
Lattice-based linear solver and number field computations

Paul Kirchner

April 9, 2025

1 / 24

Solving linear systems

Original problem

Given an invertible sparse A of dimension n over the Euclidean ring R, solve Ax = y over
the fraction field. The coordinates of x are fractions with denominator detA.

New problem

Given an invertible sparse A over the Euclidean ring R, solve over R the equation
Ax + By = z ∈ Rn. The random matrix B has m ≈

√
n columns; coordinates of x , y

have
√
n bits.

Objective

Find the class group of Q[
√
∆] in time:

exp
(
(1 + o(1))

√
ln(|∆|) ln ln |∆|

)
.

2 / 24

Solving linear systems

Original problem

Given an invertible sparse A of dimension n over the Euclidean ring R, solve Ax = y over
the fraction field. The coordinates of x are fractions with denominator detA.

New problem

Given an invertible sparse A over the Euclidean ring R, solve over R the equation
Ax + By = z ∈ Rn. The random matrix B has m ≈

√
n columns; coordinates of x , y

have
√
n bits.

Objective

Find the class group of Q[
√
∆] in time:

exp
(
(1 + o(1))

√
ln(|∆|) ln ln |∆|

)
.

2 / 24

Solving linear systems

Original problem

Given an invertible sparse A of dimension n over the Euclidean ring R, solve Ax = y over
the fraction field. The coordinates of x are fractions with denominator detA.

New problem

Given an invertible sparse A over the Euclidean ring R, solve over R the equation
Ax + By = z ∈ Rn. The random matrix B has m ≈

√
n columns; coordinates of x , y

have
√
n bits.

Objective

Find the class group of Q[
√
∆] in time:

exp
(
(1 + o(1))

√
ln(|∆|) ln ln |∆|

)
.

2 / 24

Summary

The overall method is to solve Ax = y with high precision and then recover the exact
solution.
• Ursic-Patarra ’76: solve x = A−1y over reals, use continued fractions on each
coordinate(

3 14
15 92

)−1

·
(
65
35

)
≈

(
83.1818
−13.1818

)
=⇒ x =

(
83 + 2/11
−13− 2/11

)

• Moenck-Carter ’79: over X -adics/p-adics, solve A−1y mod pk one p-adic digit after
another

• Dixon ’82: same over p-adics but with correct complexity: O
(
n3
)

A−1 =

(
3 14
15 92

)−1

=

(
1 −1
−2 3

)
mod 13(

3 14
15 92

)−1(
65
35

)
=

(
4 + 12 · 13 + 9 · 132 + 4 · 133
1 + 6 · 13 + 3 · 132 + 8 · 133

)
mod 134

• Storjohann ’00: solve n systems in parallel, Õ (nω)

3 / 24

Summary

The overall method is to solve Ax = y with high precision and then recover the exact
solution.
• Ursic-Patarra ’76: solve x = A−1y over reals, use continued fractions on each
coordinate(

3 14
15 92

)−1

·
(
65
35

)
≈

(
83.1818
−13.1818

)
=⇒ x =

(
83 + 2/11
−13− 2/11

)
• Moenck-Carter ’79: over X -adics/p-adics, solve A−1y mod pk one p-adic digit after

another

• Dixon ’82: same over p-adics but with correct complexity: O
(
n3
)

A−1 =

(
3 14
15 92

)−1

=

(
1 −1
−2 3

)
mod 13(

3 14
15 92

)−1(
65
35

)
=

(
4 + 12 · 13 + 9 · 132 + 4 · 133
1 + 6 · 13 + 3 · 132 + 8 · 133

)
mod 134

• Storjohann ’00: solve n systems in parallel, Õ (nω)

3 / 24

Summary

The overall method is to solve Ax = y with high precision and then recover the exact
solution.
• Ursic-Patarra ’76: solve x = A−1y over reals, use continued fractions on each
coordinate(

3 14
15 92

)−1

·
(
65
35

)
≈

(
83.1818
−13.1818

)
=⇒ x =

(
83 + 2/11
−13− 2/11

)
• Moenck-Carter ’79: over X -adics/p-adics, solve A−1y mod pk one p-adic digit after

another
• Dixon ’82: same over p-adics but with correct complexity: O

(
n3
)

