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The Lattice Isomorphism Problem over R
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G := B'B
Lattice Isomorphism Problem (LIP):
» find some O € 0,(R), U € GL,(Z) such that, OBU = C.
= equivalently, find some U € GL,(Z) such that U*- G- U = G'.



The Lattice Isomorphism Problem.

In Mathematics, problem studied [DS+20; HR14; PS97] since 1997.

In Cryptography, several studies and cryptosystems based on LIP: [ARLW24;
Ben+23; DW22].

— A variant of LIP in complex multiplication fields was presented [Duc+22] in 2022.



Number fields

F := Q[X]/¢(X) <— number field.

OFf := ring of integers of F.
— elements e € F s.t. , for some P(X) € Z[X], P(e) = 0.



Number fields

F := Q[X]/¢(X) <— number field.

OFf := ring of integers of F.
— elements e € F s.t. , for some P(X) € Z[X], P(e) = 0.

OF-lattice := {Clbl 4+ ...+ c4bg, b; € Fd7 G € OF}

Fractional ideal a of F = additive subgroup s.t.] You can add, multiply, and invert

eOr-aCa them.

alxa= 0.
e Je c OF\{O} s.t. e-aC Of



Number fields

F := Q[X]/¢(X) <— number field.
All complex roots ¢ of ¢(X) define an embedding

O‘<ZF—>C
cag+a X +...a, X" = a0+ ar(+ ... a "



Number fields

F := Q[X]/¢(X) <— number field.
All complex roots ¢ of ¢(X) define an embedding
o¢ F—C

cag+a X +...a, X" = a0+ ar(+ ... a "

» If for all o¢(F) C R, F is totally real. (equivalent to “each ¢ € R")
If for all o¢(F) ¢ R, F is totally complex.

» IfaeFisst Vog, oc(a) <0, then ais totally negative.



Complex Multiplication field (CM field)

F = Q[X]/#(X) <« totally real number field.
K := F(+/a), with a € F totally negative <— CM field, and K is totally complex.



Complex Multiplication field (CM field)

F = Q[X]/#(X) <« totally real number field.
K := F(+/a), with a € F totally negative <— CM field, and K is totally complex.

Complex conjugation on K: x + yv/a = x — yv/a.
f = Re(f) + /alm(f).
Reduced norm in K: nrd(f) := ff = Re(f)? — alm(f)>.

Hermitian transformation:

b d — (b
Given B = ( ) € My(K), B*:=B' = (
c e d

Ok = ring of integers of K.

o o]
~



LIP variant we actually study

Module M in K?: (full-rank)

M := aiby + asby, B :=(b1||b2) € GLy(K), a1z fractional ideals in K

v in M is of the form v = ajb; + axby, aio € ap.

= Pseudo-basis of M: B := (B, a1, ay).
= Pseudo-Gram matrix of M: G := (G = B"B, a1, ay).



LIP variant we actually study

= Pseudo-basis of M: B := (B, ay, ay).
= Pseudo-Gram matrix of M: G := (G = B*B, aj,ap).
= Another pseudo-basis of M: C = (C, by, bp), with pseudo-Gram matrix

G = (G' = C*C,by,by).

If U € GLy(K) s.t.
o U*GU = G'.
o Vi, j, coeffs U;; € a;bfl.

o [Jai = (detU)] 0.

Then G and G'are congruent.

Cong(G, G') = set of congruence matrices U.



LIP variant we actually study

= Pseudo-basis of M: B := (B, ay, ay).
= Pseudo-Gram matrix of M: G := (G = B*B, aj,ap).

= Another pseudo-basis of M: C = (C, by, bp), with pseudo-Gram matrix
G = (G =C*"C,by,by).

If U € GLy(K) s.t.

o U'GU = G'. Cong(G, G') = set of congruence matrices U.
.. -1

o Vi,j, coefts Uj; € ajbj . Module-LIP (modLIP): given B, G, and G/, com-

. H a; = (det U) H b;. pute an element of Cong(G, G').

Then G and G'are congruent.



Previous attacks on modLIP

» If K was totally real, Mureau, Pellet-Mary, Pliatsok and Wallet [Mur+-24].
= With restrictions on M, Espitau and Pliatsok [EP24].
= In the same setting, Luo, Jiang, Pan, and Wang [Luo+24].

This work: polynomial time reduction to the problem of finding an ideal’s generator in
a quaternion algebra.



modLIP

= Pseudo-basis of M: B := (B, ajy,az).
= Pseudo-Gram matrix of M: G := (G = B*B, aj, a3).

= Another pseudo-basis of M: C = (C, by, by), with pseudo-Gram matrix
G = (G = C*C,by,by).

