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Isogenies between elliptic curves

Between elliptic curves, isogenies are non-zero morphisms of algebraic
groups.

ϕ

E1 E2
ϕ(P +Q)=ϕ(P)+ϕ(Q)
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Isogenies between abelian varieties

Abelian varieties are projective abelian group varieties, generalizing
elliptic curves.
Between abelian varieties, isogenies are morphisms which are
surjective and of finite kernel.

ϕ

A1 A2

ϕ(P +Q)=ϕ(P)+ϕ(Q)
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The Deuring correspondence

Supersingular elliptic curves Quaternions

j(E ) or j(E )p supersingular O ∼=End(E ) maximal order in Bp,∞

ϕ :E −→E ′ left O -ideal and right O ′-ideal Iϕ

ϕ,ψ :E −→E ′ Iϕ ∼ Iψ (Iψ = Iϕα, α ∈Bp,∞)

ϕ̂ :E ′ −→E Iϕ

ϕ◦ψ Iψ · Iϕ
deg(ϕ) nrd(Iϕ)=

√
[O : Iϕ]
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Computing isogenies via the Deuring correspondence
Problem: How to compute isogenies between elliptic curves of known
endomorphism rings?

General method:
Let E1 and E2 of known endomorphism rings O1 ∼=End(E1) and
O2 ∼=End(E2).
Compute a connecting ideal I between O1 and O2 (left O1-ideal and
right O2-ideal).
Translate I into an isogeny ϕI :E1 −→E2.

✓ Becomes hard when End(E1) or End(E2) is unknown.

✓ Takes polynomial time.

These are good features to build cryptographic schemes (like SQIsign).

? Ideal Translation Problem: How to translate I efficiently in practice?
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What does it mean to "compute" an isogeny?

Definition (Efficient representation)

Let ϕ :E −→E ′ be a d-isogeny over Fq. An efficient representation of ϕ
with respect to an algorithm A is some data Dϕ ∈ {0,1}∗ of size
poly(log(d), log(q)) s.t. on input P ∈E (Fqk ) and Dϕ, A returns ϕ(P) in
time poly(log(d),k log(q)).
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What does it mean to "compute" an isogeny?

Examples of efficient representations:
If deg(ϕ)=∏r

i=1ℓi , a chain of isogenies:

ϕ

E0
ϕ1

E1 · · · En−1
ϕn

En
deg(ϕ1)= ℓ1 deg(ϕn)= ℓn

If deg(ϕ) is smooth, a generator P ∈E (Fq) s.t. ker(ϕ)= 〈P〉 (Vélu).

If deg(ϕ)< 2e is odd and E [2e ]= 〈P ,Q〉, the image points
(ϕ(P),ϕ(Q)) (higher dimensional interpolation).
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State of the art: translating smooth ideals in
dimension 1
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Translating smooth ideals (SQIsign)

Problem: How to compute isogenies between elliptic curves of known
endomorphism rings?

The SQIsign IdealToIsogeny method:
Let E1 and E2 of known endomorphism rings O1 ∼=End(E1) and
O2 ∼=End(E2).
Compute a connecting ideal I between O1 and O2 (left O1-ideal and
right O2-ideal).
Compute J ∼ I of smooth norm via [KLPT14].
Translate J into an isogeny ϕJ :E1 −→E2.
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Translating smooth ideals (SQIsign)

Problem: How to compute isogenies between elliptic curves of known
endomorphism rings?

The SQIsign Ideal-to-isogeny method:
Let E1 and E2 of known endomorphism rings O1 ∼=End(E1) and
O2 ∼=End(E2).
Compute a connecting ideal I between O1 and O2 (left O1-ideal and
right O2-ideal).
Compute J ∼ I of smooth norm via [KLPT14].
Translate J into an isogeny ϕJ :E1 −→E2.

✗ Slow in practice because of the red steps.
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The direct method [GPS20]

Input: E/Fp2 supersingular, O ∼=End(E ) and J a left O -ideal of smooth
norm.

