> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder

Finding formulas

Conclusion

Halving differential addition on Kummer lines

Nicolas Sarkis Advisors: Razvan Barbulescu and Damien Robert

Institut de Mathématiques de Bordeaux, CANARI team

December 10th, 2024 – CARAMBA seminar

Motivation

Halving differential addition on Kummer lines

Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder

Finding formulas

Conclusio

Figure: Biometric passport

- ECDSA and ECDH rely on the scalar product of an elliptic curve, we'd like to improve that.
- SIDH computes chains of 2-isogenies φ₁ ∘··· ∘ φ_n, we are interested in finding 2-isogenies formulas.

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differential addition Half ladder

ormulas

 Kummer lines and 2-isogenies Kummer lines Arithmetic 2-isogenies

② Half differential addition

Half ladder Description Algorithm Curve25519

④ Finding formulas

> Nicolas Sarkis

Kummer lines and 2-isogenies

Kummer line Arithmetic 2-isogenies

Half differentia addition

Half ladder

Finding formulas

Conclusion

Kummer lines and 2-isogenies

Elliptic curves (char $k \neq 2, 3$)

Figure: An elliptic curve

Halving differential addition on Kummer lines

> Nicolas Sarkis

Kummer lines and 2-isogenies **Kummer lines** Arithmetic 2-isogenies

Half differentia addition

Half ladder

Finding formulas

Conclusion

• Short Weierstrass (general case):

 $E: y^2 = x^3 + ax + b$

• Montgomery curves:

$$E: By^2 = x(x^2 + Ax + 1)$$

• How to compute efficiently $n \cdot P = P + \cdots + P$?

Elliptic curves (char $k \neq 2, 3$)

Figure: Trust me it's associative

• Short Weierstrass (general case):

 $E: y^2 = x^3 + ax + b$

Montgomery curves:

$$E: By^2 = x(x^2 + Ax + 1)$$

• How to compute efficiently $n \cdot P = P + \cdots + P$?

addition on Kummer lines Nicolas

Sarkis

Halving

differential

Kummer lines and 2-isogenies **Kummer lines** Arithmetic 2-isogenies

Half differentia addition

Half ladder

Finding formulas

Conclusion

> Nicolas Sarkis

Kummer lines and 2-isogenies Kummer lines Arithmetic 2-isogenies

Half differentia addition

Half laddei

Finding formulas

Conclusior

Kummer line of a Montgomery curve

$$E : By^2 = x(x^2 + Ax + 1)$$

If $P = (X : Y : Z)$, then $-P = (X : -Y : Z)$.

Montgomery XZ-coordinates

$$\pi: E o \mathbb{P}^1$$

 $(X:Y:Z) \mapsto egin{cases} \infty := (1:0) & ext{if } (X:Y:Z) = (0:1:0) = \mathcal{C} \ rac{X}{Z} := (X:Z) & ext{otherwise} \end{cases}$

We have $\pi^{-1}(X : Z) = \{(X : \pm Y : Z)\}$. It is a degree 2 covering: $\#\pi^{-1}(X : Z) = 2$, except when Y = 0 or $(X : Z) = \infty$.

Kummer line: general definition

Kummer line

Kummer lines

Halving

differential addition on Kummer lines Nicolas Sarkis

A Kummer line of an elliptic curve E is:

• A degree 2 covering $\pi: E \to \mathbb{P}^1$:

$$\pi^{-1}(\pi(P)) = \{-P, P\}.$$

• 4 ramification points, which correspond to the 2-torsion:

$$\pi^{-1}(\pi(au))=\{ au\}$$
 for $au\in {E}[2].$

Kummer line: general definition

Kummer lines and 2-isogenies **Kummer lines** Arithmetic 2-isogenies

Halving

differential addition on Kummer lines Nicolas Sarkis

Half differential addition

Half ladder

Finding formulas

Conclusion

Kummer line

A Kummer line of an elliptic curve E is:

• A degree 2 covering $\pi: E \to \mathbb{P}^1$:

$$\pi^{-1}(\pi(P)) = \{-P, P\}.$$

• 4 ramification points, which correspond to the 2-torsion:

$$\pi^{-1}(\pi(au))=\{ extsf{T}\} extsf{ for } extsf{T}\in extsf{E}[2].$$

A map between Kummer lines $\varphi : \mathbb{P}^1 \to \mathbb{P}^1$ has to be compatible with this ramification.

> Nicolas Sarkis

Kummer lines and 2-isogenies **Kummer lines** Arithmetic 2-isogenies

Half differentia addition

Half ladder

Finding formulas

Conclusion

Legendre curve
$$y^2 = x(x-1)(x-\lambda)$$

$$\pi: \mathcal{P} \mapsto egin{cases} (1:0) & ext{if } \mathcal{P} = \mathcal{O}, \ (x:1) & ext{if } \mathcal{P} = (x,y). \ \mathcal{O} = (1:0)^*, \quad \mathcal{T}_1 = (0:1), \quad \mathcal{T}_2 = (1:1), \quad \mathcal{T}_3 = (\lambda:1). \end{cases}$$

> Nicolas Sarkis

Kummer lines and 2-isogenies **Kummer lines** Arithmetic 2-isogenies

Half differentia addition

Half laddei

Finding formulas

Conclusion

Legendre curve
$$y^2 = x(x-1)(x-\lambda)$$

 $\pi: P \mapsto \begin{cases} (1:0) & \text{if } P = \mathcal{O}, \\ (x:1) & \text{if } P = (x,y). \end{cases}$

$$\mathcal{O} = (1:0)^*, \quad T_1 = (0:1), \quad T_2 = (1:1), \quad T_3 = (\lambda:1).$$

Montgomery curve with rational 2-torsion: $y^2 = x(x - a/b)(x - b/a)$

$$\pi: P \mapsto egin{cases} (a:b) & ext{if } P = \mathcal{O}, \ (aX - bZ:bX - aZ) & ext{if } P = (X:Y:Z). \ \mathcal{O} = (a:b)^*, \quad T_1 = (b:a), \quad T_2 = (1:0), \quad T_3 = (0:1). \end{cases}$$

Models we are interested in

Halving differential addition on Kummer lines

> Nicolas Sarkis

Kummer lines and 2-isogenies **Kummer lines** Arithmetic 2-isogenies

Half differentia addition

Half laddei

Finding formulas

Conclusion

- Montgomery Kummer lines (whether $a/b \in k$ or not): $\mathcal{O} = (1:0)^*, \quad T_1 = (0:1), \quad T_2 = (a:b), \quad T_3 = (b:a).$
- Theta model $\theta(a:b)$:

$$\mathcal{O} = (a:b)^*, \quad T_1 = (-a:b), \quad T_2 = (b:a), \quad T_3 = (-b:a).$$

• Theta squared model $\theta_s(a:b)$:

$$\mathcal{O} = (a:b)^*, \quad T_1 = (b:a), \quad T_2 = (1:0), \quad T_3 = (0:1).$$

 $S: heta(a:b) o heta_s(a^2:b^2), (X:Z) \mapsto (X^2:Z^2)$

• Theta twisted model $\theta_t(a:b)$:

 $\mathcal{O} = (\mathbf{a}: \mathbf{b})^*, \quad T_1 = (-\mathbf{a}: \mathbf{b}), \quad T_2 = (1:1), \quad T_3 = (-1:1).$ $C: \theta(\mathbf{a}: \mathbf{b}) \rightarrow \theta_t(\mathbf{a}^2: \mathbf{b}^2), (X:Z) \mapsto (\mathbf{a}X: \mathbf{b}Z)$ $H: \theta_s(\mathbf{a}: \mathbf{b}) \xrightarrow{\sim} \theta_t(\mathbf{a} + \mathbf{b}: \mathbf{a} - \mathbf{b}), (X:Z) \mapsto (X + Z: X - Z)$

What about the group law?

