Another L makes it better? Lagrange meets LLL and
may improve BKZ pre-processing

Sébastien BALNY, Claire DELAPLACE, Gilles DEQUEN

NIVERSITE
 Picardi
‘.’ icardie

mis &

nnnnnnnnnnnnnnnnnnnnnnnnnnn

‘CARAMBA:

1/26

factorization or discrete logarithms

«Or «Fr o« =

DA

Context

New enemy

Today J

factorization or discrete logarithms

Quantum computer

Generalities 2/26

Context

New enemy

Today J

Quantum computer

Generalities 2/26

Context

New enemy
Today
S N J
Quantum computer
Solutions
Creating new schemes that are resistant to quantum attack. J

Generalities 2/26

Context

New enemy
Today
o o N J
Quantum computer
Solutions
Creating new schemes that are resistant to quantum attack. J

\LATTICE BASED CRYPTOGRAPHY

Generalities 2/26

What is a lattice?

Definition

A : A periodic "grid" of R".

Basis : B = [b1, b2, ..., by]

A=Y 7-b;
k=1

Generalities

3/26

What is a lattice?

Definition
A : A periodic "grid" of R".
Basis : B = [b1, b2, ..., by]
N= > 7Z-b;

k=1

Generalities 3/26

What is a lattice?

Definition
A : A periodic "grid" of R".
Basis : B = [b1, b2, ..., by]
N= > 7Z-b;

k=1

Generalities 3/26

What is a lattice?

Definition

A : A periodic "grid" of R".

Basis : B = [b1, b2, ..., by]

N= > 7Z-b;
k=1 ’ b

Generalities 3/26

The shortest vector problem

Definition

Given A a lattice, find a
shortest non zero vector w.r.t
L2 norm.

Generalities

4/26

The shortest vector problem

Definition

Given A a lattice, find a
shortest non zero vector w.r.t
L2 norm.

Generalities

4/26

The shortest vector problem

Definition

Given A a lattice, find a
shortest non zero vector w.r.t |
L2 norm.

4

"NP-hard [Ajtai1996]

Generalities

4/26

The shortest vector problem

Definition
Given A a lattice, find a

shortest non zero vector w.r.t |
L2 norm.

4

NP-hard [Ajtail996]

Generalities

ol = M (M)

4/26

The approximate Shortest Vector Problem

Definition :
Given A C R" lattice, v > 1,
find any vector v such that

IV <7 Aw(A). :

Generalities 5/ 26

The approximate Shortest Vector Problem

Definition :
Given A C R" lattice, v > 1,
find any vector v such that

IV <7 Aw(A). .

Generalities 5/ 26

The approximate Shortest Vector Problem

Definition :
Given A C R" lattice, v > 1,
find any vector v such that

IV <7 Aw(A). .

Generalities 5/ 26

The approximate Shortest Vector Problem

Definition :
Given A C R" lattice, v > 1,
find any vector v such that

IV <7 Aw(A). .

Generalities 5/ 26

The approximate Shortest Vector Problem

Definition :
Given A C R" lattice, v > 1,
find any vector v such that

IV <7 Aw(A). .

Generalities 5/ 26

The approximate Shortest Vector Problem

Definition .
Given A C R" lattice, v > 1,

find any vector v such that
VIl <y Au(A). .

° 7= ©(2") = poly(n)
algo [LLL1982]

o 7 = Q(n/log(n)) =
NP-hard [GG2000]

Generalities 5/ 26

Find a basis of A with short
"'somewhat orthogonal"
vectors ° ° ° °

Find a basis of A with short
"'somewhat orthogonal" . .
vectors ° ° °

Find a basis of A with short . . .
"'somewhat orthogonal" . . .
vectors ° ° °

. . .
. . .
.
.
. . .
. . .
Find a basis of A with short o .
"'somewhat orthogonal" . .
vectors o o
[] ° by [[
.
.
.
.
. J J (O®Fr (=® T, ETeHAX

Compute the most reduced basis en dim 2.