Output: ϕJ :E −→EJ .

Compute
E [J] := {P ∈E | ∀α ∈ J , α(P)= 0}.

Compute ϕJ of kernel E [J] in O(poly(maxℓ|nrd(J)ℓ)) operations
over Fpk , where E [J]⊆E (Fpk ).

" Issue: If J is a KLPT output, then nrd(J)≃ p15/4 ≫ p so k is
exponentially big. Not practical for SQISign !
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The SQIsign method [FLLW23]
Main idea: Cut the computation into smaller pieces. Write

J = J0 ·J1 · · ·Jn−1 and ϕJ =ϕn−1 ◦ · · · ◦ϕ1 ◦ϕ0

with nrd(J0)= ·· · = nrd(Jn−1)= ℓf .

E =E0
J0

ϕ0
E1

θ1
J1

ϕ1
E2

θ2

· · · En−1

θn−1
Jn−1

ϕn−1
En =EJ

✗ This is slow in practice!

✗ Torsion requirements: ℓf T |p2−1 where T ≃ p5/4 (deg(θi )=T 2).

✓ Torsion requirements can be reduced with intermediate steps in
dimension 2 [ON24].
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Kani’s embedding lemma
Translating short ideals in dimension 4 (SQIsignHD)

State of the art: translating short ideals in
dimension 4
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d -isogenies and the dual isogeny in higher dimension

Definition (d-isogeny)

Let ϕ : (A,λA)−→ (B ,λB) be an isogeny between two principally
polarized abelian varieties (PPAV). We define:

ϕ̃ :=λ−1
A ◦ ϕ̂◦λB :B −→A.

B
λB−→ B̂

ϕ̂−→ Â
λ−1
A−→A

We say that ϕ is a d-isogeny or has reduced degree d if ϕ̃◦ϕ= [d ]A.

P. Dartois Ideal to isogeny translations 17 / 49



Isogenies and the Deuring correspondence
State of the art: translating smooth ideals in dimension 1

State of the art: translating short ideals in dimension 4
Clapoti: translating with less restriction in dimension 2

Clapoti original: class group action by any ideal
Conclusion

Kani’s embedding lemma
Translating short ideals in dimension 4 (SQIsignHD)

Kani’s embedding lemma [Kan97]

Definition (isogeny diamond)

An (a,b)-isogeny diamond is
a commutative diagram s.t.:

A′ ϕ′
// B ′

A

ψ

OO

ϕ // B

ψ′
OO

where ϕ,ϕ′ are a-isogenies
and ψ,ψ′ are b-isogenies.

Lemma (Kani)

Consider the (a,b)-isogeny diamond on the
left. Then:

F :A×B ′ −→B ×A′,

F :=
(
ϕ ψ̃′
−ψ ϕ̃′

)
is a d-isogeny with d = a+b.
If a∧b = 1, then

ker(F )= {(ϕ̃(x),ψ′(x)) | x ∈B[d ]}.

P. Dartois Ideal to isogeny translations 18 / 49



Isogenies and the Deuring correspondence
State of the art: translating smooth ideals in dimension 1

State of the art: translating short ideals in dimension 4
Clapoti: translating with less restriction in dimension 2

Clapoti original: class group action by any ideal
Conclusion

Kani’s embedding lemma
Translating short ideals in dimension 4 (SQIsignHD)

Translating short ideals (SQIsignHD)

Problem: How to compute isogenies between elliptic curves of known
endomorphism rings?

Ideal-to-isogeny in SQIsignHD:
Let E1 and E2 of known endomorphism rings O1 ∼=End(E1) and
O2 ∼=End(E2).
Compute a connecting ideal I between O1 and O2 (left O1-ideal and
right O2-ideal).
Compute J ∼ I of smooth norm via [KLPT14] with nrd(J)≃p

p.
Translate J into an isogeny ϕJ :E1 −→E2 using dimension 4.

