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Constructing R

In the beginning, we created N:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. . .

And Z:
−1, −2. . .

From which we made Q:
3
2 = 1.5
1
7 = 0.142857142857 . . .

And its completion R:√
2 = 1.4142135623 . . .

π = 3.1415926535897 . . .
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Constructing R in base-7

In the beginning, we created N:
0, 1, 2, 3, 4, 5, 6, 10, 11, 12, 13. . .

And Z:
−1, −2. . .

From which we made Q:
3
2 = 1.3333333333333 . . .
1
10 = 0.1

And its completion R:√
2 = 1.26203454521 . . .

π = 3.0663651432 . . .
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p-adic numbers

Ostrowski’s theorem tells us that completing « after the point » is not the
only option : one can also complete « before the point ».

One then gets Q7, a ring containing N:
0, 1, 2, 3, 4, 5, 6, 10, 11, 12, 13. . .

In that ring, one has:
. . . 6666666 + 1 = 0.
So we can write the elements of Z in the following manner:
. . . 6666666 = −1, . . . 6666665 = −2. . .

Similarly, for Q:
3
2 = . . . 33333335
1
10 = 0.1
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p-adic integers

We now fix a prime number p. The ring Zp of p-adic integers is the set of
every number in Qp « without digits afters the point ».

There is a surjective morphism π : Zp → Fp of rings, which to a p-adic
integer associates its rightmost digit.

. . . 12345612345600123 7→ 3

12 7→ 2
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Hensel’s lemma

Hensel’s lemma (1904)
Let P ∈ Zp[X ]. If there is α ∈ Fp such that P(α) = 0 and P ′(α) ̸= 0, then
there is x ∈ Zp such that P(x) = 0 and that π(x) = α.

For instance, if ℓ ∈ N∗ is coprime with p, then P = ℓX − 1 satisfies the
conditions of Hensel’s lemma: we find that 1

ℓ ∈ Zp.

More generally, one can show that x ∈ Zp is invertible if and only if
π(x) ̸= 0.

In Z7, the polynomial P = X 2 − 2 satisfies the conditions of Hensel’s
lemma.

So there are two square roots of 2 in Z7 :
. . . 421216213
. . . 245450454
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The simplest implementation: absolute capping

Like real numbers, p-adic numbers are infinite, and one can only implement
them up to some precision.

In what follows, fix a precision n.

One can implement elements in Zp simply by only looking at the n
rightmost digits.

...1303 + ...2311 = ...3614

...1111− ...0002 = ...1106

...1111× ...2222 = ...1642

...4422÷ ...1111 = ...0202

Beware: ...1110÷ ...0010 = ...111 (we lose precision).

Notice that Zp/p
nZp
∼= Z/pnZ.
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Extending the implementation: relative capping

In order to extend the implementation to Qp, one can still implement
p-adic numbers by storing n digits without non-zero digits at their right,
and the position of the rightmost of these digits.

...1342 = ...1342× p0

...235500 = ...2355× p2

...6.555 = ...6555× p−3

...1342× p0 + ...2355× p2 = ...0142× p0

...2355× p2 × ...6555× p−3 = ...6244× p−1

We still lose precision when dividing by ...0010× p0.
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Another implementation: floating point arithmetic

Similarly as with real numbers, there is a floating point implementation for
p-adic numbers.

Write a p-adic number as pes, where emin ⩽ e ⩽ emax is an integer, and
−pn−1

2 < s ⩽ pn−1
2 is an integer coprime with p.

The main difference here is asking s to be coprime with p. Whereas we
were allowed to use ...0010× p0 with relative capping, now we have to
write it as ...0001× p1

We do not lose precision any longer after dividing by this number! But
now, there is overflow and underflow with e.
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Unramified extensions

We have discovered a new field Qp of characteristic zero.

It has a subring Zp with a surjection to Fp.

If one takes a polynomial P(X ) ∈ Zp[X ] reducing to an irreducible
polynomial in Fp, it defines an extension of finite fields
Fp → Fq

∼= Fp[X ]/⟨P(X )⟩.

We call the extension Qp → Qq
∼= Qp[X ]/⟨P(X )⟩ an unramified extension.

Philosophically, we have allowed division by p in finite fields!