A−1 =

(
3 14
15 92

)−1

=

(
1 −1
−2 3

)
mod 13(

3 14
15 92

)−1(
65
35

)
=

(
4 + 12 · 13 + 9 · 132 + 4 · 133
1 + 6 · 13 + 3 · 132 + 8 · 133

)
mod 134

• Storjohann ’00: solve n systems in parallel, Õ (nω)

3 / 24

Summary

The overall method is to solve Ax = y with high precision and then recover the exact
solution.
• Ursic-Patarra ’76: solve x = A−1y over reals, use continued fractions on each
coordinate(

3 14
15 92

)−1

·
(
65
35

)
≈

(
83.1818
−13.1818

)
=⇒ x =

(
83 + 2/11
−13− 2/11

)
• Moenck-Carter ’79: over X -adics/p-adics, solve A−1y mod pk one p-adic digit after

another
• Dixon ’82: same over p-adics but with correct complexity: O

(
n3
)

A−1 =

(
3 14
15 92

)−1

=

(
1 −1
−2 3

)
mod 13(

3 14
15 92

)−1(
65
35

)
=

(
4 + 12 · 13 + 9 · 132 + 4 · 133
1 + 6 · 13 + 3 · 132 + 8 · 133

)
mod 134

• Storjohann ’00: solve n systems in parallel, Õ (nω) 3 / 24

Table of Contents

1. Approximate solver

2. Lattice-based linear solver

3. Global field computation

4 / 24

Old iterative algorithms

Sparse matrix

We consider A sparse so that computing Ax has a complexity of Õ (n).

Iterative refinement (Hensel, Wilkinson, . . .)

If we can find x ′ such that Ax ′ ≈ y , the solution is x = x ′ + A−1(y − Ax ′).

(
3 14
15 92

)
·
(

83
−13

)
=

(
65
35

)
+

(
2
14

)
(
3 14
15 92

)
·
(

18
−18

)
=

(
−200
−1400

)
+

(
2
14

)
Jacobi’s solver

If A ≈ D, select x ′ = D−1y . If ∀i , |Ai ,i | ≥ K
∑

j ̸=i |Ai ,j |, the error is divided by K .

5 / 24

Old iterative algorithms

Sparse matrix

We consider A sparse so that computing Ax has a complexity of Õ (n).

Iterative refinement (Hensel, Wilkinson, . . .)

If we can find x ′ such that Ax ′ ≈ y , the solution is x = x ′ + A−1(y − Ax ′).

(
3 14
15 92

)
·
(

83
−13

)
=

(
65
35

)
+

(
2
14

)
(
3 14
15 92

)
·
(

18
−18

)
=

(
−200
−1400

)
+

(
2
14

)

Jacobi’s solver

If A ≈ D, select x ′ = D−1y . If ∀i , |Ai ,i | ≥ K
∑

j ̸=i |Ai ,j |, the error is divided by K .

5 / 24

Old iterative algorithms

Sparse matrix

We consider A sparse so that computing Ax has a complexity of Õ (n).

Iterative refinement (Hensel, Wilkinson, . . .)

If we can find x ′ such that Ax ′ ≈ y , the solution is x = x ′ + A−1(y − Ax ′).

(
3 14
15 92

)
·
(

83
−13

)
=

(
65
35

)
+

(
2
14

)
(
3 14
15 92

)
·
(

18
−18

)
=

(
−200
−1400

)
+

(
2
14

)
Jacobi’s solver

If A ≈ D, select x ′ = D−1y . If ∀i , |Ai ,i | ≥ K
∑

j ̸=i |Ai ,j |, the error is divided by K .

5 / 24

Conjugate gradient

Conjugate gradient, Lanczos 50s

For G > 0 (positive symmetric definite), let κ = λmax
λmin

; we fix λmin = 1.

Accelerated gradient descent/Conjugate gradient:
√
κ log(ϵ−1) matrix-vector products.

Proof: appendix.

6 / 24

Our algorithm, Cholesky decomposition step

Norm equation

If we have AtAx = Aty then Ax = y . Split the matrix A vertically into two matrices(
E F

)
with F having K ≪ n columns.