✓ Faster in practice.
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Translating short ideals (SQIsignHD)

Assume that:
E1/Fp2 is supersingular.
E1[2e ]⊆E1(Fp2) with 2e =Ω(pp).
We have to translate J ⊆End(E1) with nrd(J)< 2e .
2e −nrd(J) is sum of two squares (e.g. prime ≡ 1 mod 4).
We know (ϕJ(P),ϕJ(Q)) where E1[2e ]= 〈P ,Q〉.

Goal: Obtain an(other) efficient representation of ϕJ .

Step 1: compute a1,a2 ∈Z s.t. nrd(J)+a2
1+a2

2 = 2e and consider

αi :=
(

a1 a2
−a2 a1

)
∈End(E2

i ), i ∈ {1,2}.

Those are (a2
1+a2

2)-isogenies.
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Kani’s embedding lemma in dimension 4
Applying Kani’s lemma:

We have an (nrd(J),a2
1+a2

2)-isogeny
diamond:

E2
2

α2 // E2
2

E2
1

ΦJ

OO

α1 // E2
1

ΦJ

OO

with ΦJ :=Diag(ϕJ ,ϕJ).

By Kani’s lemma, we have the
2e -isogeny F ∈End(E2

1 ×E2
2 ),

F :=
(
α1 Φ̃J

−ΦJ α̃2

)
with kernel given by (1).

Step 2: Given (ϕJ(P),ϕJ(Q)), compute a basis of:

ker(F )= {
([a1]R − [a2]S , [a2]R + [a1]S ,ϕJ(R),ϕJ(S)) |

R ,S ∈E1[2e ]
}
. (1)
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Algorithms for 4-dimensional isogeny computations

Step 3: computing F .

The 2e -isogeny F can be computed as a chain of 2-isogenies:

E2
1 ×E2

2
F1

A1
F2

A2 · · · Ae−1
Fe

E2
1 ×E2

2

Each 2-isogeny can be computed efficiently in the Θ-model [Dar24].

Quasi-linear divide and conquer strategies running in O(e log(e))
apply [JDF11; DLRW24].
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Have we "computed" ϕJ?

Lemma
F yields an efficient representation of ϕJ .

Proof.
We have:

F (T ,0,0,0)= ([a1]T ,−[a2]T ,−ϕJ(T ),0).
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dimension 2
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What is Clapoti?

Clapoti: class group action in polynomial time.
Work by A. Page and D. Robert [PR23].
Goal: compute efficiently the action of any ideal a⊆O on
O-oriented curves.
Relies on Kani’s lemma and the use of shorter equivalent ideals.
Made practical with quaternion ideals in SQIsign2D-West [BFD+24]
using 2-dimensional isogenies.
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AnyIdealToIsogeny (SQIsign2D-West)

Assumptions:
We work on E0 : y

2 = x3+x (j = 1728).
E0[2e ]⊆E0(Fp2) with 2e ≈ p.
Let (P0,Q0) be a basis of E0[2e ]
If u < 2e is odd, RandIsogImages from QFESTA [NO23] outputs an
efficient representation of a u-isogeny ϕ :E0 −→E (using a
2-dimensional isogeny computation).

Input: Any ideal I ⊂O0 ∼=End(E0).

Output: An efficient representation of ϕI :E0 −→EI .

Main ingredient: shorter equivalent ideals I1, I2 ∼ I .
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AnyIdealToIsogeny (SQIsign2D-West)

Input: Any ideal I ⊂O0.

Output: An efficient representation of ϕI :E0 −→EI .

The AnyIdealToIsogeny algorithm:

Find ideals I1, I2 ∼ I of odd norms and u,v ∈N odd s.t.
gcd(unrd(I1),v nrd(I2))= 1 and unrd(I1)+v nrd(I2)= 2e .
Use RandIsogImages of QFESTA to obtain the images of (P0,Q0)
via isogenies ϕu :E0 −→Eu and ϕv :E0 −→Ev of degrees u and v .
Let β1,β2 ∈ I s.t. I1 = Iβ1/nrd(I ) and I2 = Iβ2/nrd(I ).