Halving

differential addition on

Kummer lines and 2-isogenies Kummer lines Arithmetic 2-isogenies

Half differentia addition

Half ladder

Finding formulas

Conclusior

Figure: Two possible choices

What about the group law?

Halving differential addition on Kummer lines

> Nicolas Sarkis

Kummer lines and 2-isogenies Kummer lines Arithmetic 2-isogenies

Half differentia addition

Half ladder

Finding formulas

Conclusion

Figure: Two possible choices

However, if we know $\pi(P)$, $\pi(Q)$, $\pi(P-Q)$, we can compute $\pi(P+Q)$.

Arithmetic on $y^2 = x(x^2 + Ax + 1)^1$

Nicolas Sarkis

Kummer lines and 2-isogenies Kummer lines Arithmetic 2-isogenies

Half differentia addition

Half laddei

Finding formulas

Conclusion

Differential addition (3M + 2S)

 $u := (X_P + Z_P)(X_Q - Z_Q), \ v := (X_P - Z_P)(X_Q + Z_Q).$

$$X_{P+Q} = (u+v)^2, \quad Z_{P+Q} = \frac{X_{P-Q}}{Z_{P-Q}}(u-v)^2.$$

Doubling
$$(2M + 2S + 1m_0, d = \frac{A+2}{4})$$

 $u := (X_P + Z_P)^2, v := (X_P - Z_P)^2, t := u - v$

$$X_{2\cdot P} = uv, \quad Z_{2\cdot P} = t(v+dt).$$

¹P. L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization, 1987

11/35

Arithmetic on $\theta_s(a:b)^2$

Halving differential addition on Kummer lines

> Nicolas Sarkis

D

Kummer lines and 2-isogenies Kummer lines Arithmetic 2-isogenies

Half differentia addition

Half ladder

Finding formulas

Conclusion

12/35

Differential addition
$$(3M + 2S + 1m_0)$$

 $u := (X_P + Z_P)(X_Q + Z_Q), v := \frac{a+b}{a-b}(X_P - Z_P)(X_Q - Z_Q).$

$$X_{P+Q} = (u+v)^2, \quad Z_{P+Q} = \frac{X_{P-Q}}{Z_{P-Q}}(u-v)^2,$$

Doubling $(4S + 2m_0)$ $u := (X_P + Z_P)^2, v := \frac{a+b}{a-b}(X_P - Z_P)^2.$ $X_{2\cdot P} = (u+v)^2, \quad Z_{2\cdot P} = \frac{a}{b}(u-v)^2.$

² P. Gaudry and D. Lubicz, The arithmetic of characteristic 2 Kummer surfaces and of elliptic Kummer lines, 2009

> Nicolas Sarkis

Kummer lines and 2-isogenies Kummer lines **Arithmetic** 2-isogenies

differenti addition Half ladd

Finding formulas

Conclusion

_	
7	Algorithm 1: Montgomery ladder step
Ī	nput: $R = m \cdot P$, $S = (m+1) \cdot P$, b a bit
(Dutput: $(2 \cdot R, R + S)$ if $b = 0$ $(R + S, 2 \cdot S)$
0	Data: The point P
ı F	Function $xDBLADD(R, S, b)$:
2	if $b = 0$ then
3	$ S \leftarrow DiffAdd(R, S, P);$
4	$R \leftarrow \text{Doubling}(R);$
5	else if $b = 1$ then
6	$ R \leftarrow DiffAdd(R, S, P);$
7	$S \leftarrow \text{Doubling}(S);$
8	end
9	return (R,S);
_	

if b = 1

Figure: Montgomery ladder

 $n = 9 = \overline{1001}^2$

Nicolas Sarkis

Kummer lines and 2-isogenies Kummer lines **Arithmetic** 2-isogenies

Half differenti addition Half ladd

Finding formulas

Conclusion

Algorithm 1: Montgomery ladder step
Input: $R = m \cdot P$, $S = (m+1) \cdot P$, b a bit
Output: $(2 \cdot R, R + S)$ if $b = 0$ $(R + S, 2 \cdot S)$ if $b = 7$
Data: The point <i>P</i>
1 Function xDBLADD(R, S, b):
2 if $b = 0$ then
$3 S \leftarrow \text{DiffAdd}(R, S, P);$
4 $R \leftarrow \text{Doubling}(R);$
5 else if $b = 1$ then
$6 R \leftarrow \mathtt{DiffAdd}(R, S, P);$
7 $S \leftarrow \text{Doubling}(S);$
8 end
9 return (<i>R</i> , <i>S</i>);

 $P \longrightarrow 2P$

Nicolas Sarkis

Kummer lines and 2-isogenies Kummer lines **Arithmetic** 2-isogenies

differentia addition Half ladd

Finding formulas

Conclusion

Al	gorithm 1: Montgomery ladder step
Inp	put: $R = m \cdot P$, $S = (m+1) \cdot P$, b a bit
Ou	tput: $(2 \cdot R, R + S)$ if $b = 0$ $(R + S, 2 \cdot S)$ if $b = 1$
Da	ita: The point <i>P</i>
1 Fu	nction xDBLADD(R, S, b):
2	if $b = 0$ then
3	$S \leftarrow \text{DiffAdd}(R, S, P);$
4	$R \leftarrow \text{Doubling}(R);$
5	else if $b = 1$ then
6	$ R \leftarrow \texttt{DiffAdd}(R, S, P);$
7	$S \leftarrow \text{Doubling}(S);$
8	end
9	return (R,S);

 $n = 9 = \overline{1001}^2$

Nicolas Sarkis

Arithmetic

differenti addition Half ladd

Finding formulas

Conclusion

	Algorithm 1: Montgomery ladder step
	Input: $R = m \cdot P$, $S = (m+1) \cdot P$, b a bit
	Output: $(2 \cdot R, R + S)$ if $b = 0$ $(R + S, 2 \cdot S)$ if $b = 1$
	Data: The point <i>P</i>
1	Function $xDBLADD(R, S, b)$:
2	if $b = 0$ then
3	$ S \leftarrow \text{DiffAdd}(R, S, P);$
4	$R \leftarrow \text{Doubling}(R);$
5	else if $b = 1$ then
6	$ R \leftarrow DiffAdd(R, S, P);$
7	$S \leftarrow \text{Doubling}(S);$
8	end
9	return (R, S) ;

1

 $n=9=\overline{1001}^2$

> Nicolas Sarkis

Kummer lines and 2-isogenies Kummer lines Arithmetic 2-isogenies Half

differenti addition Half ladd

Finding formulas

Conclusion

	Algorithm 1: Montgomery ladder step
	Input: $R = m \cdot P$, $S = (m+1) \cdot P$, b a bit
	Output: $(2 \cdot R, R + S)$ if $b = 0$ $(R + S, 2 \cdot S)$ if $b = 3$
	Data: The point <i>P</i>
1	Function $xDBLADD(R, S, b)$:
2	if $b = 0$ then
3	$ S \leftarrow \text{DiffAdd}(R, S, P);$
4	$R \leftarrow \text{Doubling}(R);$
5	else if $b = 1$ then
6	$ R \leftarrow DiffAdd(R, S, P);$
7	$S \leftarrow \text{Doubling}(S);$
8	end
9	return (R, S) ;

