Computing the trace of a supersingular endomorphism

or, Beyond the SEA (algorithm)

Travis Morrison

Virginia Tech

joint work with: Lorenz Panny, Jana Sotáková, Michael Wills

• Let k be a field. An elliptic curve over k is given by an equation

 $E: y^2 = x^3 + Ax + B$,

where $A,B\in k$ and $4A^3+27B^2\neq 0.$

 \bullet The rational points of E , denoted $E(k)$, form a group under the group law

'three colinear points sum to zero, and zero is the point at infinity.'

Isogenies and endomorphisms of elliptic curves

Let E, E' be elliptic curves over k .

Definition

An *isogeny* $\phi\colon E\to E'$ is a rational map that induces a group homomorphism $E(\overline{k}) \to E'(\overline{k})$. An endomorphism of E is an isogeny $\phi : E \to E$.

 \bullet If n is an integer, then the multiplication-by-n map

$$
[n]:P\mapsto nP
$$

is an endomorphism of E

If $k = \mathbb{F}_q$, then the Frobenius endomorphism of E is an endomorphism:

$$
\pi_E : E \to E
$$

$$
(x, y) \mapsto (x^q, y^q).
$$

Degrees, duals, and traces

Definition

- The $\operatorname{\sf degree}$ of an isogeny $\phi\colon E\to E'$ is its degree as a rational map. When ϕ is separable, deg $\phi = \#$ ker ϕ .
- Every isogeny $\phi\colon E\to E'$ has a unique **dual isogeny** $\widehat{\phi}\colon E'\to E$ satisfying $\phi \circ \phi = [\text{deg }\phi].$
- The dual map is an involution on End(E): $\widehat{\alpha + \beta} = \widehat{\alpha} + \widehat{\beta}$, $\widehat{\alpha\beta} = \widehat{\beta}\widehat{\alpha}$.
- The trace of an endomorphism α is the integer t such that

$$
\alpha + \widehat{\alpha} = [t].
$$

Every endomorphism satisfies its characteristic polynomial

$$
x^2 - (\operatorname{tr} \alpha)x + \deg \alpha.
$$

E is supersingular if $\text{End}^0(E) = \text{End}(E) \otimes \mathbb{Q}$ is a quaternion algebra.

Examples, again

• Let $[n]: E \to E$ be the multiplication-by-n map. We have

$$
\deg[n] = n^2, \quad \text{tr}[n] = 2n.
$$

Examples, again

• Let $[n]: E \rightarrow E$ be the multiplication-by-n map. We have

$$
\deg[n] = n^2, \quad \text{tr}[n] = 2n.
$$

• Let π_F be the Frobenius endomorphism of E/\mathbb{F}_q . Then

$$
\deg \pi_E = q, \quad \text{tr } \pi_E = q + 1 - \#E(\mathbb{F}_q)
$$

Examples, again

• Let $[n]: E \rightarrow E$ be the multiplication-by-n map. We have

$$
\deg[n] = n^2, \quad \text{tr}[n] = 2n.
$$

• Let π_F be the Frobenius endomorphism of E/\mathbb{F}_q . Then

$$
\deg \pi_E = q, \quad \text{tr } \pi_E = q + 1 - \#E(\mathbb{F}_q)
$$

Hasse bound: $|\operatorname{tr} \pi_E| \leq 2\sqrt{q}$

• Let $[n]: E \rightarrow E$ be the multiplication-by-n map. We have

$$
\deg[n] = n^2, \quad \text{tr}[n] = 2n.
$$

• Let π_F be the Frobenius endomorphism of E/\mathbb{F}_q . Then

$$
\deg \pi_E = q, \quad \text{tr } \pi_E = q + 1 - \#E(\mathbb{F}_q)
$$

- Hasse bound: $|\operatorname{tr} \pi_E| \leq 2\sqrt{q}$
- More generally, if $\alpha \in \text{End}(E)$, then

$$
\operatorname{\sf disc} \alpha = (\operatorname{\sf tr} \alpha)^2 - 4 \operatorname{\sf deg} \alpha \leq 0 \implies |\operatorname{\sf tr} \alpha| \leq 2 \sqrt{\operatorname{\sf deg} \alpha}.
$$

Problem: computing traces of endomorphisms

Given an elliptic curve E/\mathbb{F}_q and $\alpha \in \text{End}(E)$, compute $\text{Tr } \alpha := \alpha + \widehat{\alpha} \in \mathbb{Z}$.