Then θ := ϕ̂I2 ◦ϕI1 =β2β1/nrd(I ).
Compute θ(P0,Q0).
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AnyIdealToIsogeny (SQIsign2D-West)
Now, consider the Kani isogeny diamond:

E ′ ϕ̂′
v // Ev

Eu

ϕ′
u

OO

ϕ̂u◦ϕI1 // EI

ϕv ◦ϕ̂I2

OO

And the 2e -isogeny:

Φ :=
(
ϕI1 ◦ ϕ̂u ϕI2 ◦ ϕ̂v

−ϕ′
u ϕ′

v

)
:Eu ×Ev −→EI ×E ′

It has kernel:

ker(Φ)= {([nrd(I1)]ϕu(P),ϕv ◦θ(P)) |P ∈E0[2e ]}

Using the images of θ,ϕu ,ϕv of P0,Q0 and some DLPs, we obtain
ker(Φ).
We then compute Φ in the Theta model.
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AnyIdealToIsogeny (SQIsign2D-West)

The 2e -isogeny:

Φ :=
(
ϕI1 ◦ ϕ̂u ϕI2 ◦ ϕ̂v

−ϕ′
u ϕ′

v

)
:Eu ×Ev −→EI ×E ′

represents ϕI1 ◦ ϕ̂u and we can evaluate ϕu.
Hence, we can evaluate ϕI1 .
Besides, [nrd(I1)]ϕI =ϕI1 ◦β1 so we can evaluate ϕI .
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AnyIdealToIsogeny (SQIsign2D-West)

How to solve the norm equation:

unrd(I1)+v nrd(I2)= 2e

with I1, I2 ∼ I and u,v ∈N s.t. gcd(unrd(I1),v nrd(I2))= 1?

Sample β1,β2 ∈ I and set I1 = Iβ1/nrd(I ) and I2 = Iβ2/nrd(I ).
Stop when we can solve unrd(I1)+v nrd(I2)= 2e .
We need nrd(Ii )= nrd(βi )/nrd(I )≃p

p for i ∈ {1,2}.

" This may fail.
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Clapoti original: class group action by any ideal

P. Dartois Ideal to isogeny translations 31 / 49



Isogenies and the Deuring correspondence
State of the art: translating smooth ideals in dimension 1

State of the art: translating short ideals in dimension 4
Clapoti: translating with less restriction in dimension 2

Clapoti original: class group action by any ideal
Conclusion

Ideal class group action on supersingular oriented curves
The Clapoti approach with oriented curves
Performance

Orientations
Let O be a quadratic imaginary order.

Let E/Fp2 be a supersingular elliptic curve. A (primitive)
O-orientation of E is an embedding:

ι :O ,→End(E )

that is maximal (it does not extend to a superorder of O).
We say that (E , ι) is O-oriented.

Cl(O) acts faithfully and (almost) transitively on the set of
O-oriented curves.
An ideal a⊆O corresponds to an isogeny ϕa :E −→Ea of kernel:

E [a] := {P ∈E | ∀α ∈ a, ι(α)(P)= 0}

The action is trivial E ≃Ea if and only if a is principal.
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Example: CSIDH

Let p ≡ 3 mod 8. Consider supersingular Montgomery curves

E : y2 = x3+Ax2+x

with A ∈ Fp.
These curves E are all Z[p−p]-oriented:

Z[
p−p] ,→ EndFp (E )p−p 7−→ πp

,

where πp : (x ,y) 7−→ (xp ,yp) is the Frobenius endomorphism of E .