Rubén Muñoz--Bertrand (Besançon) Computation of Witt Vectors 29/04/2025 10 / 23



Unramified extensions

We have discovered a new field Qp of characteristic zero.
It has a subring Zp with a surjection to Fp.

If one takes a polynomial P(X ) ∈ Zp[X ] reducing to an irreducible
polynomial in Fp, it defines an extension of finite fields
Fp → Fq

∼= Fp[X ]/⟨P(X )⟩.

We call the extension Qp → Qq
∼= Qp[X ]/⟨P(X )⟩ an unramified extension.

Philosophically, we have allowed division by p in finite fields!

Rubén Muñoz--Bertrand (Besançon) Computation of Witt Vectors 29/04/2025 10 / 23



Unramified extensions

We have discovered a new field Qp of characteristic zero.
It has a subring Zp with a surjection to Fp.

If one takes a polynomial P(X ) ∈ Zp[X ] reducing to an irreducible
polynomial in Fp, it defines an extension of finite fields
Fp → Fq

∼= Fp[X ]/⟨P(X )⟩.

We call the extension Qp → Qq
∼= Qp[X ]/⟨P(X )⟩ an unramified extension.

Philosophically, we have allowed division by p in finite fields!

Rubén Muñoz--Bertrand (Besançon) Computation of Witt Vectors 29/04/2025 10 / 23



Unramified extensions

We have discovered a new field Qp of characteristic zero.
It has a subring Zp with a surjection to Fp.

If one takes a polynomial P(X ) ∈ Zp[X ] reducing to an irreducible
polynomial in Fp, it defines an extension of finite fields
Fp → Fq

∼= Fp[X ]/⟨P(X )⟩.

We call the extension Qp → Qq
∼= Qp[X ]/⟨P(X )⟩ an unramified extension.

Philosophically, we have allowed division by p in finite fields!

Rubén Muñoz--Bertrand (Besançon) Computation of Witt Vectors 29/04/2025 10 / 23



Unramified extensions

We have discovered a new field Qp of characteristic zero.
It has a subring Zp with a surjection to Fp.

If one takes a polynomial P(X ) ∈ Zp[X ] reducing to an irreducible
polynomial in Fp, it defines an extension of finite fields
Fp → Fq

∼= Fp[X ]/⟨P(X )⟩.

We call the extension Qp → Qq
∼= Qp[X ]/⟨P(X )⟩ an unramified extension.

Philosophically, we have allowed division by p in finite fields!

Rubén Muñoz--Bertrand (Besançon) Computation of Witt Vectors 29/04/2025 10 / 23



Some strange ring laws

There is a bijection between Zp and Fp
N given by looking at the sequence

of the digits of a p-adic integer.

. . . 421216213←→ (3, 1, 2, 6, 1, 2, 1, 2, 4, . . .)
54←→ (4, 5, 0, 0, 0, 0, 0, 0, 0, . . .)

This yields new ring laws on the set of sequences with values in Fp.

This is something a mathematician has to generalise!
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Witt vectors

Let A be (any) commutative ring. The ring Wp(A) of Witt vectors with
coefficients in A is, as a set, AN (the sequences with coefficients in A).

Think of this set as digits.

For n ∈ N, we introduce the polynomial Wn =
∑n

i=0 p
iXi

pn−i
.

W0 = X0

W1 = X0
p + pX1

W2 = X0
p2

+ pX1
p + p2X2

. . .

Think of them as truncations of p-adic expansions (for instance
201 = 1p

2
+ p × 0p + p2 × 2 in Zp).

Rubén Muñoz--Bertrand (Besançon) Computation of Witt Vectors 29/04/2025 12 / 23



Witt vectors

Let A be (any) commutative ring. The ring Wp(A) of Witt vectors with
coefficients in A is, as a set, AN (the sequences with coefficients in A).
Think of this set as digits.

For n ∈ N, we introduce the polynomial Wn =
∑n

i=0 p
iXi

pn−i
.

W0 = X0

W1 = X0
p + pX1

W2 = X0
p2

+ pX1
p + p2X2

. . .

Think of them as truncations of p-adic expansions (for instance
201 = 1p

2
+ p × 0p + p2 × 2 in Zp).