LDL decomposition of AtA

With D0 = EtE, the Schur complement D1 = FtF− (FtE)D−1
0 (FtE)t and L = FtED−1

0

of dimension K × (n − K), the block LDL decomposition of AtA is

AtA =

(
Idn−K 0
L IdK

)(
D0 0
0 D1

)(
Idn−K Lt

0 IdK

)
with D1 a K × K matrix.

7 / 24

Our algorithm, Cholesky decomposition step

Norm equation

If we have AtAx = Aty then Ax = y . Split the matrix A vertically into two matrices(
E F

)
with F having K ≪ n columns.

LDL decomposition of AtA

With D0 = EtE, the Schur complement D1 = FtF− (FtE)D−1
0 (FtE)t and L = FtED−1

0

of dimension K × (n − K), the block LDL decomposition of AtA is

AtA =

(
Idn−K 0
L IdK

)(
D0 0
0 D1

)(
Idn−K Lt

0 IdK

)
with D1 a K × K matrix.

7 / 24

Cholesky decomposition

With L = FtED−1
0 :

Inverse

(AtA)−1 =

(
Idn−K −Lt

0 IdK

)(
D−1

0 0

0 D−1
1

)(
Idn−K 0
−L IdK

)
.

Two multiplications by D−1
0 , one by D−1

1 , plus negligible (E,F sparse).

8 / 24

Our fast random matrix solver

Conditioning

We solve by D0 = EtE using the conjugate gradient. It is believed that κ ≈ n2

K2 , since E is

sparse, the complexity is Õ (
√
κ · n) = Õ

(
n2/K

)
.

Precomputation step of our algorithm

Precompute the dense K × K matrix D1 = FtF− (FtE)D−1
0 (FtE)t with K calls to D−1

0

for a cost of Õ
(
K · n2/K

)
= Õ

(
n2
)
. Precompute the inverse D−1

1 , with complexity

Õ (Kω).

D−1
1

Use standard multiplication for D−1
1 , with complexity O

(
K 2

)
.

It is faster for numerous vectors at the same time, AX = Y.

9 / 24

Our fast random matrix solver

Conditioning

We solve by D0 = EtE using the conjugate gradient. It is believed that κ ≈ n2

K2 , since E is

sparse, the complexity is Õ (
√
κ · n) = Õ

(
n2/K

)
.

Precomputation step of our algorithm

Precompute the dense K × K matrix D1 = FtF− (FtE)D−1
0 (FtE)t with K calls to D−1

0

for a cost of Õ
(
K · n2/K

)
= Õ

(
n2
)
. Precompute the inverse D−1

1 , with complexity

Õ (Kω).

D−1
1

Use standard multiplication for D−1
1 , with complexity O

(
K 2

)
.

It is faster for numerous vectors at the same time, AX = Y.

9 / 24

Our fast random matrix solver

Conditioning

We solve by D0 = EtE using the conjugate gradient. It is believed that κ ≈ n2

K2 , since E is

sparse, the complexity is Õ (
√
κ · n) = Õ

(
n2/K

)
.

Precomputation step of our algorithm

Precompute the dense K × K matrix D1 = FtF− (FtE)D−1
0 (FtE)t with K calls to D−1

0

for a cost of Õ
(
K · n2/K

)
= Õ

(
n2
)
. Precompute the inverse D−1

1 , with complexity

Õ (Kω).

D−1
1

Use standard multiplication for D−1
1 , with complexity O

(
K 2

)
.

It is faster for numerous vectors at the same time, AX = Y.

9 / 24

Our results

Diagonally-dominant case

If A is a diagonally-dominant matrix, we have Õ (n) per system and bit.

ω = 3

Take K = n2/3 and after a precomputation of complexity Õ
(
n2
)
we have a complexity in

Õ
(
n2/K + K 2

)
= Õ

(
n4/3

)
per system and bit.

Full inverse

We want to solve n linear systems with
√
n bits.

Use Storjohann’s high-order lifting: we solve n1.3 systems with precision n0.2 bits.
Take K = n0.87, use fast rectangular matrix multiplication, and we obtain n1.13 per
system and bit.