«O>» «F>» «E» «E>» = QR

Lattice reduction

Lagrange algorithm [Lagrangel773]

Compute the most reduced basis en dim 2.

Lenstra-Lenstra-Lovasz (LLL) [LLL1982]
Efficient in low dimension.
@ Runtime : n©M)

e memory : O(n)

Generalities 7/ 26

Lattice reduction

Lagrange algorithm [Lagrangel773]

Compute the most reduced basis en dim 2.

Lenstra-Lenstra-Lovasz (LLL) [LLL1982]
Efficient in low dimension.
@ Runtime : n©M)

e memory : O(n)

Block-Korkine-Zolotarev (BKZ-3) [Schnorr1987]
B offers a trade-off between quality and efficiency.

@ Runtime : after a number of tours at most ©(n? log n/3?) the first
basis vector of BKZ is short. Tour complexity : 29(3*)_ [LN2020]

e memory : n°1)

Generalities 7/ 26

dimension 2 : The Lagrange algorithm

Input : Given a basis B = [by, by].
Output : A reduced basis [b, bs].

While |batby| > min(|[by]2, |[b2[2)/2

Q by < by— |p21]b1
: |ba by |
with po1 =
[[by]2
Q If ||ba]|? < ||b1]|? swap the two
vectors and go to step 1.

Generalities 8 /26

dimension 2 : The Lagrange algorithm

Input : Given a basis B = [by, by].
Output : A reduced basis [b, bs].

While |batby| > min(|[by]2, |[b2[2)/2

Q by < by— |p21]b1
: |ba by |
with po1 =
[[by]2
Q If ||ba]|? < ||b1]|? swap the two
vectors and go to step 1.

Generalities 8 /26

dimension 2 : The Lagrange algorithm

Input : Given a basis B = [by, by].
Output : A reduced basis [b, bs].

While \bztbll > min(Hb1H2, Hb2Hz)/2

Q by < by— |p21]b1
: \bgtb1|
th =

with 21 ||b1H2

Q If ||bz|? < ||b1]|? swap the two
vectors and go to step 1.

Generalities 8 /26

dimension 2 : The Lagrange algorithm

Input : Given a basis B = [by, by].
Output : A reduced basis [b, bs].

While |batby| > min(|[by]2, |[b2[2)/2

Q by < by— |p21]b1
: \bgtb1|
th =

with 21 ||b1H2

Q If ||ba]|? < ||b1]|? swap the two
vectors and go to step 1.

Generalities 8 /26

dimension 2 : The Lagrange algorithm

Input : Given a basis B = [by, by].
Output : A reduced basis [b, bs].

While |batby| > min(|[by]2, |[b2[2)/2

Q by < by— |p21]b1
: |ba by |
with po1 =
[[by]2
Q If ||ba]|? < ||b1]|? swap the two
vectors and go to step 1.

Generalities 8 /26

dimension 2 : The Lagrange algorithm

Input : Given a basis B = [by, by].
Output : A reduced basis [b, bs].

While |batby| > min(|[by]2, |[b2[2)/2

Q by < by— |p21]b1
: |ba by |
with po1 =
[[by]2
Q If ||ba]|? < ||b1]|? swap the two
vectors and go to step 1.

Generalities 8 /26

@ Lattice reduction uses (approx-)SVP oracles;

«Or «Fr o« =

DA

To sum up

o Lattice reduction uses (approx-)SVP oracles;

o (approx-)SVP easier when input basis already reduced.

Generalities 9 /26

Definitions

L-reduction
A pair of vectors (u,v) is L-reduced or Lagrange-reduced if

[lu = vi| = max ([|ul], f[v]])

L4 algorithm 10 / 26

Definitions

L-reduction

A pair of vectors (u,v) is L-reduced or Lagrange-reduced if

[lu = vi| = max ([|ul], f[v]])

Pair-wise L-reduction

A set of linearly independent vectors S is said to be L-reduced if for all
(u,v) € 82, (u,v) is L-reduced.