In CSIDH, the action of Cl(Z[p−p]) is used cryptographically (to
build a key exchange).
Other schemes are based on oriented curves (OSIDH, Scallop...).
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Cryptographic group action

Definition
A cryptographic group action G æX is:

1 Easy to compute: g ·x can be evaluated in polynomial time for all
g ∈G and x ∈X .

2 One way: given x and g ·x , g ∈G is hard to find.

With cryptographic group actions, we can derive many schemes
(including key exchange, signatures and more).
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Cryptographic group action

Actually, group actions based on orientations are restricted
cryptographic group actions. We can act by ideals of small norms
l1, · · · , lt that generate Cl(O).

To act with the whole of Cl(O) we consider products

a=
t∏

i=1
leii .

" Issue: it is non trivial (and not very efficient) to sample uniform
classes in Cl(O) with such products, as required in some protocols.
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The Clapoti approach - Outline

Goal: Compute Ea for any ideal a⊆O and O-oriented curve (E , ι).

Step 1: Find ideals b,c∼ a and u,v ∈N such that
gcd(uN(b),vN(c))= 1 and

uN(b)+vN(c)= 2e .

Step 2: Compute a u-isogeny Φu :E
2 −→E2

u and a v -isogeny
Φv :E

2 −→E2
v in dimension 2.

Step 3: Evaluate the endomorphism of E associated to bc.
Step 4: Compute a 4-dimensional isogeny F :E2

u ×E2
v −→E2

a ×E ′2
embedding ϕb,ϕc,Φu ,Φv .

Step 5: Extract Ea from the codomain E2
a ×E ′2.
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The Clapoti approach - Outline

Goal: Compute Ea for any ideal a⊆O and O-oriented curve (E , ι).
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Several parameter tweaks (Steps 1 and 2)
To simplify 2-dimensional isogeny computations in Step 2, we tweak
the norm equation

uN(b)+vN(c)= 2e .

Tweak 1: We require u = gu(x
2
u +y2

u ) and v = gv (x
2
v +y2

v ) where gu
and gv are products of small primes that split in O, so that Φu and
Φv are easier to compute.
We can define

Φu :=
(
xu −yu
yu xu

)(
ϕu 0
0 ϕu

)
with deg(ϕu)= gu, and similarly for Φv .
Only dimension 1 computations are involved.

" Issue: This makes the equation harder to solve.
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Performance

Several parameter tweaks (Steps 1 and 2)

Solution - Tweak 2: Give more freedom to b,c∼ a.

Let b= b1 ·b2 and c= c1 · c2, where b1 and c1 are a product of small
prime ideals in O (the "Elkies" part).
We now solve

uN(b2)+vN(c2)= 2e

instead of
uN(b)+vN(c)= 2e .

And precompute the action of b1 and c1 on E .
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Applying Kani’s lemma (Steps 3 and 4)

We have the following (uN(b2),vN(c2))-isogeny diamond:

E2
u E2

b1

E2

E ′2

E2
a

E2
c1 E2

E2
v

Ψ

Φ̃u

b1

b2

c2

c1

Φv

Φ
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Applying Kani’s lemma (Steps 3-5)

This isogeny diamond yields a 2e -isogeny 4-dimensional

F =
(
Φb2 ◦ Φ̃u Φc2 ◦ Φ̃v

−Ψ Φ̃

)
:E2

u ×E2
v −→E2

a ×E ′2.

Its kernel can be computed by evaluating Φu, Φv , the action of b1,
c1 and the endomorphism bc (Step 3).

F can then be computed efficiently with the Θ-model [Dar24].
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Some preliminary results
A SageMath implementation adapted to CSIDH

Field size Norm eq. Dim 1 Dim 4 Total Success
log2(p) (step 1) (steps 2-3) (steps 4-5) rate

508 0.75 2.62 9.49 12.49 10/10
1008 1.20 8.75 26.58 36.53 10/10
1554 2.15 16.14 50.50 68.78 10/10
2032 28.22 40.01 77.88 146.11 10/10
4090 210.26 193.62 320.53 724.41 8/10

Table: Preliminary timings (in s) of our implementation on a 2,7 GHz Intel
Core i5 dual core with 10 tests per prime size.