 $n = 9 = \overline{1001}^2$

(Separable) isogenies

lines Nicolas Sarkis

Halving

differential addition on Kummer

Kummer lines and 2-isogenies Kummer lines Arithmetic

Half differentia addition

Half ladder

Finding formulas

Conclusion

- Isogeny: surjective morphism $\varphi: E \to E'$ with finite kernel.
- deg $\varphi := \# \ker \varphi$, it is multiplicative.
- It always comes with a dual $\widetilde{\varphi}: E' \to E$ such that:

 $\widetilde{\varphi} \circ \varphi = [\deg \varphi]_E \text{ and } \varphi \circ \widetilde{\varphi} = [\deg \varphi]_{E'}.$

Nicolas Sarkis

Half differentia addition

Half ladder

Finding formulas

Conclusion

2-isogenies on Kummer lines³

$$arphi: {\it E}
ightarrow {\it E}'$$
 a 2-isogeny, ker $arphi = \{ {\cal O}, {\it T} \}$, ${\it T} \in {\it E}[2]$:

$$\widetilde{\varphi}\circ\varphi=[2]_{E}$$

For all $P \in E$, arphi(P+T) = arphi(P).

Nicolas Sarkis

Kummer lines and 2-isogenies Kummer lines Arithmetic **2-isogenies**

Half differentia addition

Half ladder

Finding formulas

Conclusion

2-isogenies on Kummer lines³

$$arphi: E
ightarrow E'$$
 a 2-isogeny, ker $arphi = \{\mathcal{O}, T\}$, $T \in E[2]$:

$$\widetilde{\varphi}\circ\varphi=[\mathbf{2}]_{E}$$

For all $P \in E$, $\varphi(P + T) = \varphi(P)$.

Kummer line with coordinates (X : Z)

We want $\overline{\varphi} : \mathbb{P}^1 \to \mathbb{P}^1$:

• deg 2: Expressed in terms of X^2, Z^2, XZ ;

Nicolas Sarkis

Kummer lines and 2-isogenies Kummer lines Arithmetic **2-isogenies**

Half differentia addition

- Half ladder
- Finding formulas
- Conclusion

2-isogenies on Kummer lines³

$$arphi: E
ightarrow E'$$
 a 2-isogeny, ker $arphi = \{\mathcal{O}, T\}$, $T \in E[2]$:

$$\widetilde{\varphi}\circ\varphi=[\mathbf{2}]_{E}$$

For all $P \in E$, $\varphi(P + T) = \varphi(P)$.

Kummer line with coordinates (X : Z)

We want $\overline{\varphi} : \mathbb{P}^1 \to \mathbb{P}^1$:

- deg 2: Expressed in terms of X^2, Z^2, XZ ;
- Kummer lines: respecting ramification;

Nicolas Sarkis

Kummer lines and 2-isogenies Kummer lines Arithmetic **2-isogenies**

Half differentia addition

- Half ladder
- Finding formulas
- Conclusion

2-isogenies on Kummer lines³

$$arphi: E
ightarrow E'$$
 a 2-isogeny, ker $arphi = \{\mathcal{O}, T\}$, $T \in E[2]$:

$$\widetilde{\varphi}\circ\varphi=[\mathbf{2}]_{E}$$

For all $P \in E$, $\varphi(P + T) = \varphi(P)$.

Kummer line with coordinates (X : Z)

We want $\overline{\varphi} : \mathbb{P}^1 \to \mathbb{P}^1$:

- deg 2: Expressed in terms of X^2, Z^2, XZ ;
- Kummer lines: respecting ramification;
- Isogeny: invariant by $t_T : P \mapsto P + T$.

³D. Robert and N. S., Computing 2-isogenies between Kummer lines, 2024

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differential addition

Half ladder

Finding formulas

Conclusion

Half differential addition

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differential addition

Half ladder

Finding formulas

Conclusion

The differential addition isogeny

Differential addition isogeny

F: E imes E o E imes E $(P, Q) \mapsto (P + Q, P - Q)$

It is a (2,2)-isogeny (between abelian surfaces), with kernel:

 $\operatorname{ker} F = \{(T, T) \mid \overline{T} \in E[2]\} = \langle (T_1, T_1), (T_2, T_2) \rangle, \text{ where } E[2] = \langle T_1, T_2 \rangle.$

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differential addition

Half ladder

Finding formulas

Conclusion

The differential addition isogeny

Differential addition isogeny

F: E imes E o E imes E $(P, Q) \mapsto (P + Q, P - Q)$

It is a (2, 2)-isogeny (between abelian surfaces), with kernel:

 $\ker F = \{(T,T) \mid T \in E[2]\} = \langle (T_1,T_1), (T_2,T_2) \rangle, \text{ where } E[2] = \langle T_1,T_2 \rangle.$

Diagonal isogeny ($\varphi : E \to E'$ a 2-isogeny with kernel $\langle T_1 \rangle$) $\Phi : E \times E \to E' \times E'$ $(P, Q) \mapsto (\varphi(P), \varphi(Q))$

 Φ is a (2,2)-isogeny, with kernel $\langle T_1 \rangle \times \langle T_1 \rangle = \langle (\mathcal{O}, T_1), (T_1, \mathcal{O}) \rangle$.

Our idea: can we factor F?

$F:(P,Q)\mapsto (P+Q,P-Q), \qquad \Phi:(P,Q)\mapsto (\varphi(P),\varphi(Q)).$

Halving differential addition on Kummer lines

> Nicolas Sarkis

Kummer lines and

Half differential addition

Half ladder

Finding formulas

Conclusion

Our idea: can we factor F?

lines Nicolas Sarkis

Halving

differential addition on Kummer

Kummer lines and 2-isogenies

Half differential addition

Half ladder

Finding formulas

Conclusion

$$F:(P,Q)\mapsto (P+Q,P-Q),\qquad \Phi:(P,Q)\mapsto (\varphi(P),\varphi(Q)).$$

We can't factor F or Φ because ker $F \nsubseteq$ ker Φ or ker $\Phi \nsubseteq$ ker F. \rightarrow We consider a third one G with ker $G := \ker F + \ker \Phi$.

lines Nicolas Sarkis

Halving

differential addition on Kummer

Kummer lines and 2-isogenies

Half differential addition

Half ladder

Finding formulas

Conclusion

$F:(P,Q)\mapsto (P+Q,P-Q), \quad \Phi:(P,Q)\mapsto (\varphi(P),\varphi(Q)).$

Definition

Half differential addition formulas relative to φ are formulas such that given $\varphi(P)$, $\varphi(Q)$ and P - Q, can compute P + Q on the Kummer line.

Notation: $P + Q = \text{HalfDiffAdd}_{\varphi}(\varphi(P), \varphi(Q), P - Q)$.

lines Nicolas Sarkis

Halving

differential addition on Kummer

Kummer lines and 2-isogenies

Half differential addition

Half ladder

Finding formulas

Conclusion

$F:(P,Q)\mapsto (P+Q,P-Q), \quad \Phi:(P,Q)\mapsto (\varphi(P),\varphi(Q)).$

Definition

Half differential addition formulas relative to φ are formulas such that given $\varphi(P)$, $\varphi(Q)$ and P - Q, can compute P + Q on the Kummer line.

