree.

Cryptanalysis

Decomposition, or finding the group order cryptanalyze various systems (RSA without
trusted setup).

18/24



Ideal reduction

Classical algorithm (Minkowski)

We are given a (a basis), compute v € a=!. Then va C Ok and of index (norm)
~ \/|Ak|.
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Ideal reduction

Classical algorithm (Minkowski)

We are given a (a basis), compute v € a=!. Then va C Ok and of index (norm)

Call p;Vi < B the ideals of small norm the factor basis, the cardinal is

B =exp <(; + 0(1))y/In|Ak|InIn |AK|) .

A random ideal of norm y/|Ax| has probability 1/B of factoring over the base.
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Generalized Riemann Hypothesis

Prime ideals p with norm below ~ log?(|Ak|) generate the class group.
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Generalized Riemann Hypothesis

Prime ideals p with norm below ~ log?(|Ak|) generate the class group.

Given a, we want va = [, p;".

/
We sample €/ € Z, reduce a[[;p;’ and detect the smoothness of the norm.
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Improvements

Linear algebra

A relation is of the form vOg = Hipf’. Put the exponents in the columns of A and B,
remove the first log? prime ideals. Any Ax + By = 0 leads to a relation on the generators.
A Smith Normal Form algorithm computes the structure of an abelian group from

relations.
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Improvements

Linear algebra

A relation is of the form vOg = Hipf’. Put the exponents in the columns of A and B,
remove the first log? prime ideals. Any Ax + By = 0 leads to a relation on the generators.
A Smith Normal Form algorithm computes the structure of an abelian group from
relations.

Generator (PIP)

Assume a descent on a leads to va = Hipf".
Then we solve Ax + By = z.

21/24



Relation vs. descents

A descent on p,.D guarantees the generation of a diagonally-dominant matrix of relations
A
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Relation vs. descents

A descent on p,.D guarantees the generation of a diagonally-dominant matrix of relations
A

Special fields

Special fields have for example ||f|| small so that ax + b are much more likely to be
smooth. A is then not diagonally-dominant.
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Conclusion

® New preconditioning algorithm for random sparse matrices
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Computing a class group now has the asymptotic complexity which corresponds to
relation finding
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Conclusion

® New preconditioning algorithm for random sparse matrices

The Block Wiedemann algorithm was generalized to integers
A big and stretched NTRU problem F~1G can be projected to

P'F'G

Computing a class group now has the asymptotic complexity which corresponds to
relation finding

Slightly improved discrete logarithm for hyperelliptic curves in genus g > 3
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Accelerated gradient descent

We take x’ = P(G)y for P € R[X] of degree d + 1, the error is
lly — G(P(G)y)|l = ||(1 — XP)(G)(y)||- Using the spectral theorem, the relative error is
<>, (1 = XP)(N)|. For T a Chebyshev polynomial, i.e.

= %(X — m)d + %(X — m)_d, we choose

(n+1 2X)

(1)

1-XP =

so that the error made is < T(£H)~1 ~ (1 —1/y/k)4.
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