10 / 24

Our results

Diagonally-dominant case

If A is a diagonally-dominant matrix, we have Õ (n) per system and bit.

ω = 3

Take K = n2/3 and after a precomputation of complexity Õ
(
n2
)
we have a complexity in

Õ
(
n2/K + K 2

)
= Õ

(
n4/3

)
per system and bit.

Full inverse

We want to solve n linear systems with
√
n bits.

Use Storjohann’s high-order lifting: we solve n1.3 systems with precision n0.2 bits.
Take K = n0.87, use fast rectangular matrix multiplication, and we obtain n1.13 per
system and bit.

10 / 24

Our results

Diagonally-dominant case

If A is a diagonally-dominant matrix, we have Õ (n) per system and bit.

ω = 3

Take K = n2/3 and after a precomputation of complexity Õ
(
n2
)
we have a complexity in

Õ
(
n2/K + K 2

)
= Õ

(
n4/3

)
per system and bit.

Full inverse

We want to solve n linear systems with
√
n bits.

Use Storjohann’s high-order lifting: we solve n1.3 systems with precision n0.2 bits.
Take K = n0.87, use fast rectangular matrix multiplication, and we obtain n1.13 per
system and bit.

10 / 24

Table of Contents

1. Approximate solver

2. Lattice-based linear solver

3. Global field computation

11 / 24

Introduction

Problem

Given an invertible A over the Euclidean ring R, solve Ax + By = z ∈ Rn, namely
x + A−1By = A−1z .
Since x ∈ Rn and y ∈ Rm, this is a lattice problem of dimension n +m.
Precomputations use z = 0.

Projection

We sample a matrix Pt in R, and solve instead PtAx + PtBy = Ptz , or
x ′ + PtA−1By = PtA−1z .
With m columns, we now have a lattice of dimension 2m ≈ 2

√
n.

12 / 24

Introduction

Problem

Given an invertible A over the Euclidean ring R, solve Ax + By = z ∈ Rn, namely
x + A−1By = A−1z .
Since x ∈ Rn and y ∈ Rm, this is a lattice problem of dimension n +m.
Precomputations use z = 0.

Projection

We sample a matrix Pt in R, and solve instead PtAx + PtBy = Ptz , or
x ′ + PtA−1By = PtA−1z .
With m columns, we now have a lattice of dimension 2m ≈ 2

√
n.

12 / 24

Precomputation

Our algorithm, precomputation of NTRU lattice

We compute C̃ ≈ C = PtA−1B. Then with ϵ = ∥C̃− C∥ we reduce the lattice(
Idm C̃
0 ϵIdm

)
R2m.

Property

Suppose the columns of B generate Rn/ARn. Then the lattice of x + A−1By = 0 has
volume vol(A) = | detA|.
We expect to find the sublattice of all y in the NTRU lattice:(

(C̃− C)y
ϵy

)
.

Proof next slide.

13 / 24

Precomputation

Our algorithm, precomputation of NTRU lattice

We compute C̃ ≈ C = PtA−1B. Then with ϵ = ∥C̃− C∥ we reduce the lattice(
Idm C̃
0 ϵIdm

)
R2m.

Property

Suppose the columns of B generate Rn/ARn. Then the lattice of x + A−1By = 0 has
volume vol(A) = | detA|.
We expect to find the sublattice of all y in the NTRU lattice:(

(C̃− C)y
ϵy

)
.

Proof next slide.
13 / 24

Proof of precomputation success

Assumptions

Linear combinations By cover Rn/ARn with ∥y∥ ≤ M; same for P and At .

Proof of assumption by the Gaussian technique, from Hildebrand

Only if the rank of Rn/ARn is less than m − 2.
Sample y according to a discrete Gaussian with standard deviation
≈ vol(A)1/m ≤ ∥A∥n/m. Then if B mod A is sampled uniformly, By is uniform modulo A.

Lattice property

Let ∥ϵy∥, ∥x ′ + Cy∥ ≤ 1/(3nM∥A∥). Consider Pz = ei + Atw , ∥z∥ ≤ M.
Then (A−1By)i = eti A

−1By = (z tPt − w tA)A−1By which is

z tCy − w tBy = z t(x ′ + Cy) mod 1

but By = A(A−1By) ∈ Rn so A−1By ∈ Rn.