Problem: computing traces of endomorphisms

Given an elliptic curve E/\mathbb{F}_q and $\alpha \in \text{End}(E)$, compute $\text{Tr } \alpha := \alpha + \widehat{\alpha} \in \mathbb{Z}$.

Why? Ordinary case

Point counting! Also, tr π_F reveals the structure of $\mathbb{Z}[\pi_F]$ as an algebra.

Problem: computing traces of endomorphisms

Given an elliptic curve E/\mathbb{F}_q and $\alpha \in \text{End}(E)$, compute $\text{Tr } \alpha := \alpha + \widehat{\alpha} \in \mathbb{Z}$.

Why? Ordinary case

Point counting! Also, tr π_F reveals the structure of $\mathbb{Z}[\pi_F]$ as an algebra.

Why? Supersingular case

Four endomorphisms $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ span $\text{End}(E) \iff \det(\text{tr}(\alpha_i \widehat{\alpha}_j))_{i,j} = p^2$.

Moreover, computing traces yields a multiplication table for the basis $\alpha_1, \alpha_2, \alpha_3, \alpha_4$.

Schoof's algorithm

If we know

$$
t_{\ell} := \text{tr}\,\alpha \pmod{\ell}
$$

for primes ℓ such that $\prod_{\ell} \ell > 4$ √ $\deg\alpha$ then we can recover tr α with the CRT.

Schoof's algorithm

If we know

 $t_{\ell} := \text{tr} \, \alpha \pmod{\ell}$

for primes ℓ such that $\prod_{\ell} \ell > 4$ √ $\deg\alpha$ then we can recover tr α with the CRT.

Algorithm 2: Schoof's algorithm

```
Input: Ordinary E/\mathbb{F}_qOutput: tr(\pi_E)Set \ell = 2 and M = 1:
\sec \theta = 2 \tan m =<br>while M \leq 4\sqrt{q} do
     Compute t_\ell = \text{tr } \pi_F \text{ mod } \ell;Update M = M \cdot \ell;
    Update \ell with the next prime after \ell;
Solve t \equiv t_\ell \pmod{\ell} for t \in [-2\sqrt{q}, 2\sqrt{q}] with CRT;
return t
```
Computing $t_{\ell} = \text{tr } \alpha \text{ mod } \ell$

Suppose $(\ell, q) = 1$. An endomorphism $\alpha \in \mathsf{End}(\overline E)$ acts on $E[\ell] \cong (\mathbb Z / \ell \mathbb Z)^2$ as a "matrix"

$$
\alpha_{\ell} \coloneqq \alpha|_{E[\ell]} \in \mathsf{End}(E[\ell]) \cong M_2(\mathbb{Z}/\ell\mathbb{Z})
$$

Computing $t_{\ell} = \text{tr } \alpha \text{ mod } \ell$

Suppose $(\ell, q) = 1$. An endomorphism $\alpha \in \mathsf{End}(\overline E)$ acts on $E[\ell] \cong (\mathbb Z / \ell \mathbb Z)^2$ as a "matrix"

$$
\alpha_{\ell} \coloneqq \alpha|_{E[\ell]} \in \mathsf{End}(E[\ell]) \cong M_2(\mathbb{Z}/\ell\mathbb{Z})
$$

Schoof's method for computing t_{ℓ}

Compute t_ℓ by computing the characteristic polynomial of $\alpha_\ell.$ We have

$$
\operatorname{tr} \alpha \equiv \operatorname{Tr} (\alpha_\ell) \pmod{\ell}.
$$

Rather than working with points in $E[\ell]$: find $0 \leq c < \ell$ such that

$$
\alpha_{\ell}^2 + [\deg \alpha]_{\ell} = c \alpha_{\ell}
$$

by computing coordinate functions modulo the **division polynomial** ψ_{ℓ} , the monic polynomial vanishing precisely $x(P)$ for $P \neq 0 \in E[\ell]$

Let E/\mathbb{F}_p be given by $y^2 = f(x)$ and $\alpha = \pi_E$ and $n = \lceil \log p \rceil$.

The cost of computing t_ℓ is dominated by the cost of computing

$$
\pi_{\ell} = (x^p \bmod \psi_{\ell}(x), (f^{(p-1)/2} \bmod \psi_{\ell}(x))y)
$$

Since deg $\psi_{\ell}= (\ell^2-1)/2$, can compute tr $\pi_{E} \pmod{\ell}$ in $O(n^4 \log n)$ bit operations (fast euclidean division, Kronecker substitution, fast euclidean algorithm, and $M(n) = O(n \log n)$ (Harvey–van der Hoeven)).