L4 algorithm 10 / 26

Definitions

L-reduction

A pair of vectors (u,v) is L-reduced or Lagrange-reduced if

[Ju = v]| > max ([lu], [[vI])

Pair-wise L-reduction

A set of linearly independent vectors S is said to be L-reduced if for all
(u,v) € 82, (u,v) is L-reduced.

\B LLL-reduced % B L—reduced.‘

L4 algorithm 10 / 26

A new algorithm inspired by LLL and Lagrange. J

«O>» «F>» «E» «E>» = QR

https://www.latticechallenge.org/svp-challenge/
https://www.matrics.u-picardie.fr/

Our work

A new algorithm inspired by LLL and Lagrange.)

@ Test Lattices : Darmstadt SVP Challenge generator
https://www.latticechallenge.org/svp-challenge/
1000 lattices per dim : from 40 to 200, step of 10 (in almost cases)
o Comparison between our result vo and A1 = A1(A) :

approx factor = H\N/O”

A1
@ Python implementation using FpyLLL library on MatriCS HPC
Platform : https://www.matrics.u-picardie.fr/

L4 algorithm 11 / 26

https://www.latticechallenge.org/svp-challenge/
https://www.matrics.u-picardie.fr/

Our new L4 (Lagrange-LLL) algorithm

Input : A LLL-reduced basis B.
Output : A better LLL-reduced basis B’ with ||b%|| < ||b1]|.

L4 algorithm 12 / 26

Our new L4 (Lagrange-LLL) algorithm

Input : A LLL-reduced basis B.
Output : A better LLL-reduced basis B’ with ||b%|| < ||b1]|.

Steps :
@ Compute a set S =B U {b; £ b; | #(b;, bj) € B x B};
@ B = LLLReduce(S);

© Repeat step 1 and step 2 as long as ||b; || is decreasing.

L4 algorithm

12 / 26

Our new L4 (Lagrange-LLL) algorithm

Input : A LLL-reduced basis B.
Output : A better LLL-reduced basis B’ with ||b%|| < ||b1]|.

Steps :
@ Compute a set S =B U {b; £ b; | (b;, bj)not L-reduced} ;
@ B = LLLReduce(S);
© Repeat step 1 and step 2 as long as ||b; || is decreasing.

L4 algorithm 12 / 26

Construction of §

Sample L4

Q S+ B;
© Repeat ayn times :
a. u = RandomChoose(S);
b. Repeat ayn times :
i. v =RandomChoose(S);
i. If0<|luzv| <max(|ull;|[vID| do
S+ SuU{utv};
done

© S + Sort(S).

L4 algorithm

13 / 26

Construction of §

Sample L4

Q S+ B;
© Repeat ayn times :
a. u = RandomChoose(S);
b. Repeat ayn times :
i. v =RandomChoose(S);
i. If0<|luzv| <max(|ull;|[vID| do
S+ SuU{utv};
done

© S + Sort(S).

a;=1and ap =1/2 = faster than LLL. |

L4 algorithm 13/ 26

Our new L4 (Lagrange-LLL) algorithm

Input : A LLL-reduced basis B.
Output : A better LLL-reduced basis B’ with ||b%|| < ||b1]|.

Steps :
@ Compute a set S =B U {b; £ b; | (b;, bj)not L-reduced} ;
@ B = LLLReduce(S);
© Repeat step 1 and step 2 as long as ||b; || is decreasing.

L4 algorithm 14 / 26

Our new L4 (Lagrange-LLL) algorithm

Input : A LLL-reduced basis B.
Output : A better LLL-reduced basis B’ with ||b%|| < ||b1]|.