Notation: $P + Q = \text{HalfDiffAdd}_{\varphi}(\varphi(P), \varphi(Q), P - Q)$. For consistency, $2 \cdot P = \text{HalfDouble}_{\varphi}(\varphi(P)) (= \widetilde{\varphi}(\varphi(P)))$.

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differential addition

Half ladder

Finding formulas

Conclusion

On the theta model $\theta(a : b)$ with ramification $\mathcal{O} = (a : b)^*, \quad T_1 = (-a : b), \quad T_2 = (b : a), \quad T_3 = (-b : a).$ Set $(A^2 : B^2) := (a^2 + b^2 : a^2 - b^2)$, ker $\varphi = \langle T_1 \rangle$:

 $\varphi: (X:Z) \in \theta(a:b) \mapsto (B(X^2 + Z^2):A(X^2 - Z^2)) \in \theta(A:B)$

An example

HalfDiffAdd $_{\varphi}(\varphi(P),\varphi(Q),P-Q)$ (4M)

$$(X_{P+Q}X_{P-Q}: Z_{P+Q}Z_{P-Q}) = \begin{pmatrix} X_{\varphi(P)}X_{\varphi(Q)} + Z_{\varphi(P)}Z_{\varphi(Q)} \\ X_{\varphi(P)}X_{\varphi(Q)} - Z_{\varphi(P)}Z_{\varphi(Q)} \end{pmatrix}$$

In comparison, a full differential addition in $\theta(a:b)$ is $3M + 4S + 1m_0$ (or $3M + 2S + 1m_0$ with squared coordinates).

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder

Description Algorithm Curve25519

Finding formulas

Conclusion

Half ladder

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder Description Algorithm Curve25519

Finding formulas

Conclusion

In the usual Montgomery ladder, we perform one differential addition and one doubling per bit: we compute the images by φ and immediately get the results back on the original curve.

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder Description Algorithm Curve25519

Finding formulas

Conclusion

In the usual Montgomery ladder, we perform one differential addition and one doubling per bit: we compute the images by φ and immediately get the results back on the original curve.

Instead, we will pre-compute the pre-required images, and then perform the ladder backwards with HalfDiffAdd and HalfDouble.

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder Description Algorithm Curve25519

Finding formulas

Conclusion

23/35

We want to compute $n \cdot P$, where $P \in \mathcal{K}$.

- $n = (b_{\ell-1}, b_{\ell-2}, \dots, b_0)$ has ℓ bits.
- $P_0 := P$ and $\mathcal{K}_0 := \mathcal{K}$.
- We have $\mathcal{K}_1, \ldots, \mathcal{K}_\ell$ Kummer lines and $\varphi_i : \mathcal{K}_{i-1} \to \mathcal{K}_i$ 2-isogenies.
- $P_i := \varphi_i(P_{i-1}).$

$$\mathcal{K}_{0} \xrightarrow{\varphi_{1}} \mathcal{K}_{1} \xrightarrow{\varphi_{2}} \mathcal{K}_{2} \xrightarrow{\varphi_{3}} \cdots \xrightarrow{\varphi_{\ell}} \mathcal{K}_{\ell}$$
$$P_{0} \longmapsto P_{1} \longmapsto P_{2} \longmapsto \cdots \longmapsto P_{\ell}$$

Figure: Successive images

In practice, $\varphi_{2i+1} = \varphi$ and $\varphi_{2i} = \widetilde{\varphi}$.

Context and pre-computation

Halving differential addition on Kummer lines

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder Description Algorithm Curve25519

Finding formulas

Conclusion

If we know $R_i = m_i \cdot P_i$ and $S_i = (m_i + 1) \cdot P_i$ on \mathcal{K}_i , then:

•
$$R_i = \varphi_i(m_i \cdot P_{i-1})$$
 and $S_i = \varphi_i((m_i+1) \cdot P_{i-1})$,

Halving differential addition on Kummer lines

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder Description Algorithm Curve25519

Finding formulas

Conclusion

If we know $R_i = m_i \cdot P_i$ and $S_i = (m_i + 1) \cdot P_i$ on \mathcal{K}_i , then:

- $R_i = \varphi_i(m_i \cdot P_{i-1})$ and $S_i = \varphi_i((m_i + 1) \cdot P_{i-1})$,
- Hence $(2m_i + 1) \cdot P_{i-1} = \text{HalfDiffAdd}_{\varphi_i}(R_i, S_i, P_{i-1})$,

Halving differential addition on Kummer lines

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder Description Algorithm Curve25519

Finding formulas

Conclusion

If we know $R_i = m_i \cdot P_i$ and $S_i = (m_i + 1) \cdot P_i$ on \mathcal{K}_i , then:

- $R_i = \varphi_i(m_i \cdot P_{i-1})$ and $S_i = \varphi_i((m_i + 1) \cdot P_{i-1})$,
- Hence $(2m_i + 1) \cdot P_{i-1} = \text{HalfDiffAdd}_{\varphi_i}(R_i, S_i, P_{i-1})$,
- Moreover, $2m_i \cdot P_{i-1} = \text{HalfDouble}_{\varphi_i}(R_i)$ and $(2m_i + 2) \cdot P_{i-1} = \text{HalfDouble}_{\varphi_i}(S_i)$.

Halving differential addition on Kummer lines

Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder Description Algorithm Curve25519

Finding formulas

Conclusion

$$\mathcal{K}_{0} \longrightarrow \mathcal{K}_{1} \longrightarrow \cdots \longrightarrow \mathcal{K}_{i-1} \xrightarrow{\varphi_{i}} \mathcal{K}_{i} \longrightarrow \cdots \longrightarrow \mathcal{K}_{\ell}$$
 $P_{0} \longmapsto P_{1} \longmapsto \cdots \longmapsto P_{i-1} \longmapsto P_{i} \longmapsto \cdots \longmapsto P_{\ell}$
 $(R_{i-1}, S_{i-1}) \leftarrow (R_{i}, S_{i})$

If we know $R_i = m_i \cdot P_i$ and $S_i = (m_i + 1) \cdot P_i$ on \mathcal{K}_i , then:

- $R_i = \varphi_i(m_i \cdot P_{i-1})$ and $S_i = \varphi_i((m_i + 1) \cdot P_{i-1})$,
- Hence $(2m_i + 1) \cdot P_{i-1} = \texttt{HalfDiffAdd}_{\varphi_i}(R_i, S_i, P_{i-1})$,
- Moreover, $2m_i \cdot P_{i-1} = \text{HalfDouble}_{\varphi_i}(R_i)$ and $(2m_i + 2) \cdot P_{i-1} = \text{HalfDouble}_{\varphi_i}(S_i)$.

We can compute $R_{i-1} = m_{i-1} \cdot P_{i-1}$ and $S_{i-1} = (m_{i-1} + 1) \cdot P_{i-1}$.