Rubén Muñoz--Bertrand (Besançon) Computation of Witt Vectors 29/04/2025 12 / 23



Witt vectors

Let A be (any) commutative ring. The ring Wp(A) of Witt vectors with
coefficients in A is, as a set, AN (the sequences with coefficients in A).
Think of this set as digits.

For n ∈ N, we introduce the polynomial Wn =
∑n

i=0 p
iXi

pn−i
.

W0 = X0

W1 = X0
p + pX1

W2 = X0
p2

+ pX1
p + p2X2

. . .

Think of them as truncations of p-adic expansions (for instance
201 = 1p

2
+ p × 0p + p2 × 2 in Zp).

Rubén Muñoz--Bertrand (Besançon) Computation of Witt Vectors 29/04/2025 12 / 23



Witt vectors

Let A be (any) commutative ring. The ring Wp(A) of Witt vectors with
coefficients in A is, as a set, AN (the sequences with coefficients in A).
Think of this set as digits.

For n ∈ N, we introduce the polynomial Wn =
∑n

i=0 p
iXi

pn−i
.

W0 = X0

W1 = X0
p + pX1

W2 = X0
p2

+ pX1
p + p2X2

. . .

Think of them as truncations of p-adic expansions (for instance
201 = 1p

2
+ p × 0p + p2 × 2 in Zp).

Rubén Muñoz--Bertrand (Besançon) Computation of Witt Vectors 29/04/2025 12 / 23



Witt vectors

Let A be (any) commutative ring. The ring Wp(A) of Witt vectors with
coefficients in A is, as a set, AN (the sequences with coefficients in A).
Think of this set as digits.

For n ∈ N, we introduce the polynomial Wn =
∑n

i=0 p
iXi

pn−i
.

W0 = X0

W1 = X0
p + pX1

W2 = X0
p2

+ pX1
p + p2X2

. . .

Think of them as truncations of p-adic expansions (for instance
201 = 1p

2
+ p × 0p + p2 × 2 in Zp).

Rubén Muñoz--Bertrand (Besançon) Computation of Witt Vectors 29/04/2025 12 / 23



Witt vectors polynomials

By induction on n ∈ N, we can construct polynomials Sn such that:

Wn(S0, . . . ,Sn) = Wn(X0, . . . ,Xn) +Wn(Y0, . . . ,Yn).

We must have S0 = X0 + Y0.

Then we look for S1 satisfying:

S0
p + pS1 = X0

p + pX1 + Y0
p + pY1.

That is: pS1 = X0
p + pX1 + Y0

p + pY1 − (X0 + Y0)
p.

We find:

S1 = X1 + Y1 −
p−1∑
i=1

( i
p

)
p

X0
iY0

p−i .
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Witt vectors ring laws

This method is actually an algorithm to compute every Sn.

Similarly, for every n ∈ N, we get polynomials Pn such that:

Wn(P0, . . . ,Pn) = Wn(X0, . . . ,Xn)×Wn(Y0, . . . ,Yn).

Let (x0, x1, x2, . . .) and (y0, y1, y2, . . .) be two Witt vectors.

We define:
(x0, x1, x2, . . .) + (y0, y1, y2, . . .) := (S0(x0, y0),S1(x0, x1, y0, y1),S2(. . .), . . .).
(x0, x1, x2, . . .)× (y0, y1, y2, . . .) := (P0(x0, y0),P1(x0, x1, y0, y1),P2(. . .), . . .).
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Examples

We have Wp(Fp) ∼= Zp.

The ring Wp(Fq) embeds naturally into Qq. It is the ring of integers of
Qq: that is, the ring of elements with positive p-adic valuation.

Witt vectors are a standard tool in number theory. They can be used to:
1 to compute cyclic Galois extensions of function fields (Witt, 1936);
2 to compute p-adic cohomology (Davis–Langer–Zink, 2011);
3 to try to break NTRU (Silverman–Smart–Vercauteren, 2005). . .

Rubén Muñoz--Bertrand (Besançon) Computation of Witt Vectors 29/04/2025 15 / 23



Examples

We have Wp(Fp) ∼= Zp.