Steps :
@ Compute a set S =B U {b; £ b; | (b;, bj)not L-reduced} ;
@ B = LLLReduce(S); <— complexity C;
© Repeat step 1 and step 2 as long as ||b; || is decreasing.

L4 algorithm 14 / 26

Our new L4 (Lagrange-LLL) algorithm

Input : A LLL-reduced basis B.
Output : A better LLL-reduced basis B’ with ||b%|| < ||b1]|.

Steps :
@ Compute a set S =B U {b; £ b; | (b;, bj)not L-reduced}; < C;yy
@ B = LLLReduce(S); <— complexity C;
© Repeat step 1 and step 2 as long as ||b; || is decreasing.

L4 algorithm 14 / 26

Our new L4 (Lagrange-LLL) algorithm

Input : A LLL-reduced basis B.
Output : A better LLL-reduced basis B’ with ||b%|| < ||b1]|.

Steps :
@ Compute a set S =B U {b; £ b; | (b;, bj)not L-reduced}; < C;yy
@ B = LLLReduce(S); <— complexity C;
© Repeat step 1 and step 2 as long as ||b; || is decreasing.

Complexity
Time complexity : O(k x Crry)

k number of calls to LLL

L4 algorithm 14 / 26

number of LLL calls

18
—- on average
161 % maximum
— k|
144 log & 3*log
w121
S *
S 104 * o
3
-
s 81 *
fe)
S 61 *
44
24
0 T T T
40 60 80
1000 tests/dim
L4 algorithm

T T T T
100 120 140 160
dimension

T
180

T
200

15 / 26

number of LLL calls

Conjecture

k = O(log(n))

18
—e- on average
161 « maximum
— k|
14 4 log & 3*log)
w 121 -
T * % 1 «
5 10+ * * * *
o
-
‘s 81
Qo
S 64+
41 _‘—0—-'0—-0---0'—‘—0—-0—-0--—0-—o—o—-o—-‘
24T 1
04— . y ; ! } I | |
40 60 80 100 120 140 160 180 200
dimension
1000 tests/dim
L4 algorithm

15 / 26

L4 : Experimental runtime

40

301

time (s)

104 s

T T T T T T
40 60 80 100 120 140 160 180 200
dimension

1000 tests/dim

L4 algorithm

16 / 26

L4 : Norm of the First Vector

—e- LLL ?

approximation factor

T T T T T T T
40 60 80 100 120 140 160 180 200
dimension

1000 tests/dim

L4 algorithm 17 / 26

A= L(B1) = L(B2)

<= By =Bj; x U, for some U unimodular.

Randomization

Equivalent bases
N=L(B1)=L(B2) <= By;=Bjx U, for some U unimodular. J

Randomization

Input : A basis Bj.
Output : A new basis Bo.
@ Generate randomly U such that
det U = £1;
@ Compute B, =B; x U.

Randomization 18 / 26

Randomization

Equivalent bases
N=L(B1)=L(B2) <= By;=Bjx U, for some U unimodular. J

Randomization
Input : A basis Bj. o L4-Rand k : k randomizations;
Output : A new basis Bo.
@ Generate randomly U such that
det U = £1;
@ Compute B, =B; x U.

Randomization 18 / 26

Randomization

Equivalent bases
N=L(B1)=L(B2) <= By;=Bjx U, for some U unimodular. J

Randomization

Input : A basis B. @ L4-Rand k : k randomizations;
Output : A new basis B». o L4-Max k : stop if no
@ Generate randomly U such that improvement after k
det U = +1; randomizations.
@ Compute B, =B; x U.