14 / 24

Proof of precomputation success

Assumptions

Linear combinations By cover Rn/ARn with ∥y∥ ≤ M; same for P and At .

Proof of assumption by the Gaussian technique, from Hildebrand

Only if the rank of Rn/ARn is less than m − 2.
Sample y according to a discrete Gaussian with standard deviation
≈ vol(A)1/m ≤ ∥A∥n/m. Then if B mod A is sampled uniformly, By is uniform modulo A.

Lattice property

Let ∥ϵy∥, ∥x ′ + Cy∥ ≤ 1/(3nM∥A∥). Consider Pz = ei + Atw , ∥z∥ ≤ M.
Then (A−1By)i = eti A

−1By = (z tPt − w tA)A−1By which is

z tCy − w tBy = z t(x ′ + Cy) mod 1

but By = A(A−1By) ∈ Rn so A−1By ∈ Rn.

14 / 24

Proof of precomputation success

Assumptions

Linear combinations By cover Rn/ARn with ∥y∥ ≤ M; same for P and At .

Proof of assumption by the Gaussian technique, from Hildebrand

Only if the rank of Rn/ARn is less than m − 2.
Sample y according to a discrete Gaussian with standard deviation
≈ vol(A)1/m ≤ ∥A∥n/m. Then if B mod A is sampled uniformly, By is uniform modulo A.

Lattice property

Let ∥ϵy∥, ∥x ′ + Cy∥ ≤ 1/(3nM∥A∥). Consider Pz = ei + Atw , ∥z∥ ≤ M.
Then (A−1By)i = eti A

−1By = (z tPt − w tA)A−1By which is

z tCy − w tBy = z t(x ′ + Cy) mod 1

but By = A(A−1By) ∈ Rn so A−1By ∈ Rn.
14 / 24

Our fast solver

Precomputation complexity

We have m systems to be solved with precision ∥A∥−n/m. If A is diagonally-dominant this
takes Õ

(
n2
)
.

Reducing a dimension 2m lattice with precision n/m takes time Õ (mω · n/m).

Extracting a solution

Suppose there is a solution Ax + By = z . This leads to a solution of the form
x ′ + Cy = PtA−1z , given by a lattice point close to(

PtA−1z
0

)
≈

(
x ′ + C̃y

ϵy

)
.

Then x = A−1(z − By).
We need to solve a system with precision

√
n.

15 / 24

Our fast solver

Precomputation complexity

We have m systems to be solved with precision ∥A∥−n/m. If A is diagonally-dominant this
takes Õ

(
n2
)
.

Reducing a dimension 2m lattice with precision n/m takes time Õ (mω · n/m).

Extracting a solution

Suppose there is a solution Ax + By = z . This leads to a solution of the form
x ′ + Cy = PtA−1z , given by a lattice point close to(

PtA−1z
0

)
≈

(
x ′ + C̃y

ϵy

)
.

Then x = A−1(z − By).
We need to solve a system with precision

√
n.

15 / 24

Miscellaneous

Invariant factors

If B generates Rn/ARn, we obtain the invariant factors from lattice reduction, in
particular | detA|.

Block Wiedemann (Coppersmith, Villard, Kaltofen)

Take R = K[X], for example K = Fq. For solving −Ex = y , choose A = X Idn − E and
reduce modulo X the solution. A is diagonally-dominant and A−1 =

∑∞
i=0 X

−i−1Ei . We
obtain Eberly et al.’s 2007 solver with complexity Õ

(
n1.5

)
.

Peng-Vempala, Nie

With K = Q, R = Q[X], B,P sampled according to Gaussians, polynomial lattice
reduction is well-conditioned. We can compute detE within 1.1 in time O

(
n2.34

)
.

16 / 24

Miscellaneous

Invariant factors

If B generates Rn/ARn, we obtain the invariant factors from lattice reduction, in
particular | detA|.