The ring Wp(Fq) embeds naturally into Qq. It is the ring of integers of
Qq: that is, the ring of elements with positive p-adic valuation.

Witt vectors are a standard tool in number theory. They can be used to:
1 to compute cyclic Galois extensions of function fields (Witt, 1936);
2 to compute p-adic cohomology (Davis–Langer–Zink, 2011);
3 to try to break NTRU (Silverman–Smart–Vercauteren, 2005). . .

Rubén Muñoz--Bertrand (Besançon) Computation of Witt Vectors 29/04/2025 15 / 23



Examples

We have Wp(Fp) ∼= Zp.

The ring Wp(Fq) embeds naturally into Qq. It is the ring of integers of
Qq: that is, the ring of elements with positive p-adic valuation.

Witt vectors are a standard tool in number theory. They can be used to:

1 to compute cyclic Galois extensions of function fields (Witt, 1936);
2 to compute p-adic cohomology (Davis–Langer–Zink, 2011);
3 to try to break NTRU (Silverman–Smart–Vercauteren, 2005). . .

Rubén Muñoz--Bertrand (Besançon) Computation of Witt Vectors 29/04/2025 15 / 23



Examples

We have Wp(Fp) ∼= Zp.

The ring Wp(Fq) embeds naturally into Qq. It is the ring of integers of
Qq: that is, the ring of elements with positive p-adic valuation.

Witt vectors are a standard tool in number theory. They can be used to:
1 to compute cyclic Galois extensions of function fields (Witt, 1936);

2 to compute p-adic cohomology (Davis–Langer–Zink, 2011);
3 to try to break NTRU (Silverman–Smart–Vercauteren, 2005). . .

Rubén Muñoz--Bertrand (Besançon) Computation of Witt Vectors 29/04/2025 15 / 23



Examples

We have Wp(Fp) ∼= Zp.

The ring Wp(Fq) embeds naturally into Qq. It is the ring of integers of
Qq: that is, the ring of elements with positive p-adic valuation.

Witt vectors are a standard tool in number theory. They can be used to:
1 to compute cyclic Galois extensions of function fields (Witt, 1936);
2 to compute p-adic cohomology (Davis–Langer–Zink, 2011);

3 to try to break NTRU (Silverman–Smart–Vercauteren, 2005). . .

Rubén Muñoz--Bertrand (Besançon) Computation of Witt Vectors 29/04/2025 15 / 23



Examples

We have Wp(Fp) ∼= Zp.

The ring Wp(Fq) embeds naturally into Qq. It is the ring of integers of
Qq: that is, the ring of elements with positive p-adic valuation.

Witt vectors are a standard tool in number theory. They can be used to:
1 to compute cyclic Galois extensions of function fields (Witt, 1936);
2 to compute p-adic cohomology (Davis–Langer–Zink, 2011);
3 to try to break NTRU (Silverman–Smart–Vercauteren, 2005). . .

Rubén Muñoz--Bertrand (Besançon) Computation of Witt Vectors 29/04/2025 15 / 23



Computing Witt vectors

Similarly as with absolute capping, one only compute with the first n
coefficients of Witt vectors in practice.

It is expensive to compute with Witt vectors using the naive algorithm:
when p = 31 the polynomial S2 has 152994 coefficients!

Only Finotti’s algorithm (2014) used another approach when the coefficient
ring has characteristic p. It is much faster.

I have implemented in SageMath a new algorithm when the coefficient ring
is a polynomial ring over Fq. It is fast1, especially for Wp(Fp[X ]).

1Vite.
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From characteristic p to characteristic 0

When A is a commutative ring of characteristic p, Wp(A) has
characteristic 0.

The map a 7→ [a] := (a, 0, 0, 0, . . .) is a multiplicative map from A to
Wp(A).

The map V : (x0, x1, x2, . . .) 7→ (0, x0, x1, x2, . . .) is additive.

There is a morphism of rings F : Wp(A)→Wp(A) such that for a ∈ A in
characteristic p:

p[a] = F ◦ V ([a]) = V ◦ F ([a]),
[a]p = [ap] = F ([a]).
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The main lemma

Lemma (M--B)

Let Q ∈ Zq[X ], with projection Q ∈ Fq[X ]. The n first coefficients of
[Q]p

n−1
equal the ones of Qpn−1

([X ]) in Wp(Fq[X ]).