UGU =G < U*B*BU = C*C
& (C' = BU, by, by) is a pseudo-basis of pseudo-Gram matrix G’

To compute the C':
1. Formalise the problem as a quaternion reduced norm equation.

2. Turn this reduced norm equation into the problem of “finding the generator of an

ideal” in a quaternion algebra.

Retrieve C'.



K = F(Va).

X
fc= (" ), o= 2] then
yi qi2 qg22
XoX1 + yoy1 = q1,2, X2X2 + y2Y2 = Q22

and x1x1 + y1¥1 = q1.1
i.e. Re(x1)? — alm(x1)? + Re(y1)? — alm(y1)? = qu.1
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Quaternion algebras

K = F(a)

Quaternion Algebra A ~ F + iF + jF + jF, of basis {1,/,/, ij}, with
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Quaternion algebras

K = F(v/a). Quaternion Algebra A ~ F + iF + jF + ijF, of basis {1, 1, ], ij}, with

ij=—ji.
Order O of A: . Left O-ideal / in A:
(full rank) Of-lattice of A + ring (full rank) Of-lattice of A + Vx € O, xI C |
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Quaternion algebras

K = F(v/a). Quaternion Algebra A ~ F + iF + jF + ijF, of basis {1, 1, ], ij}, with

ij = —ji..
Order O of A: . Left O-ideal / in A:
(full rank) Of-lattice of A + ring (full rank) Of-lattice of A 4+ Vx € O, xI C |
O is maximal if not contained in a Left (resp. right) order of [ is
bigger order Ou(l) ={xe As.t. xI C I} (resps.t. IxCI)

From now on, O always maximal.

12



Quaternion algebras

Order O = Of-lattice + subring of A.
Left O-ldeal | = Of-lattice + OI C I.

» nrd(/l) := {nrd(a),a € I}OF.
= [ is principal iff | = Og, g € A*.

nrd Principal Ideal Problem (nrdPIP): Given / and nrd(g), find g.

13



Quaternion algebras

Order O = Of-lattice + subring of A.
Left O-ldeal | = Of-lattice + Ol C |.

» nrd(/l) := {nrd(a),a € I}OF.
= [ is principal iff | = Og, g € A*.

nrd Principal Ideal Problem (nrdPIP): Given / and nrd(g), find g.

= You can add and multiply quaternion ideals.
= [is “invertible”, i.e. 171 x I = O.(/).
= I+ ) P=11tns
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Quaternion algebras

Set O D Ok + Ok x j, and C*C = G'.

Re(x1)? — alm(x1)* + Re(y1)? — alm(y1)* = g1
= IH‘d(Xl +y1 X j) =q11

[KV10, Alg. 6.3]: Finding x1 + y1j from g11 — solving nrdPIP, given O(x; + y1j)
and g1 1.
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Quaternion algebras

Set O D Ok + Ok x j, and C*C = G'.

Re(x1)? — alm(x1)* + Re(y1)? — alm(y1)* = g1
= IH‘d(Xl +y1 X j) =q11

[KV10, Alg. 6.3]: Finding x1 + y1j from g11 — solving nrdPIP, given O(x; + y1j)
and g1 1.

Computational steps:
1. C = BU'’s determinant. 3. A useful ideal.

2. A useful quaternion. 4. O(x1 + y1j).
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Step 1/4: Compute C’s determinant

U = congruence matrix between G and G’, G = B*B, G' = C*C.

= Clue 1: [Jaj = (detU)]]b;

s Clue 2: U*GU = G'.

—1
= (det U)O (H a,) <H b,-) , and det(U*U) = nrd(det U) = det G’/ det G.

Lenstra-Silverberg [LS14] — We get det U and det C = det Bdet U up to a root of
unity in Ok in polynomial time.

15



Step 2/4: compute a3 "

X X
With c = [ ), ¢ = E o2 . set a = x1 + y1j, f=x2+ yoj.
yi y2 qi2 q22

B =...=qiz — det(C)j,
soafBl = q{é(qu — det(C)))
public datas

16



Step 3/4: compute an intermediary ideal

B = (B, a1,a;) with B*B = G, and C = (C, by, by) with C*C = G’ — two pseudo-
bases of a module M.

C=(y) a=x+yj, 6=x+yj

Set Iy := O -{x+yj, (y) € M}

17



Step 3/4: compute an intermediary ideal

B = (B, a1,a;) with B*B = G, and C = (C, by, by) with C*C = G’ — two pseudo-
bases of a module M.

C=(nn)a=x+yj, B=x2+yj.