Block Wiedemann (Coppersmith, Villard, Kaltofen)

Take R = K[X], for example K = Fq. For solving −Ex = y , choose A = X Idn − E and
reduce modulo X the solution. A is diagonally-dominant and A−1 =

∑∞
i=0 X

−i−1Ei . We
obtain Eberly et al.’s 2007 solver with complexity Õ

(
n1.5

)
.

Peng-Vempala, Nie

With K = Q, R = Q[X], B,P sampled according to Gaussians, polynomial lattice
reduction is well-conditioned. We can compute detE within 1.1 in time O

(
n2.34

)
.

16 / 24

Miscellaneous

Invariant factors

If B generates Rn/ARn, we obtain the invariant factors from lattice reduction, in
particular | detA|.

Block Wiedemann (Coppersmith, Villard, Kaltofen)

Take R = K[X], for example K = Fq. For solving −Ex = y , choose A = X Idn − E and
reduce modulo X the solution. A is diagonally-dominant and A−1 =

∑∞
i=0 X

−i−1Ei . We
obtain Eberly et al.’s 2007 solver with complexity Õ

(
n1.5

)
.

Peng-Vempala, Nie

With K = Q, R = Q[X], B,P sampled according to Gaussians, polynomial lattice
reduction is well-conditioned. We can compute detE within 1.1 in time O

(
n2.34

)
.

16 / 24

Table of Contents

1. Approximate solver

2. Lattice-based linear solver

3. Global field computation

17 / 24

Definition

Problems

Consider K = Q[x]/f (x) a number field, with OK its maximal order of integers.

• Find ideals g1, . . . , gk generating the class group and their order ok in the class group
with o1 | · · · | ok such that the class group is isomorphic to

∏k
i=1⟨gi ⟩

• Given a basis of an ideal a, find a decomposition of it, which is the class group
exponents a1, . . . , ak and a generator g ∈ K where a = (g)

∏k
i=1 g

ai
i

• Find the rR + rC − 1 generators ui of O×, the unit group

We consider a field with small degree.

Cryptanalysis

Decomposition, or finding the group order cryptanalyze various systems (RSA without
trusted setup).

18 / 24

Definition

Problems

Consider K = Q[x]/f (x) a number field, with OK its maximal order of integers.

• Find ideals g1, . . . , gk generating the class group and their order ok in the class group
with o1 | · · · | ok such that the class group is isomorphic to

∏k
i=1⟨gi ⟩

• Given a basis of an ideal a, find a decomposition of it, which is the class group
exponents a1, . . . , ak and a generator g ∈ K where a = (g)

∏k
i=1 g

ai
i

• Find the rR + rC − 1 generators ui of O×, the unit group

We consider a field with small degree.

Cryptanalysis

Decomposition, or finding the group order cryptanalyze various systems (RSA without
trusted setup).

18 / 24

Ideal reduction

Classical algorithm (Minkowski)

We are given a (a basis), compute v ∈ a−1. Then va ⊂ OK and of index (norm)
≈

√
|∆K|.

Smoothness

Call pi∀i ≤ B the ideals of small norm the factor basis, the cardinal is

B = exp

(
(
1

2
+ o(1))

√
ln |∆K| ln ln |∆K|

)
.

A random ideal of norm
√

|∆K| has probability 1/B of factoring over the base.

19 / 24

Ideal reduction

Classical algorithm (Minkowski)

We are given a (a basis), compute v ∈ a−1. Then va ⊂ OK and of index (norm)
≈

√
|∆K|.

Smoothness

Call pi∀i ≤ B the ideals of small norm the factor basis, the cardinal is

B = exp

(
(
1

2
+ o(1))

√
ln |∆K| ln ln |∆K|

)
.

A random ideal of norm
√
|∆K| has probability 1/B of factoring over the base.

19 / 24

Descent

Generalized Riemann Hypothesis

Prime ideals p with norm below ≈ log2(|∆K|) generate the class group.

Descent

Given a, we want va =
∏

i p
ei
i .

We sample e ′i ∈ Z, reduce a
∏

i p
e′i
i and detect the smoothness of the norm.

20 / 24

Descent

Generalized Riemann Hypothesis

Prime ideals p with norm below ≈ log2(|∆K|) generate the class group.

Descent

Given a, we want va =
∏

i p
ei
i .