Example: put n = 10, p = 5 and Q = 1 + 5X + X 2.

Then Q59
([X ]) = ((1 + X 2)5

9
, 0, 0, 0, 0, 0, 0, 0, 0, 0, ?, ?, . . .).

Proof: by induction on n.

Assume that [Q]p
n−1

= Qpn−1
([X ]) + V n(ϵ) for some ϵ ∈Wp(A).

Then [Q]p
n
= Qpn([X ]) + V n(ϵ)p +

∑p
i=0

(p
i

)
Q ipn−1

([X ])V n(ϵ)p−i .

We conclude because p = V ◦ F and
V n(W (A))Vm(W (A)) ⊂ V n+m(W (A)).

Rubén Muñoz--Bertrand (Besançon) Computation of Witt Vectors 29/04/2025 18 / 23



The main lemma

Lemma (M--B)

Let Q ∈ Zq[X ], with projection Q ∈ Fq[X ]. The n first coefficients of
[Q]p

n−1
equal the ones of Qpn−1

([X ]) in Wp(Fq[X ]).

Example: put n = 10, p = 5 and Q = 1 + 5X + X 2.

Then Q59
([X ]) = ((1 + X 2)5

9
, 0, 0, 0, 0, 0, 0, 0, 0, 0, ?, ?, . . .).

Proof: by induction on n.

Assume that [Q]p
n−1

= Qpn−1
([X ]) + V n(ϵ) for some ϵ ∈Wp(A).

Then [Q]p
n
= Qpn([X ]) + V n(ϵ)p +

∑p
i=0

(p
i

)
Q ipn−1

([X ])V n(ϵ)p−i .

We conclude because p = V ◦ F and
V n(W (A))Vm(W (A)) ⊂ V n+m(W (A)).

Rubén Muñoz--Bertrand (Besançon) Computation of Witt Vectors 29/04/2025 18 / 23



The main lemma

Lemma (M--B)

Let Q ∈ Zq[X ], with projection Q ∈ Fq[X ]. The n first coefficients of
[Q]p

n−1
equal the ones of Qpn−1

([X ]) in Wp(Fq[X ]).

Example: put n = 10, p = 5 and Q = 1 + 5X + X 2.

Then Q59
([X ]) = ((1 + X 2)5

9
, 0, 0, 0, 0, 0, 0, 0, 0, 0, ?, ?, . . .).

Proof: by induction on n.

Assume that [Q]p
n−1

= Qpn−1
([X ]) + V n(ϵ) for some ϵ ∈Wp(A).

Then [Q]p
n
= Qpn([X ]) + V n(ϵ)p +

∑p
i=0

(p
i

)
Q ipn−1

([X ])V n(ϵ)p−i .

We conclude because p = V ◦ F and
V n(W (A))Vm(W (A)) ⊂ V n+m(W (A)).

Rubén Muñoz--Bertrand (Besançon) Computation of Witt Vectors 29/04/2025 18 / 23



The main lemma

Lemma (M--B)

Let Q ∈ Zq[X ], with projection Q ∈ Fq[X ]. The n first coefficients of
[Q]p

n−1
equal the ones of Qpn−1

([X ]) in Wp(Fq[X ]).

Example: put n = 10, p = 5 and Q = 1 + 5X + X 2.

Then Q59
([X ]) = ((1 + X 2)5

9
, 0, 0, 0, 0, 0, 0, 0, 0, 0, ?, ?, . . .).

Proof:

by induction on n.

Assume that [Q]p
n−1

= Qpn−1
([X ]) + V n(ϵ) for some ϵ ∈Wp(A).

Then [Q]p
n
= Qpn([X ]) + V n(ϵ)p +

∑p
i=0

(p
i

)
Q ipn−1

([X ])V n(ϵ)p−i .

We conclude because p = V ◦ F and
V n(W (A))Vm(W (A)) ⊂ V n+m(W (A)).

Rubén Muñoz--Bertrand (Besançon) Computation of Witt Vectors 29/04/2025 18 / 23



The main lemma

Lemma (M--B)

Let Q ∈ Zq[X ], with projection Q ∈ Fq[X ]. The n first coefficients of
[Q]p

n−1
equal the ones of Qpn−1

([X ]) in Wp(Fq[X ]).