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differential addition

Description Algorithm

-inding

formulas

Conclusion

	Algorithm 1: Montgomery ladder step			
	Input: $R = m \cdot P$, $S = (m+1) \cdot P$, b a bit			
	Output: $(2 \cdot R, R+S)$ if $b = 0$ $(R+S, 2 \cdot S)$ if $b = 3$			
	Data: The point P			
1	Function $xDBLADD(R, S, b)$:			
2	if $b = 0$ then			
3	$ S \leftarrow \text{DiffAdd}(R, S, P);$			
4	$R \leftarrow \text{Doubling}(R);$			
5	else if $b = 1$ then			
6	$ R \leftarrow \texttt{DiffAdd}(R, S, P);$			
7	$S \leftarrow \text{Doubling}(S);$			
8	end			
9	return (R, S) ;			

 $n = 9 = \overline{1001}^2$

Figure: Montgomery ladder

> Nicolas Sarkis

Algorithm

 $n = 0 = \overline{1001}^2$

 P_0

 $\dot{P_1}$

 P_2

 P_3

P۸

P

 φ_3

 φ_4

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder Description Algorithm Curve25519

Finding formulas

Conclusion

Alg	Algorithm 2: Half ladder step for a 2-isogeny φ		
Inpi	Input: $\varphi(R)$, $\varphi(S)$ where $R = m \cdot P$,		
	$S=(m+1)\cdot P$, b a bit		
Out	cput: $(2 \cdot R, R + S)$ if $b = 0$		
	$(R+S,2\cdot S)$ if $b=1$		
Dat	a: The point P		
ι Fun	oction HalfxDBLADD $_{\varphi}(\varphi(R),\varphi(S),b)$:		
2 i	if $b = 0$ then		
3	$ S \leftarrow \texttt{HalfDiffAdd}_{\varphi}(\varphi(R), \varphi(S), P);$		
4	$R \leftarrow \text{HalfDouble}_{\varphi}(\varphi(R));$		
5 0	else if $b = 1$ then		
5	$ R \leftarrow \texttt{HalfDiffAdd}_{\varphi}(\varphi(R),\varphi(S),P);$		
7	$S \leftarrow \texttt{HalfDouble}_{\varphi}(\varphi(S));$		
3	end		
)	return (R,S) ;		

 $n=9=\overline{1001}^2$

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder Description Algorithm Curve25519

Finding formulas

Conclusion

Ā	Algorithm 2: Half ladder step for a 2-isogeny $arphi$		
In	Input: $arphi(R)$, $arphi(S)$ where $R=m\cdot P$,		
	$\mathcal{S} = (m+1) \cdot P$, b a bit		
0	Output: $(2 \cdot R, R + S)$ if $b = 0$		
	$(R+S, 2\cdot S)$ if $b=1$		
D	Pata: The point P		
1 F	unction $ ext{HalfxDBLADD}_{arphi}(arphi(R),arphi(S),b)$:		
2	if $b = 0$ then		
3	$S \leftarrow \texttt{HalfDiffAdd}_{\varphi}(\varphi(R), \varphi(S), P);$		
4	$R \leftarrow \texttt{HalfDouble}_{arphi}(arphi(R));$		
5	else if $b = 1$ then		
6	$R \leftarrow \texttt{HalfDiffAdd}_{\varphi}(\varphi(R), \varphi(S), P);$		
7	$S \leftarrow ext{HalfDouble}_arphi(arphi(S));$		
8	end		
9	return (R, S) ;		

 $n=9=\overline{1001}^2$

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder Description Algorithm Curve25519

Finding formulas

Conclusion

	Algorithm 2: Half ladder step for a 2-isogeny φ		
	Input: $arphi(R)$, $arphi(S)$ where $R=m\cdot P$,		
	$\mathcal{S} = (m+1) \cdot \mathcal{P}$, b a bit		
	Output: $(2 \cdot R, R + S)$ if $b = 0$		
	$(R+S, 2\cdot S)$ if $b=1$		
	Data: The point <i>P</i>		
L	Function HalfxDBLADD $_{\varphi}(\varphi(R),\varphi(S),b)$:		
2	if $b = 0$ then		
3	$ S \leftarrow \texttt{HalfDiffAdd}_{\varphi}(\varphi(R), \varphi(S), P);$		
4	$R \leftarrow \texttt{HalfDouble}_{\varphi}(\varphi(R));$		
5	else if $b = 1$ then		
6	$ R \leftarrow \texttt{HalfDiffAdd}_{\varphi}(\varphi(R), \varphi(S), P);$		
7	$S \leftarrow \texttt{HalfDouble}_{\varphi}(\varphi(S));$		
B	end		
9	return (R, S) ;		

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder Description Algorithm Curve25519

Finding formulas

Conclusion

_			
4	Algorithm 2: Half ladder step for a 2-isogeny $arphi$		
Ī	Input: $arphi(R)$, $arphi(S)$ where $R=m\cdot P$,		
	$S=(m+1)\cdot P$, b a bit		
(Dutput: $(2 \cdot R, R + S)$ if $b = 0$		
	$(R+S,2\cdot S)$ if $b=1$		
0	Data: The point P		
1 F	Function HalfxDBLADD $_{\varphi}(\varphi(R), \varphi(S), b)$:		
2	if $b = 0$ then		
3	$ S \leftarrow \texttt{HalfDiffAdd}_{\varphi}(\varphi(R), \varphi(S), P);$		
4	$ R \leftarrow \texttt{HalfDouble}_{arphi}(arphi(R));$		
5	else if $b = 1$ then		
6	$ R \leftarrow \texttt{HalfDiffAdd}_{\varphi}(\varphi(R), \varphi(S), P);$		
7	$ig ig S \leftarrow ext{HalfDouble}_arphi(arphi(S));$		
8	end		
9	return (R,S) ;		
-			

lines Nicolas Sarkis

Halving

differential addition on Kummer

Kummer lines and 2-isogenies

Half differentia addition

Half ladder Description Algorithm Curve25519

Finding formulas

Conclusion

On our theta model $\theta(a:b)$ previously studied, with $\varphi_{2i+1} = \varphi$ and $\varphi_{2i} = \widetilde{\varphi}$: • $\varphi: \theta(a:b) \rightarrow \theta(A:B)$ and $\widetilde{\varphi}: 2S + 1m_0$.

- HalfDiffAdd $_{\varphi}$ and HalfDiffAdd $_{\widetilde{\varphi}}$: 4*M*.
- $\texttt{HalfDouble}_{\varphi}$ and $\texttt{HalfDouble}_{\widetilde{\varphi}}$: $2S + 1m_0$.

Halving differential addition on Kummer lines

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder Description Algorithm Curve25519

Finding formulas

Conclusion

On our theta model $\theta(a:b)$ previously studied, with $\varphi_{2i+1} = \varphi$ and $\varphi_{2i} = \widetilde{\varphi}$:

- $\varphi: \theta(a:b) \rightarrow \theta(A:B)$ and $\widetilde{\varphi}: 2S + 1m_0$.
- HalfDiffAdd $_{\varphi}$ and HalfDiffAdd $_{\widetilde{\varphi}}$: 4*M*.
- $\texttt{HalfDouble}_{\varphi}$ and $\texttt{HalfDouble}_{\widetilde{\varphi}}$: $2S + 1m_0$.

	Montgomery ladder	Half ladder, our contribution
Non-normalized base point	$6M + 4S + 1m_0$	
Normalized base point	$5M + 4S + 1m_0$ (or $4M + 4S + 2m_0$)	$4M + 4S + 2m_0$

Table: Ladder costs per bit with no pre-computation

Halving differential addition on Kummer lines

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder Description Algorithm Curve25519

Finding formulas

Conclusion

On our theta model $\theta(a : b)$ previously studied, with $\varphi_{2i+1} = \varphi$ and $\varphi_{2i} = \widetilde{\varphi}$: • $\varphi : \theta(a : b) \rightarrow \theta(A : B)$ and $\widetilde{\varphi}: 2S + 1m_0$.