Set Iy := O -{x+yj, (y) € M}

1. O D Ok + Okj pre-computed with

[Voil3, Algorithm 7.9, 7.10].

— polytime reducible to a factorisation

of ideal in F.
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Step 3/4: compute an intermediary ideal

B = (B, a1,a;) with B*B = G, and C = (C, by, by) with C*C = G’ — two pseudo-
bases of a module M.
C=(y) a=x+yj, 6=x+yj

Set Iy := O -{x+yj, (y) € M}

1. O D Ok + Okj pre-computed with 2. Iy = Obi1a + ObyS.
[Voil3, Algorithm 7.9, 7.10].
— with ag and g equivalents of « and
— polytime reducible to a factorisation B for B, Iy = Oarag + Oayfp.
of ideal in F.
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Step 4/4: compute an ideal generated by «

B = (B, a1,a;) with B*B = G, and C = (C, by, by) with C*C = G’ — two pseudo-
bases of a module M.

C=(y)a=x+yj, 6=x+yj

Set Iy == O - {x+yj, (3) €M} and O = O,(Iy) = I;;* x Iu.

aO’ =67 Iy N aBlo; iy
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Step 4/4: compute an ideal generated by «

B = (B, a1,a;) with B*B = G, and C = (C, by, by) with C*C = G’ — two pseudo-
bases of a module M.
C=(y)a=x+yj, 6=x+yj

Set Iy == O - {x+yj, (3) €M} and O = O,(Iy) = I;;* x Iu.

aO’ =67 Iy N aBlo; iy

/A}l = ((’)bla + Obgﬁ)_l
= (0b1a) ™1 N (0b3) 7t
=at;'ON B eyt
= ax It <y =067 Nap oy y = a0
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Recover C s.t. (C,b;,b5) pseudo basis of M, and C*C = G’

aO'= by naB oy iy

1. nrdPIP oracle in A — recover .
2. B=(af )™ x & — We have one C s.t. C*C=G'.

3. Forall f e @ st. nrd(f) =1, ¢/ :=axf, B =(af ) xd.
— We get all the other C s.t. C*C = G'.

19



Recover C s.t. (C,b;,b5) pseudo basis of M, and C*C = G’

aO'= by naB oy iy

1. nrdPIP oracle in A — recover «.
2. B=(af )™ x & — We have one C s.t. C*C=G'.
3. Forall fe @ st nrd(f) =1, o/ :=axf, f =(af 1) xd.

— We get all the other C s.t. C*C = G'.
I det C is known up to a root of unity.
— Two calls to the nrdPIP oracle.

19



Specific case, including Hawk

Assume that

= K is a cyclotomic field

= M=0%.
Then, given U € Cong(G,G'), and  a root of unity in Ok:

U' = B! diag(y,1)- B- U € Cong(G, G)

20



Specific case, including Hawk

Assume that

= K is a cyclotomic field

= M=0%.
Then, given U € Cong(G,G'), and  a root of unity in Ok:
U' = B! diag(y,1)- B- U € Cong(G, G)

= det U’ = pdet U.

= Only one call to nrdPIP oracle to compute all Cong(G, G').

20



Algorithm recapitulation and complexity

B = (B, a1, a2) with B*B = G, and C = (C, by, bp) with C*C = G.
C =

(X1 X2

yi yz)v a:=x1+yij, B=x2+ y2.

O is pre-computed.

Reduction from modLIP to nrdPIP:
1. Get det U and det C up to a root of unity in Ok < Lenstra-Silverberg [LS14].
B!« 45(di2 — det(C)j).
Iv:=0 -{x+yj, (y)e M}
0" = 0:(Im), a0’ = b7 N aB~ o5 .

nrdPIP oracle — «

basic operations on modules.

S R

21



Previous attacks on modLIP

» If K was totally real, Mureau, Pellet-Mary, Pliatsok and Wallet [Mur+-24].
— completely solves the problem in polynomial time.
= With restrictions on M, Espitau and Pliatsok [EP24].
— polynomial time reduction to an instance of module-SVP, for “free
primitive” M.
= In the same setting, Luo, Jiang, Pan, and Wang [Luo+24].
— polynomial time reduction to the problem of finding “pseudo symplectic

automorphisms” of M.

22



Conclusion

Given B, and G and G’ two pseudo-Gram matrices of a module M:

= Polynomial time reduction from modLIP to nrdPIP in a quaternion algebra.
— Two calls to nrdPIP oracle suffice to compute Cong(G, G').

= If K is cyclotomic and M = ©O%, one call to nrdPIP oracle suffices.

= This does not break modLIP, but it broadens the attack surface.

Question time!
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