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What is a lattice?

Definition

A : A periodic "grid" of R".

Basis : B = [b1, b2, ..., by]

A=Y 7-b;
k=1
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The shortest vector problem

Definition

Given A a lattice, find a
shortest non zero vector w.r.t
L2 norm.
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The approximate Shortest Vector Problem

Definition :
Given A C R" lattice, v > 1,
find any vector v such that

IV <7 Aw(A). :
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The approximate Shortest Vector Problem

Definition .
Given A C R" lattice, v > 1,

find any vector v such that
VIl <y Au(A). .

° 7= ©(2") = poly(n)
algo [LLL1982]

o 7 = Q(n/log(n)) =
NP-hard [GG2000]
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Compute the most reduced basis en dim 2.

«O>» «F>» «E» «E>» = QR



Lattice reduction

Lagrange algorithm [Lagrangel773]

Compute the most reduced basis en dim 2.

Lenstra-Lenstra-Lovasz (LLL) [LLL1982]
Efficient in low dimension.
@ Runtime : n©M)

e memory : O(n)
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Lattice reduction

Lagrange algorithm [Lagrangel773]

Compute the most reduced basis en dim 2.

Lenstra-Lenstra-Lovasz (LLL) [LLL1982]
Efficient in low dimension.
@ Runtime : n©M)

e memory : O(n)

Block-Korkine-Zolotarev (BKZ-3) [Schnorr1987]
B offers a trade-off between quality and efficiency.

@ Runtime : after a number of tours at most ©(n? log n/3?) the first
basis vector of BKZ is short. Tour complexity : 29(3*)_ [LN2020]

e memory : n°1)
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dimension 2 : The Lagrange algorithm

Input : Given a basis B = [by, by].
Output : A reduced basis [b, bs].

While |batby| > min(|[by ]2, |[b2[2)/2

Q by < by— |p21]b1
: |ba by |
with po1 =
[[by ]2
Q If ||ba]|? < ||b1]|? swap the two
vectors and go to step 1.

Generalities 8 /26



dimension 2 : The Lagrange algorithm

Input : Given a basis B = [by, by].
Output : A reduced basis [b, bs].

While |batby| > min(|[by ]2, |[b2[2)/2

Q by < by— |p21]b1
: |ba by |
with po1 =
[[by ]2
Q If ||ba]|? < ||b1]|? swap the two
vectors and go to step 1.

Generalities 8 /26



dimension 2 : The Lagrange algorithm

Input : Given a basis B = [by, by].
Output : A reduced basis [b, bs].

While \bztbll > min(Hb1H2, Hb2Hz)/2

Q by < by— |p21]b1
: \bgtb1|
th =

with 21 ||b1H2

Q If ||bz|? < ||b1]|? swap the two
vectors and go to step 1.

Generalities 8 /26



dimension 2 : The Lagrange algorithm

Input : Given a basis B = [by, by].
Output : A reduced basis [b, bs].

While |batby| > min(|[by ]2, |[b2[2)/2

Q by < by— |p21]b1
: \bgtb1|
th =

with 21 ||b1H2

Q If ||ba]|? < ||b1]|? swap the two
vectors and go to step 1.

Generalities 8 /26



dimension 2 : The Lagrange algorithm

Input : Given a basis B = [by, by].
Output : A reduced basis [b, bs].

While |batby| > min(|[by ]2, |[b2[2)/2

Q by < by— |p21]b1
: |ba by |
with po1 =
[[by ]2
Q If ||ba]|? < ||b1]|? swap the two
vectors and go to step 1.

Generalities 8 /26



dimension 2 : The Lagrange algorithm

Input : Given a basis B = [by, by].
Output : A reduced basis [b, bs].

While |batby| > min(|[by ]2, |[b2[2)/2

Q by < by— |p21]b1
: |ba by |
with po1 =
[[by ]2
Q If ||ba]|? < ||b1]|? swap the two
vectors and go to step 1.

Generalities 8 /26



@ Lattice reduction uses (approx-)SVP oracles;
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To sum up

o Lattice reduction uses (approx-)SVP oracles;

o (approx-)SVP easier when input basis already reduced.
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Definitions

L-reduction
A pair of vectors (u,v) is L-reduced or Lagrange-reduced if

[lu = vi| = max ([|ul], f[v]])
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Definitions

L-reduction

A pair of vectors (u,v) is L-reduced or Lagrange-reduced if

[Ju = v]| > max ([lu], [[vI])

Pair-wise L-reduction

A set of linearly independent vectors S is said to be L-reduced if for all
(u,v) € 82, (u,v) is L-reduced.