By the Prime Number Theorem: require t_ℓ for $O(n/\!\log n)$ primes ℓ , resulting in a $O(n^5)$ algorithm for computing tr π_E .

Let E : $y^2=f(x)$ be defined over $\mathbb{F}_q.$ Every separable isogeny $\phi\colon E\to E'$ has a standard form $¹$ </sup>

$$
\phi(x,y) = \left(\frac{u(x)}{v(x)}, c\left(\frac{u(x)}{v(x)}\right)'y\right), \text{ where } v(x) = \prod_{0 \neq P \in \ker \phi} (x - x(P)).
$$

We have deg $u = \text{deg } v + 1 = \text{deg } \psi$.

 ϕ is \mathbb{F}_q -rational $\iff c \in \mathbb{F}_q$ and $u/v \in \mathbb{F}_q(x) \iff c \in \mathbb{F}_q$, ker ϕ is Gal($\overline{\mathbb{F}_q}$)-stable.

Write $v=\gcd(f,v)g^2$. Then $h(x)\coloneqq\gcd(f,v)g$ is the **kernel polynomial** of ϕ . When ϕ is normalized (i.e. $c = 1$), ϕ is defined over \mathbb{F}_q if and only if $h(x) \in \mathbb{F}_q[x]$.

¹Bostan–Morain–Salvy–Schost, 2008

For 50% of primes ℓ (asymptotically), ℓ is an **Elkies' primes** for E, meaning E admits a \mathbb{F}_{q} -rational ℓ -isogeny ϕ . Note ϕ is rational \iff π_F fixes ker $\phi \subset E[\ell]$. In this case,

 $\pi_E\big|_{\ker \phi} \in \mathsf{End}(\ker \phi) \cong \mathbb{Z}/\ell\mathbb{Z}$

For 50% of primes ℓ (asymptotically), ℓ is an **Elkies' primes** for E, meaning E admits a \mathbb{F}_{q} -rational ℓ -isogeny ϕ . Note ϕ is rational \iff π_F fixes ker $\phi \subset E[\ell]$. In this case,

$$
\pi_E\big|_{\ker \phi} \in \mathsf{End}(\ker \phi) \cong \mathbb{Z}/\ell \mathbb{Z}
$$

By working modulo the **kernel polynomial** $h(x)$ of ϕ , find $0 \leq c \leq \ell$ such that

$$
\alpha^2|_{\ker \phi} + [\deg \alpha]|_{\ker \phi} = c(\alpha|_{\ker \phi})
$$

Then $t_\ell = c$. This gives a speedup of a factor of $\ell = O(\log p)$ in computing t_ℓ , because

$$
\deg \psi_{\ell} = (\ell^2 - 1)/2, \quad \deg h(x) = (\ell - 1)/2.
$$

Assuming heuristics "beyond" GRH, the SEA algorithm computes tr π_F in $O(n^4(\log n)^2)$ bit operations $(n = \log p)$.

Representing endomorphisms

Now assume $\alpha \in \text{End}(E)$ is represented by a sequence of L many \mathbb{F}_q -rational isogenies ϕ_i of degree at most d , each ϕ_i in standard form:

$$
\alpha = \phi_L \circ \cdots \circ \phi_1.
$$

Figure: G(313, 2), The 2-isogeny graph in characteristic 313

Schoof's algorithm for supersingular endomorphisms

Assume $\alpha=\phi_L\circ\dots\circ\phi_1$ is an endomorphism of E/\mathbb{F}_q , each $\phi_i=(u_i/v_i,ys_i/t_i)$ in standard form, ℓ an odd prime. Compute $t_\ell \coloneqq \mathsf{tr} \, \alpha \bmod \ell$ by finding $0 \leq \mathsf{c} < \ell$ such that

$$
\alpha_{\ell}^2 + [\deg \alpha]_{\ell} = c \alpha_{\ell}.
$$

To compute $\alpha_\ell = \alpha\big|_{\pmb{E}[\ell]}$: let $(\pmb{a}(x), b(x)y) = (x,y)$ and then for $i=1,\ldots,L$ update

$$
(a, by) = \left(\frac{u_i(a)}{v_i(a)}, \frac{s_i(a)}{t_i(a)}by\right)
$$

where arithmetic takes place in $\mathbb{F}_q[x]/(\psi_\ell(x))$.