- HalfDiffAdd $_{\varphi}$ and HalfDiffAdd $_{\widetilde{\varphi}}$: 4*M*.
- $\operatorname{HalfDouble}_{\varphi}$ and $\operatorname{HalfDouble}_{\widetilde{\varphi}}$: $2S + 1m_0$.

Algorithm	Pre-computation	Step
Montgomery ladder LtR		$5M + 4S + 1m_0$
Montgomery ladder RtL⁴	$2M + 2S + 1m_0$	4M + 2S
alf ladder, our contribution	$2S + 1m_0$	$4M + 2S + 1m_0$

Table: Ladder costs per bit with a pre-computation but no normalization

⁴ *T. Oliveira*, *J. C. López-Hernández*, *H. Hisil*, *A. Faz-Hernández* and *F. Rodríguez-Henríquez*, How to (Pre-)Compute a Ladder - Improving the Performance of X25519 and X448, 2017

27/35

Halving differential addition on Kummer lines

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differential addition

Half ladder Description Algorithm Curve25519

Finding formulas

Conclusion

Still holds on a theta twisted model $\theta_t(a : b)$ with a few tweaks (equiv. to Montgomery with rational 2-torsion):

- $\varphi: \theta_t(a:b) \rightarrow \theta_t(a':b')$ and $\widetilde{\varphi}: 2S + 1m_0$.
- HalfDiffAdd $_{\varphi}$ and HalfDiffAdd $_{\widetilde{\varphi}}$: $4M + 2m_0 \rightarrow \text{can be adjusted to } 4M$.
- $\operatorname{HalfDouble}_{\varphi}$ and $\operatorname{HalfDouble}_{\widetilde{\varphi}}$: $2S + 1m_0$.

Algorithm	Pre-computation	Step
Montgomery ladder LtR		$\frac{5M+4S+1m_0}{4M+2S}$
Half ladder, our contribution	$2S + 1m_0$	$4M + 2S + 1m_0$

Table: Ladder costs per bit with a pre-computation but no normalization

⁴ *T. Oliveira*, *J. C. López-Hernández*, *H. Hisil*, *A. Faz-Hernández* and *F. Rodríguez-Henríquez*, How to (Pre-)Compute a Ladder - Improving the Performance of X25519 and X448, 2017

27/35

Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder Description Algorithm Curve25519

Finding formulas

Conclusion

Curve25519⁵ does not have rational 2-torsion, but it has a 8-torsion point on \mathbb{F}_p with $p = 2^{255} - 19$:

Curve25519

 $y^2 = x(x^2 + \overline{486662x + 1}) \rightarrow M(A:B)$ Kummer line

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder Description Algorithm Curve25519

Finding formulas

Conclusion

28/35

Curve25519⁵ does not have rational 2-torsion, but it has a 8-torsion point on \mathbb{F}_p with $p = 2^{255} - 19$:

Curve25519

 $y^2 = x(x^2 + \overline{486662x + 1}) \rightarrow M(A:B)$ Kummer line

Because of the 8-torsion, it is 2-isogenous to a Montgomery curve with rational 2-torsion:

 $\psi: M(A:B) \to \theta_t(a:b)$

We can compute $HalfDiffAdd_{\psi}$ formulas.

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder Description Algorithm Curve25519

Finding formulas

Conclusion

Curve25519⁵ does not have rational 2-torsion, but it has a 8-torsion point on \mathbb{F}_p with $p = 2^{255} - 19$:

Curve25519

 $y^2 = x(x^2 + \overline{486662x + 1}) \rightarrow M(A:B)$ Kummer line

Because of the 8-torsion, it is 2-isogenous to a Montgomery curve with rational 2-torsion:

$$\psi: M(A:B) \rightarrow \theta_t(a:b)$$

We can compute HalfDiffAdd $_{\psi}$ formulas. We can then perform our half ladder with the following chain:

$$egin{aligned} \mathcal{M}(\mathcal{A}:\mathcal{B}) & \stackrel{\psi}{\longrightarrow} heta_t(a:b) & \stackrel{\varphi}{\longrightarrow} heta_t(a':b') & \stackrel{\widetilde{arphi}}{\longrightarrow} \cdots & \stackrel{\varphi ext{ or } \widetilde{arphi}}{\longrightarrow} heta_t(?) \ & P_0 & \longmapsto & P_1 & \longmapsto & P_2 & \longmapsto & \cdots & \mapsto & P_\ell \end{aligned}$$

⁵D. J. Bernstein, Curve25519: New Diffie-Hellman Speed Records, 2006

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder

Finding formulas

Conclusion

Finding formulas

Acting on coordinates

Halving differential addition on Kummer lines

Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder

Finding formulas

Conclusion

With two coordinates (X : Z) on E and $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(k)$:

$$M \cdot X := aX + bZ, \qquad M \cdot Z := cX + dZ.$$

Acting on coordinates

Halving differential addition on Kummer lines

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder

Finding formulas

Conclusion

With two coordinates (X : Z) on E and $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(k)$:

$$M \cdot X := aX + bZ, \qquad M \cdot Z := cX + dZ.$$

On $E \times E$, we are interested in products $X_1X_2, X_1Z_2, Z_1X_2, Z_1Z_2$:

 $egin{aligned} & M\otimes M\cdot X_1X_2:=(M\cdot X_1)(M\cdot X_2), & M\otimes M\cdot X_1Z_2:=(M\cdot X_1)(M\cdot Z_2), \ & M\otimes M\cdot Z_1X_2:=(M\cdot Z_1)(M\cdot X_2), & M\otimes M\cdot Z_1Z_2:=(M\cdot Z_1)(M\cdot Z_2). \end{aligned}$

Acting on coordinates

Halving differential addition on Kummer lines

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder

Finding formulas

Conclusion

With two coordinates (X : Z) on E and $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(k)$:

 $M \cdot X := aX + bZ, \qquad M \cdot Z := cX + dZ.$

On $E \times E$, we are interested in products $X_1X_2, X_1Z_2, Z_1X_2, Z_1Z_2$:

 $egin{aligned} & M\otimes M\cdot X_1X_2:=(M\cdot X_1)(M\cdot X_2), & M\otimes M\cdot X_1Z_2:=(M\cdot X_1)(M\cdot Z_2), \ & M\otimes M\cdot Z_1X_2:=(M\cdot Z_1)(M\cdot X_2), & M\otimes M\cdot Z_1Z_2:=(M\cdot Z_1)(M\cdot Z_2). \end{aligned}$

If M is of order 2, we can derive easily invariants with a trace:

 $M \otimes M \cdot (X_1X_2 + M \otimes M \cdot X_1X_2) = X_1X_2 + M \otimes M \cdot X_1X_2.$

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder

Finding formulas

Conclusion

 $\varphi: E \to E'$ a 2-isogeny with kernel $\langle T \rangle$, consider $T' \in E'[2]$.

() Compute the homography $t_T : P \mapsto P + T$ on \mathbb{P}^1 .

 \bigcirc Take an affine lift of t_T : $[t_T]^2 = [id]$ so $t_T^2 = \lambda$ id. Set $\tau_T = (t_T \otimes t_T)/\lambda$.

Methodology

Methodology

Halving differential addition on Kummer lines

Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder

Finding formulas

Conclusion

 $\varphi: E \to E'$ a 2-isogeny with kernel $\langle T \rangle$, consider $T' \in E'[2]$.