We sample e ′i ∈ Z, reduce a
∏

i p
e′i
i and detect the smoothness of the norm.

20 / 24

Improvements

Linear algebra

A relation is of the form vOK =
∏

i p
ei
i . Put the exponents in the columns of A and B,

remove the first log2 prime ideals. Any Ax +By = 0 leads to a relation on the generators.
A Smith Normal Form algorithm computes the structure of an abelian group from
relations.

Generator (PIP)

Assume a descent on a leads to va =
∏

i p
zi
i .

Then we solve Ax + By = z .

21 / 24

Improvements

Linear algebra

A relation is of the form vOK =
∏

i p
ei
i . Put the exponents in the columns of A and B,

remove the first log2 prime ideals. Any Ax +By = 0 leads to a relation on the generators.
A Smith Normal Form algorithm computes the structure of an abelian group from
relations.

Generator (PIP)

Assume a descent on a leads to va =
∏

i p
zi
i .

Then we solve Ax + By = z .

21 / 24

Relation vs. descents

Descent

A descent on pDi guarantees the generation of a diagonally-dominant matrix of relations
A.

Special fields

Special fields have for example ∥f ∥ small so that ax + b are much more likely to be
smooth. A is then not diagonally-dominant.

22 / 24

Relation vs. descents

Descent

A descent on pDi guarantees the generation of a diagonally-dominant matrix of relations
A.

Special fields

Special fields have for example ∥f ∥ small so that ax + b are much more likely to be
smooth. A is then not diagonally-dominant.

22 / 24

Conclusion

• New preconditioning algorithm for random sparse matrices

• The Block Wiedemann algorithm was generalized to integers

• A big and stretched NTRU problem F−1G can be projected to

PtF−1G

• Computing a class group now has the asymptotic complexity which corresponds to
relation finding

• Slightly improved discrete logarithm for hyperelliptic curves in genus g ≥ 3

23 / 24

Conclusion

• New preconditioning algorithm for random sparse matrices

• The Block Wiedemann algorithm was generalized to integers

• A big and stretched NTRU problem F−1G can be projected to

PtF−1G

• Computing a class group now has the asymptotic complexity which corresponds to
relation finding

• Slightly improved discrete logarithm for hyperelliptic curves in genus g ≥ 3

23 / 24

Conclusion

• New preconditioning algorithm for random sparse matrices

• The Block Wiedemann algorithm was generalized to integers

• A big and stretched NTRU problem F−1G can be projected to

PtF−1G

• Computing a class group now has the asymptotic complexity which corresponds to
relation finding

• Slightly improved discrete logarithm for hyperelliptic curves in genus g ≥ 3

23 / 24

Conclusion

• New preconditioning algorithm for random sparse matrices

• The Block Wiedemann algorithm was generalized to integers

• A big and stretched NTRU problem F−1G can be projected to

PtF−1G

• Computing a class group now has the asymptotic complexity which corresponds to
relation finding

• Slightly improved discrete logarithm for hyperelliptic curves in genus g ≥ 3

23 / 24

Conclusion

• New preconditioning algorithm for random sparse matrices

• The Block Wiedemann algorithm was generalized to integers

• A big and stretched NTRU problem F−1G can be projected to

PtF−1G

• Computing a class group now has the asymptotic complexity which corresponds to
relation finding

• Slightly improved discrete logarithm for hyperelliptic curves in genus g ≥ 3

23 / 24

Accelerated gradient descent

Proof.

We take x ′ = P(G)y for P ∈ R[X] of degree d + 1, the error is
∥y − G(P(G)y)∥ = ∥(1− XP)(G)(y)∥. Using the spectral theorem, the relative error is
≤

∑
λ |(1− XP)(λ)|. For T a Chebyshev polynomial, i.e.

T = 1
2(X −

√
X 2 − 1)d + 1

2(X −
√
X 2 − 1)−d , we choose

1− XP =
T (κ+1−2X

κ−1)

T (κ+1
κ−1)

so that the error made is ≤ T (κ+1
κ−1)

−1 ≈ (1− 1/
√
κ)d .

24 / 24

	Approximate solver
	Lattice-based linear solver
	Global field computation