Randomization 18 / 26

Randomization : Norm of the First Vector

141 o 14
—e- L4-Max2
124 ..o L4-Max4
5 --#®- L4-Rand10
0 101
o
c
2 8
©
£
5 61
Q
Q
4]
‘f‘
]
24 o

T T T T T T T
40 60 80 100 120 140 160 180 200
dimension

1000 tests/dim

Randomization 19 / 26

Randomization : Experimental runtime

1754 —— L4 *
—e- L4-Max2 d

150 1 --e- L4-Max4

*- L4-Rand10

125 A

100 A

time (s)

751

50 -

25 A

et

04 = .;-..-.-t-—-:—‘t"":

T T T T T T T T
40 60 80 100 120 140 160 180
dimension

1000 tests/dim

Randomization 20 / 26

Darmstadt SVP Challenge : ||by|| < 1.05); ?

Dimension | LLL | L4 | L4-Max2 | L4-Max4 | L4-Rand10
40 161 | 355 760 842 915
50 9 64 318 544 626
60 0 4 34 103 93
70 0 0 1 2 4
80 0 0 0 0 0
90 0 0 0 0 0

1000 tests/dim

Randomization

21 /26

— similar runtime

— worst approximation factor

«Or «Fr o« =

DA

L4 VS BKZ

L4 VS BKZ-12
— similar runtime

— worst approximation factor

Idea 1 : Using BKZ instead of LLL in L4

Not working : Too many L-reduced basis vectors

L4+BKZ24 22 /26

L4 VS BKZ

L4 VS BKZ-12
— similar runtime

— worst approximation factor

Idea 1 : Using BKZ instead of LLL in L4

Not working : Too many L-reduced basis vectors

Idea 2 : Using L4 instead of LLL in the pre-computation of BKZ

Better results!!!

L4+BKZ24

22 /26

Average approximation factor

=
®

e BKZ-24 B
1 —— L4 + BKZ-24 >

approximation factor
e
N w S w o ~
N | s | |

=
-
'

g
o
s

T T T T
40 60 80 100 120 140
dimension

100 tests/dim

L4+BKZ24 23 /26

Average runtime

--e- BKZ-24

—— L4 + BKZ-24
400 1

300 1

time (s)

200 1

100 A

T T T T
40 60 80 100 120 140
dimension

100 tests/dim

L4+BKZ24 24/ 26

Our results

L4+BKZ-24
@ approx factor 3% better on average.

@ proportion of improved basis 7 with dim.

L4+BKZ24

25 / 26

Our results

L4+BKZ-24
@ approx factor 3% better on average.

@ proportion of improved basis 7 with dim.

BKZ-24 after L4 VS BKZ-24 after LLL

@ In 35~45 % of the cases, our method improves the runtime.

L4+BKZ24 25 / 26

Our results

L4+BKZ-24
@ approx factor 3% better on average.

@ proportion of improved basis 7 with dim.

BKZ-24 after L4 VS BKZ-24 after LLL

@ In 35~45 % of the cases, our method improves the runtime.

L4+BKZ-24 VS BKZ-24

@ For all dim, there are some cases where everything is better.

L4+BKZ24 25 / 26

Conclusion

— A new algorithm inspired by LLL and Lagrange reduction

— Improve the approximation factor for SVP when used as pre-processing
of BKZ

— In some cases faster than BKZ

Conclusion 26 / 26

https://zenodo.org/records/13847623

Conclusion

— A new algorithm inspired by LLL and Lagrange reduction

— Improve the approximation factor for SVP when used as pre-processing
of BKZ

— In some cases faster than BKZ

Future work

— Better implementation

— Improve the sample

— Including L4 in BKZ implementation

Conclusion 26 / 26

https://zenodo.org/records/13847623

Conclusion

— A new algorithm inspired by LLL and Lagrange reduction

— Improve the approximation factor for SVP when used as pre-processing
of BKZ

— In some cases faster than BKZ

Future work

— Better implementation

— Improve the sample

— Including L4 in BKZ implementation

Thank you !
https://zenodo.org/records/13847623

Conclusion 26 / 26

https://zenodo.org/records/13847623

	Generalities
	L4 algorithm
	Randomization
	L4+BKZ24
	Conclusion