A concurrent work [PPS24] using dimension 2 isogenies adapted to
Scallop took 2.5 s with 512 bits discriminant (and 1500 bits p size)
in Rust... and 175 s in SageMath.
We are faster with CSIDH and 4-dimensional isogenies.
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Conclusion

To sum up:
Previous ideal-to-isogeny algorithms involved restrictions on the ideal
norm (either smooth or short).
The most efficient method from SQIsignHD involved dimension 4
isogenies.

The Clapoti method is a powerful tool to:

Translate ideals of any norm with dimension 2 isogenies but only
from the special curve E0 (SQIsign2D-West).

Compute the action of any ideal in the oriented case.
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Thanks for listening!

P. Dartois, A. Leroux, D. Robert and B.
Wesolowski. SQIsignHD: New Dimensions in
Cryptography. Eurocrypt 2024.
https://eprint.iacr.org/2023/436

A. Basso, P. Dartois, L. De Feo, A. Leroux, L.
Maino, G. Pope, D. Robert and B. Wesolowski.
SQIsign2D-West: The Fast, the Small, and the
Safer. Asiacrypt 2024.
https://eprint.iacr.org/2024/760
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What about torsion images (ϕJ(P),ϕJ(Q))?
Main idea (SQIsignHD): Use an alternate isogeny path.

E0
ϕ2

I2ϕ1 I1

E1
ϕJ

J
E2

Let γ := ϕ̂2 ◦ϕJ ◦ϕ1 ∈End(E0).

We have O0γ= I1 ·J · I 2 so we can compute γ.
Then:

[nrd(I1)nrd(I2)]ϕJ =ϕ2 ◦γ◦ ϕ̂1

We can evaluate ϕJ on P ,Q ∈E1[2e ] provided nrd(I1)nrd(I2) is odd:

ϕJ(P ,Q)= [λ]ϕ2 ◦γ◦ ϕ̂1(P ,Q),

with λnrd(I1)nrd(I2)≡ 1 mod 2e .

(ϕJ(P),ϕJ(Q)) is also an efficient representation of ϕJ .
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Preliminary torsion evaluation in SQIsignHD
Computing an isogeny of fixed degree (QFESTA)

Find an isogeny of fixed degree

Input: An odd number u < 2e .

Output: An efficient representation of an isogeny ϕ :E0 −→E of
degree u.

If we are lucky:
Assume u = a2+b2.
Then, we can set ϕ := [a]+ [b]ι ∈End(E0) with:

ι : (x ,y) ∈E0 7−→ (−x ,
p
−1y) ∈E0.

" Requiring u (and/or v) sums of two squares in
unrd(I1)+v nrd(I2)= 2e makes it harder to solve.

✓ In practice, we use RandIsogImages from QFESTA.
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Preliminary torsion evaluation in SQIsignHD
Computing an isogeny of fixed degree (QFESTA)

RandIsogImages [NO23]

Input: An odd number u < 2e .

Output: An efficient representation of an isogeny ϕ :E0 −→E of
degree u.

Compute θ ∈O0 of norm u(2e −u)> p.
Consider the commutative diagram:

E0

E E0

E ′

ϕ

ψ

ψ′

ϕ′θ

with θ =ψ◦ϕ, deg(ϕ)= u and deg(ψ)= 2e −u.
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Preliminary torsion evaluation in SQIsignHD
Computing an isogeny of fixed degree (QFESTA)

RandIsogImages [NO23]

Compute θ(P0,Q0) to obtain the kernel:

ker(Φ)= {([u]P ,θ(P)) |P ∈E0[2e ]}

of

Φ=
(
ϕ ψ̂

−ψ′ ϕ̂′

)
: E0×E0 →E ×E ′.

Compute the 2e -isogeny Φ with the Theta model.

We have Φ(P ,0)= (ϕ(P),∗) so Φ represents ϕ.
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