- \bigcirc Compute the homography $t_T: P \mapsto \underline{P+T}$ on \mathbb{P}^1 .
- \bigcirc Take an affine lift of t_T : $[t_T]^2 = [id]$ so $t_T^2 = \lambda$ id. Set $\underline{\tau_T} = (t_T \otimes t_T)/\lambda$.
- Sompute the action of au_T on

 $X_{P+Q}X_{P-Q}, X_{P+Q}Z_{P-Q}, Z_{P+Q}X_{P-Q}, Z_{P+Q}Z_{P-Q}.$

 \bigcirc Find invariants for this action u_1, u_2 .

Methodology

Halving differential addition on Kummer lines

Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder

Finding formulas

Conclusion

 $\varphi: E \to E'$ a 2-isogeny with kernel $\langle T \rangle$, consider $T' \in E'[2]$.

- \bigcirc Compute the homography $t_T: P \mapsto P + T$ on \mathbb{P}^1 .
- \bigcirc Take an affine lift of t_T : $[t_T]^2 = [id]$ so $t_T^2 = \lambda$ id. Set $\tau_T = (t_T \otimes t_T)/\lambda$.
- Sompute the action of au_T on

$$X_{P+Q}X_{P-Q}, X_{P+Q}Z_{P-Q}, Z_{P+Q}X_{P-Q}, Z_{P+Q}Z_{P-Q}$$

- (1) Find invariants for this action u_1, u_2 .
- Similarly, compute $t_{T'}$ and $\tau_{T'}$.
- \bigcirc Compute the action of $au_{T'}$ on

 $X_{\varphi(P)}X_{\varphi(Q)}, \ X_{\varphi(P)}Z_{\varphi(Q)}, \ Z_{\varphi(P)}X_{\varphi(Q)}, \ Z_{\varphi(P)}Z_{\varphi(Q)}.$

 \bigcirc Find invariants for this action v_1, v_2 .

Methodology

Halving differential addition on Kummer lines

Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder

Finding formulas

Conclusion

 $\varphi: E \to E'$ a 2-isogeny with kernel $\langle T \rangle$, consider $T' \in E'[2]$.

- **()** Compute the homography $t_T : P \mapsto P + T$ on \mathbb{P}^1 .
- ◎ Take an affine lift of t_T : $[t_T]^2 = [id]$ so $t_T^2 = \lambda$ id. Set $\tau_T = (t_T \otimes t_T)/\lambda$.
- Sompute the action of au_T on

$$X_{P+Q}X_{P-Q}, X_{P+Q}Z_{P-Q}, Z_{P+Q}X_{P-Q}, Z_{P+Q}Z_{P-Q}$$

- (1) Find invariants for this action u_1, u_2 .
- Similarly, compute $t_{T'}$ and $\tau_{T'}$.
- \bigcirc Compute the action of $au_{T'}$ on

 $X_{\varphi(P)}X_{\varphi(Q)}, \ X_{\varphi(P)}Z_{\varphi(Q)}, \ Z_{\varphi(P)}X_{\varphi(Q)}, \ Z_{\varphi(P)}Z_{\varphi(Q)}.$

- \bigcirc Find invariants for this action v_1, v_2 .
- Ose relations between points to find coefficients such that:

 $\begin{cases} u_1(P+\overline{Q}, P-Q) = \alpha_1 v_1(\varphi(P), \varphi(Q)) + \alpha_2 v_2(\varphi(\overline{P}), \varphi(Q)), \\ u_2(P+Q, P-Q) = \beta_1 v_1(\varphi(P), \varphi(Q)) + \beta_2 v_2(\varphi(P), \varphi(Q)). \end{cases}$

An example: finding the translation

lines Nicolas Sarkis

Halving

differential addition on Kummer

Kummer lines and 2-isogenies

Half differentia addition

Half ladder

Finding formulas

Conclusion

We will work on the theta model $\theta(a:b)$ with ramification:

$$\mathcal{O} = (a:b)^*, \quad T_1 = (-a:b), \quad T_2 = (b:a), \quad T_3 = (-b:a).$$

Set $(A^2 : B^2) = (a^2 + b^2 : a^2 - b^2)$, we have the following 2-isogeny:

 $\varphi: (X:Z) \in \theta(a:b) \mapsto (B(X^2+Z^2):A(X^2-Z^2)) \in \theta(A:B)$

An example: finding the translation

lines Nicolas Sarkis

Halving

differential addition on Kummer

Kummer lines and 2-isogenies

Half differentia addition

Half ladder

Finding formulas

Conclusion

We will work on the theta model $\theta(a:b)$ with ramification:

$$\mathcal{O} = (a:b)^*, \quad T_1 = (-a:b), \quad T_2 = (b:a), \quad T_3 = (-b:a).$$

Set $(A^2:B^2)=\overline{(a^2+b^2:a^2-b^2)}$, we have the following 2-isogeny:

$$arphi: (X:Z) \in heta(a:b) \mapsto (B(X^2+Z^2):A(X^2-Z^2)) \in heta(A:B)$$

Given the ramification, the homography t_{T_1} is simply $t_{T_1} : (X : Z) \mapsto (-X : Z)$.

An example: finding the translation

lines Nicolas Sarkis

Halving

differential addition on Kummer

Kummer lines and 2-isogenies

Half differentia addition

Half ladder

Finding formulas

Conclusion

We will work on the theta model $\theta(a:b)$ with ramification:

$$\mathcal{O} = (a:b)^*, \quad T_1 = (-a:b), \quad T_2 = (b:a), \quad T_3 = (-b:a).$$

Set $(A^2 : B^2) = \overline{(a^2 + b^2 : a^2 - b^2)}$, we have the following 2-isogeny:

$$arphi: (X:Z) \in heta(a:b) \mapsto (B(X^2+Z^2):A(X^2-Z^2)) \in heta(A:B)$$

Given the ramification, the homography t_{T_1} is simply $t_{T_1} : (X : Z) \mapsto (-X : Z)$. The affine lift is also given by $(X, Z) \mapsto (-X, Z)$, which is already involutive.

An example: computing invariants

- Theta model $\theta(a:b)$, with $(A^2:B^2) = (a^2 + b^2:a^2 b^2)$: $\mathcal{O} = (a:b)^*, \quad T_1 = (-a:b), \quad T_2 = (b:a), \quad T_3 = (-b:a).$
- 2-isogeny with kernel $\langle T_1 \rangle$: $\varphi : (X : Z) \mapsto (B(X^2 + Z^2) : A(X^2 Z^2)).$
- Translation $t_{\mathcal{T}_1}: (X, Z) \mapsto (-X, Z)$, $\tau_{\mathcal{T}_1}:= t_{\mathcal{T}_1} \otimes t_{\mathcal{T}_1}$ acts on

 $\overline{X_1X_2, X_1Z_2, Z_1X_2, Z_1Z_2}$.