Example: put n = 10, p = 5 and Q = 1 + 5X + X 2.

Then Q59
([X ]) = ((1 + X 2)5

9
, 0, 0, 0, 0, 0, 0, 0, 0, 0, ?, ?, . . .).

Proof: by induction on n.

Assume that [Q]p
n−1

= Qpn−1
([X ]) + V n(ϵ) for some ϵ ∈Wp(A).

Then [Q]p
n
= Qpn([X ]) + V n(ϵ)p +

∑p
i=0

(p
i

)
Q ipn−1

([X ])V n(ϵ)p−i .

We conclude because p = V ◦ F and
V n(W (A))Vm(W (A)) ⊂ V n+m(W (A)).

Rubén Muñoz--Bertrand (Besançon) Computation of Witt Vectors 29/04/2025 18 / 23



The main lemma

Lemma (M--B)

Let Q ∈ Zq[X ], with projection Q ∈ Fq[X ]. The n first coefficients of
[Q]p

n−1
equal the ones of Qpn−1

([X ]) in Wp(Fq[X ]).

Example: put n = 10, p = 5 and Q = 1 + 5X + X 2.

Then Q59
([X ]) = ((1 + X 2)5

9
, 0, 0, 0, 0, 0, 0, 0, 0, 0, ?, ?, . . .).

Proof: by induction on n.

Assume that [Q]p
n−1

= Qpn−1
([X ]) + V n(ϵ) for some ϵ ∈Wp(A).

Then [Q]p
n
= Qpn([X ]) + V n(ϵ)p +

∑p
i=0

(p
i

)
Q ipn−1

([X ])V n(ϵ)p−i .

We conclude because p = V ◦ F and
V n(W (A))Vm(W (A)) ⊂ V n+m(W (A)).

Rubén Muñoz--Bertrand (Besançon) Computation of Witt Vectors 29/04/2025 18 / 23



The main lemma

Lemma (M--B)
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The algorithm

Given a (truncated) Witt vector Q = (Q0,Q1,Q2, . . . ,Qn) in Wp(Fq[X ]),
we have Q =

∑n
i=0 V

i ([Q i ]).

So, by our lemma:

F n(Q) =
n∑

i=0

piQi
pn−i

([X ]).

This is a polynomial in Zq[T ] with T := [X ]. So this method gives an
effective way to compute Illusie’s isomorphism (1979).

Algorithm (M--B)
0 Input: two truncated Witt vectors Q and Q′.
1 Compute the image F n(Q) as a polynomial in Zq[T ]. Do the same

thing with Q′.
2 Compute the sum (or the product) of the above results.
3 Return: the preimage of the above result.
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Computing the preimage

The result will be of the form F n(R) =
∑n

i=0 p
iRi

pn−i
(T ) and we want to

return the R i .

By reducing modulo p, we get R0
pn
(T ).

From this, we compute R0, and by our lemma this yields R0
pn(T ) up to

our precision.

So get p
∑n−1

i=0 piRi+1
pn−1−i

(T ).

Repeat!
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Speed

The most expensive operation is the exponentiation of polynomials by a
power of p.

n = 5, p = 7 d = 5, n = 4
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The future: error correcting codes?

In 2000 Voloch and Walker introduced a construction using Witt vectors
for error correcting codes.

Rough idea: start with your favourite curve over Fq. Lift it to a curve over
Wn(Fq). Consider an AG-code C constructed with the lift. Looking at C
coordinates-by-coordinates, this yields a non-linear code.

In 2006, using hyperelliptic curves Finotti constructed non-linear binary
codes. One example had length 26, 214 codewords and minimum weight 6.
(the best one has 215 codewords)

Using Finotti’s algorithm, Groves gave in 2023 some examples for p > 2.
He noticed that singular curves gave the best results: one example over F3
had length 18, 36 codewords and minimum weight 8. (the best one has
weight 9)
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Thank you for listening!

Rubén Muñoz--Bertrand (Besançon) Computation of Witt Vectors 29/04/2025 23 / 23