Letting $n = \lceil \log q \rceil$ and assuming $d = O(1)$ and $L = O(n)$, we have a $O(n^4 \log n)$ algorithm for computing t_ℓ and a $O(n^5)$ algorithm for tr $\alpha.$

Every prime is an Elkies prime for a supersingular elliptic curve

Proposition

Suppose E/\mathbb{F}_q is supersingular, where $q = p^a$ is a prime power, and let $\phi \colon E \to E'$ be an isogeny. If $j(E) \neq 0, 1728$,

$$
\ker \phi \text{ is defined over } \begin{cases} \mathbb{F}_q & : a \text{ is even} \\ \mathbb{F}_{q^2} & : a \text{ is odd.} \end{cases}
$$

Every prime is an Elkies prime for a supersingular elliptic curve

Proposition

Suppose E/\mathbb{F}_q is supersingular, where $q = p^a$ is a prime power, and let $\phi \colon E \to E'$ be an isogeny. If $i(E) \neq 0, 1728$,

$$
\ker \phi \text{ is defined over } \begin{cases} \mathbb{F}_q & : a \text{ is even} \\ \mathbb{F}_{q^2} & : a \text{ is odd.} \end{cases}
$$

Proof: Suppose $q = p^{2a}$. Then (Waterhouse 69) tr $\pi_E = \pm 2p^a$ so $\pi_E = [\pm p^a]$, so

$$
\mathsf{End}_{\overline{\mathbb{F}_q}}(E)=\mathsf{End}_{\mathbb{F}_q}(E).
$$

If ϕ : $E \to E'$ is an isogeny, then $I = \text{Hom}(E', E) \phi$ is a left ideal of $\text{End}(E)$, and

$$
\ker \phi = \bigcap_{\alpha \in I} \ker \alpha.
$$

All ker α are \mathbb{F}_q -rational, so ker ϕ is \mathbb{F}_q -rational.

Suppose E/\mathbb{F}_q is supersingular. Then $j(E) \in \mathbb{F}_{p^2}$.

- Assume E itself is defined over \mathbb{F}_{p^2} , and $j(E) \neq 0, 1728$.
- In this case, $\pi_F = [\pm p]$.

Suppose E/\mathbb{F}_q is supersingular. Then $j(E) \in \mathbb{F}_{p^2}$.

- Assume E itself is defined over \mathbb{F}_{p^2} , and $j(E) \neq 0, 1728$.
- In this case, $\pi_F = [\pm p]$.

Then E/\mathbb{F}_{p^2} has all of its ℓ -isogenies defined over $\mathbb{F}_{p^2}.$

- \bullet Every prime is an Elkies prime for supersingular $E!$
- But $\alpha \in \text{End}(E)$ need not fix ker ϕ
- Compute tr α mod ℓ by finding c such that the characteristic equation

$$
\alpha^2|_{\ker \phi} + [\deg \alpha]|_{\ker \phi} = c(\alpha|_{\ker \phi})
$$

holds in Hom(ker ϕ , $E[\ell]$)

Assume

- $\alpha = \phi_{\textsf{L}} \circ \cdots \circ \phi_{\textsf{1}}$ is an endomorphism of $E/\mathbb{F}_{\bm p^2}$,
- each $\phi_i = (u_i/v_i, ys_i/t_i)$ in standard form,
- ℓ an odd prime, and $h(x) \in \mathbb{F}_q[x]$ is the kernel polynomial of an ℓ -isogeny ϕ .

Goal: Compute $0 \leq c \leq \ell$ such that

$$
\alpha^2|_{\ker \phi} + [\deg \alpha]|_{\ker \phi} = c(\alpha|_{\ker \phi}).
$$

Assume

- $\alpha = \phi_{\textsf{L}} \circ \cdots \circ \phi_{\textsf{1}}$ is an endomorphism of $E/\mathbb{F}_{\bm p^2}$,
- each $\phi_i = (u_i/v_i, ys_i/t_i)$ in standard form,
- ℓ an odd prime, and $h(x) \in \mathbb{F}_q[x]$ is the kernel polynomial of an ℓ -isogeny ϕ . Goal: Compute $0 \leq c \leq \ell$ such that

$$
\alpha^2|_{\ker \phi} + [\deg \alpha]|_{\ker \phi} = c(\alpha|_{\ker \phi}).
$$

To compute $\alpha\big|_{\mathsf{ker}\,\phi}$: let $(\mathsf{a}(x),\mathsf{b}(x)\mathsf{y}) = (x,\mathsf{y})$ and then for $i=1,\ldots,L$ update

$$
(a, by) = \left(\frac{u_i(a)}{v_i(a)}, \frac{s_i(a)}{t_i(a)}by\right)
$$

where arithmetic takes place in $\mathbb{F}_q[x]/(h(x))$.