\B LLL-reduced % B L—reduced.‘
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A new algorithm inspired by LLL and Lagrange. J

«O>» «F>» «E» «E>» = QR


https://www.latticechallenge.org/svp-challenge/
https://www.matrics.u-picardie.fr/

Our work

A new algorithm inspired by LLL and Lagrange. )

@ Test Lattices : Darmstadt SVP Challenge generator
https://www.latticechallenge.org/svp-challenge/
1000 lattices per dim : from 40 to 200, step of 10 (in almost cases)
o Comparison between our result vo and A1 = A1(A) :

approx factor = H\N/O”

A1
@ Python implementation using FpyLLL library on MatriCS HPC
Platform : https://www.matrics.u-picardie.fr/
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Our new L4 (Lagrange-LLL) algorithm

Input : A LLL-reduced basis B.
Output : A better LLL-reduced basis B’ with ||b%|| < ||b1]|.

L4 algorithm 12 / 26



Our new L4 (Lagrange-LLL) algorithm

Input : A LLL-reduced basis B.
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Steps :
@ Compute a set S =B U {b; £ b; | #(b;, bj) € B x B};
@ B = LLLReduce(S);

© Repeat step 1 and step 2 as long as ||b; || is decreasing.
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Construction of §

Sample L4

Q S+ B;
© Repeat ayn times :
a. u = RandomChoose(S);
b. Repeat ayn times :
i. v =RandomChoose(S);
i. If0<|luzv| <max(|ull;|[vID| do
S+ SuU{utv};
done

© S + Sort(S).
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a. u = RandomChoose(S);
b. Repeat ayn times :
i. v =RandomChoose(S);
i. If0<|luzv| <max(|ull;|[vID| do
S+ SuU{utv};
done

© S + Sort(S).

a;=1and ap =1/2 = faster than LLL. |
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Our new L4 (Lagrange-LLL) algorithm

Input : A LLL-reduced basis B.
Output : A better LLL-reduced basis B’ with ||b%|| < ||b1]|.

Steps :
@ Compute a set S =B U {b; £ b; | (b;, bj)not L-reduced}; < C;yy
@ B = LLLReduce(S); <— complexity C;
© Repeat step 1 and step 2 as long as ||b; || is decreasing.

Complexity
Time complexity : O(k x Crry)

k number of calls to LLL
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number of LLL calls

Conjecture
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L4 : Experimental runtime
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L4 : Norm of the First Vector
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A= L(B1) = L(B2)

<= By =Bj; x U, for some U unimodular.




Randomization

Equivalent bases
N=L(B1)=L(B2) <= By;=Bjx U, for some U unimodular. J

Randomization

Input : A basis Bj.
Output : A new basis Bo.
@ Generate randomly U such that
det U = £1;
@ Compute B, =B; x U.
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Randomization

Equivalent bases
N=L(B1)=L(B2) <= By;=Bjx U, for some U unimodular. J

Randomization

Input : A basis B. @ L4-Rand k : k randomizations;
Output : A new basis B». o L4-Max k : stop if no
@ Generate randomly U such that improvement after k
det U = +1; randomizations.
@ Compute B, =B; x U.
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Randomization : Norm of the First Vector
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Randomization : Experimental runtime
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Darmstadt SVP Challenge : ||by|| < 1.05); ?

Dimension | LLL | L4 | L4-Max2 | L4-Max4 | L4-Rand10
40 161 | 355 760 842 915
50 9 64 318 544 626
60 0 4 34 103 93
70 0 0 1 2 4
80 0 0 0 0 0
90 0 0 0 0 0

1000 tests/dim

Randomization

21 /26



— similar runtime

— worst approximation factor
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L4 VS BKZ

L4 VS BKZ-12
— similar runtime

— worst approximation factor

Idea 1 : Using BKZ instead of LLL in L4

Not working : Too many L-reduced basis vectors
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L4 VS BKZ

L4 VS BKZ-12
— similar runtime

— worst approximation factor

Idea 1 : Using BKZ instead of LLL in L4

Not working : Too many L-reduced basis vectors

Idea 2 : Using L4 instead of LLL in the pre-computation of BKZ

Better results!!!

L4+BKZ24
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Average approximation factor
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Average runtime
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Our results

L4+BKZ-24
@ approx factor 3% better on average.

@ proportion of improved basis 7 with dim.
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@ approx factor 3% better on average.

@ proportion of improved basis 7 with dim.

BKZ-24 after L4 VS BKZ-24 after LLL

@ In 35~45 % of the cases, our method improves the runtime.

L4+BKZ-24 VS BKZ-24

@ For all dim, there are some cases where everything is better.
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Conclusion

— A new algorithm inspired by LLL and Lagrange reduction

— Improve the approximation factor for SVP when used as pre-processing
of BKZ

— In some cases faster than BKZ
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— A new algorithm inspired by LLL and Lagrange reduction

— Improve the approximation factor for SVP when used as pre-processing
of BKZ

— In some cases faster than BKZ

Future work

— Better implementation

— Improve the sample

— Including L4 in BKZ implementation

Thank you !
https://zenodo.org/records/13847623
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