• $\tau_{T_1} \cdot X_1 X_2 = (-X_1)(-X_2) = X_1 X_2$

differential addition on Kummer lines

Halving

Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder

Finding formulas

Conclusion

An example: computing invariants

- Theta model $\theta(a:b)$, with $(A^2:B^2) = (a^2 + b^2:a^2 b^2)$: $\mathcal{O} = (a:b)^*, \quad T_1 = (-a:b), \quad T_2 = (b:a), \quad T_3 = (-b:a).$
- 2-isogeny with kernel $\langle T_1 \rangle$: $\varphi : (X : Z) \mapsto (B(X^2 + Z^2) : A(X^2 Z^2)).$
- Translation $t_{\mathcal{T}_1}: (X, Z) \mapsto (-X, Z)$, $\tau_{\mathcal{T}_1}:= t_{\mathcal{T}_1} \otimes t_{\mathcal{T}_1}$ acts on

 $X_1X_2, X_1Z_2, Z_1X_2, Z_1Z_2.$

• $\tau_{T_1} \cdot X_1 X_2 = (-X_1)(-X_2) = X_1 X_2$ • $\tau_{T_1} \cdot Z_1 X_2 = -Z_1 X_2$ • $\tau_{T_1} \cdot Z_1 Z_2 = Z_1 Z_2$

differential addition on Kummer lines Nicolas

Sarkis

Halving

Kummer lines and

Half differentia addition

Half ladder

Finding formulas

Conclusion

An example: computing invariants

- Theta model $\theta(a:b)$, with $(A^2:B^2) = (a^2 + b^2:a^2 b^2)$: $\mathcal{O} = (a:b)^*, \quad T_1 = (-a:b), \quad T_2 = (b:a), \quad T_3 = (-b:a).$
- 2-isogeny with kernel $\langle T_1 \rangle$: $\varphi : (X : Z) \mapsto (B(X^2 + Z^2) : A(X^2 Z^2)).$
- Translation $t_{\mathcal{T}_1}: (X, Z) \mapsto (-X, Z)$, $\tau_{\mathcal{T}_1}:= t_{\mathcal{T}_1} \otimes t_{\mathcal{T}_1}$ acts on

 $\overline{X_1X_2, X_1Z_2, Z_1X_2, Z_1Z_2}$.

• $\tau_{T_1} \cdot X_1 X_2 = (-X_1)(-X_2) = X_1 X_2$ • $\tau_{T_1} \cdot Z_1 X_2 = -Z_1 X_2$ • $\tau_{T_1} \cdot Z_1 Z_2 = -Z_1 Z_2$

Two invariants

 X_1X_2, Z_1Z_2

Finding formulas

Halving

differential addition on Kummer lines

> Nicolas Sarkis

An example: relations

Halving differential addition on Kummer lines

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder

Finding formulas

Conclusion

 $u_1(P+Q, P-Q) = X_{P+Q}X_{P-Q}, \quad u_2(P+Q, P-Q) = Z_{P+Q}Z_{P-Q}.$

An example: relations

Halving differential addition on Kummer lines

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder

Finding formulas

Conclusion

 $u_1(P+Q, P-Q) = X_{P+Q}X_{P-Q}, \quad u_2(P+Q, P-Q) = Z_{P+Q}Z_{P-Q}.$ Similarly:

$$v_1(\varphi(P),\varphi(Q)) = X_{\varphi(P)}X_{\varphi(Q)}, \quad v_2(\varphi(P),\varphi(Q)) = Z_{\varphi(P)}Z_{\varphi(Q)}.$$

The theory gives the existence of coefficients $\alpha_1, \alpha_2, \beta_1, \beta_2 \in k$ such that:

$$\begin{cases} X_{P+Q}X_{P-Q} = \alpha_1 X_{\varphi(P)} X_{\varphi(Q)} + \alpha_2 Z_{\varphi(P)} Z_{\varphi(Q)} \\ Z_{P+Q}Z_{P-Q} = \beta_1 X_{\varphi(P)} X_{\varphi(Q)} + \beta_2 Z_{\varphi(P)} Z_{\varphi(Q)}. \end{cases}$$

An example: relations

Halving differential addition on Kummer lines

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder

Finding formulas

Conclusion

 $u_1(P+Q, P-Q) = X_{P+Q}X_{P-Q}, \quad u_2(P+Q, P-Q) = Z_{P+Q}Z_{P-Q}.$ Similarly:

 $v_1(\varphi(P),\varphi(Q)) = X_{\varphi(P)}X_{\varphi(Q)}, \quad v_2(\varphi(P),\varphi(Q)) = Z_{\varphi(P)}Z_{\varphi(Q)}.$

The theory gives the existence of coefficients $\alpha_1, \alpha_2, \beta_1, \beta_2 \in k$ such that:

$$\begin{cases} X_{P+Q}X_{P-Q} = \alpha_1 X_{\varphi(P)} X_{\varphi(Q)} + \alpha_2 Z_{\varphi(P)} Z_{\varphi(Q)} \\ Z_{P+Q}Z_{P-Q} = \beta_1 X_{\varphi(P)} X_{\varphi(Q)} + \beta_2 Z_{\varphi(P)} Z_{\varphi(Q)}. \end{cases}$$

For instance, with P = Q = O:

- P + Q = P Q = O = (a : b),
- $\varphi(P) = \varphi(Q) = \mathcal{O}' = (A : B).$

 $\begin{cases} \mathbf{a}^2 = \alpha_1 \mathbf{A}^2 + \alpha_2 \mathbf{B}^2, \\ \mathbf{b}^2 = \beta_1 \mathbf{A}^2 + \beta_2 \mathbf{B}^2. \end{cases}$
An example: relations

Halving differential addition on Kummer lines

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder

Finding formulas

Conclusion

34/35

 $u_1(P+Q, P-Q) = X_{P+Q}X_{P-Q}, \quad u_2(P+Q, P-Q) = Z_{P+Q}Z_{P-Q}.$ Similarly:

 $v_1(\varphi(P),\varphi(Q)) = X_{\varphi(P)}X_{\varphi(Q)}, \quad v_2(\varphi(P),\varphi(Q)) = Z_{\varphi(P)}Z_{\varphi(Q)}.$

The theory gives the existence of coefficients $\alpha_1, \alpha_2, \beta_1, \beta_2 \in k$ such that:

$$\begin{cases} X_{P+Q}X_{P-Q} = \alpha_1 X_{\varphi(P)} X_{\varphi(Q)} + \alpha_2 Z_{\varphi(P)} Z_{\varphi(Q)}, \\ Z_{P+Q}Z_{P-Q} = \beta_1 X_{\varphi(P)} X_{\varphi(Q)} + \beta_2 Z_{\varphi(P)} Z_{\varphi(Q)}. \end{cases}$$

For instance, with P = Q = O:

- P + Q = P Q = O = (a : b),
- $\varphi(P) = \varphi(Q) = \mathcal{O}' = (A : B).$

 $\left\{egin{array}{l} \mathbf{a}^2=lpha_1\mathbf{A}^2+lpha_2\mathbf{B}^2,\ b^2=eta_1\mathbf{A}^2+eta_2\mathbf{B}^2. \end{array}
ight.$

By using various combinations of (P, Q), we end up finding $\alpha_1 = \alpha_2 = \beta_1 = -\beta_2$.

Future work and research direction

Halving differential addition on Kummer lines

> Nicolas Sarkis

Kummer lines and 2-isogenies

Half differentia addition

Half ladder

Finding formulas

Conclusion

What's new?

- Isogeny in dimension 2 to gain new formulas in dimension 1: HalfDiffAdd.
- Half ladder: enhanced pre-computation cost, close to Montgomery ladder in best case scenario.

Work in progress

Generalizing half ladder to dimension 2 to improve arithmetic.

Figure: eprint 2024/1582

Code available here: https://gitlab.inria.fr/nsarkis/half-diff-add.