Theorem (M.–Panny–Sotáková–Wills)

Let $\alpha = \phi_1 \circ \cdots \circ \phi_1$ be an endomorphism of a supersingular elliptic curve E defined over \mathbb{F}_q , let $n = \lceil \log p \rceil$, and let $\ell = O(n)$ be an odd prime. Let $d = \max\{\deg \phi_i\}$. Then $t_\ell := \text{tr }\alpha \pmod{\ell}$ can be computed in an expected $O(n^3(\log n)^3 + dLn^2 \log n)$ bit operations.

The time complexity simplifies to $O(n^3(\log n)^3)$ when $d = O(1)$ and $L = O(n)$.

- Work projectively, so we only need $O(1)$ inversions in $\mathbb{F}_q[x]/(h(x))$
- Complexity estimate uses fast euclidean division, Kronecker substitution, $M(n) = O(n \log n)$ (HvdH2019).
- Where's GRH?? Kunzweiler-Robert (ANTS 2024) give an unconditional algorithm to compute $\Phi_{\ell}(X,Y)$ in time $O(\ell^3 (\log \ell)^3)!$

Theorem (M.–Panny–Sotáková–Wills)

Let $\alpha = \phi_1 \circ \cdots \circ \phi_1$ be a separable endomorphism of a supersingular elliptic curve E defined over \mathbb{F}_q with $j(E) \neq 0, 1728$. Let $n = \lceil \log q \rceil$. Assume that $L \log d = O(n)$. Then tr α can be computed with $O(n^4(\log n)^2 + dLn^3)$ bit operations. When $d = O(1)$ and $L = O(n)$, the complexity is $O(n^4 (\log n)^2)$.

Since we assume E/\mathbb{F}_{p^2} is supersingular and $j(E)\neq 0,1728$, we know $\#E(\mathbb{F}_{\rho^2}) = (\rho \pm 1)^2$. To compute $t_\ell = \text{tr} \, \alpha$ mod ℓ for $\ell \vert \# E(\mathbb{F}_{\rho^2})$:

① find
$$
P \neq 0 \in E[\ell](\mathbb{F}_{p^2})
$$

- **2** Compute $(\alpha + \widehat{\alpha})(P)$
- \bullet solve a small discrete log: t_ℓ is the solution to

$$
cP=(\alpha+\widehat{\alpha})(P).
$$

Let ω_E be an invariant differential for E . Then $\alpha^*\omega_E = c_\alpha\omega_E$ for some $c_\alpha\in \mathbb{F}_{p^2}$, and the map

$$
\begin{aligned} \mathsf{End}(E) \to \mathbb{F}_{p^2} \\ \alpha \mapsto c_{\alpha} \end{aligned}
$$

is a homomorphism of rings, and (when E is supersingular)

$$
\text{tr}\,\alpha\equiv\text{Tr}_{\mathbb{F}_{p^2}/\mathbb{F}_p}\,c_\alpha\pmod{p}.
$$

Let ω_E be an invariant differential for E . Then $\alpha^*\omega_E = c_\alpha\omega_E$ for some $c_\alpha\in \mathbb{F}_{p^2}$, and the map

$$
\begin{aligned} \mathsf{End}(E) \to \mathbb{F}_{p^2} \\ \alpha \mapsto c_{\alpha} \end{aligned}
$$

is a homomorphism of rings, and (when E is supersingular)

$$
\text{tr}\,\alpha\equiv\text{Tr}_{\mathbb{F}_{p^2}/\mathbb{F}_p}\,c_\alpha\pmod{p}.
$$

We can "read off" c_0 from α : for separable α , we have

$$
\alpha(x,y) = \left(\frac{N(x)}{D(x)}, c_{\alpha} \cdot \left(\frac{N(x)}{D(x)}\right)'y\right)
$$

Implemented in sagemath. To demonstrate the asymptotic speedups offered:

 \bigcirc For each $b \in [16, \ldots, 32]$, repeat 5 times:

- \bullet Compute random *b*-bit prime p , pseudorandom supersingular E/\mathbb{F}_{p^2} , and endomorphism $\alpha \in \mathsf{End}(E)$ of degree $\approx \rho^4$
- **2** Compute tr α using Schoof (i.e. get t_ℓ with division polynomials), SEA (i.e get t_ℓ with kernel polynomials), SEA + "mod p ", SEA + "mod p " + "points"

Thank you! Questions?