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Elliptic curves

Let k be a field. An elliptic curve over
k is given by an equation

E : y2 = x3 + Ax + B,

where A,B ∈ k and 4A3 + 27B2 6= 0.

The rational points of E , denoted
E (k), form a group under the group
law
‘three colinear points sum to zero,
and zero is the point at infinity.’



Isogenies and endomorphisms of elliptic curves

Let E ,E ′ be elliptic curves over k .

Definition

An isogeny φ : E → E ′ is a rational map that induces a group homomorphism
E (k)→ E ′(k). An endomorphism of E is an isogeny φ : E → E .

If n is an integer, then the multiplication-by-n map

[n] : P 7→ nP

is an endomorphism of E

If k = Fq, then the Frobenius endomorphism of E is an endomorphism:

πE : E → E

(x , y) 7→ (xq, yq).



Degrees, duals, and traces

Definition

The degree of an isogeny φ : E → E ′ is its degree as a rational map. When φ is
separable, deg φ = # ker φ.

Every isogeny φ : E → E ′ has a unique dual isogeny φ̂ : E ′ → E satisfying
φ̂ ◦ φ = [deg φ].

The dual map is an involution on End(E ): α̂ + β = α̂ + β̂, α̂β = β̂α̂.

The trace of an endomorphism α is the integer t such that

α + α̂ = [t].

Every endomorphism satisfies its characteristic polynomial

x2 − (trα)x + degα.

E is supersingular if End0(E ) = End(E )⊗Q is a quaternion algebra.



A cheatsheet

Endomorphisms Imaginary quadratic integers

Notation α a + b
√
−D

Involution The dual map complex conjugation

Norm degα = α̂ ◦ α |a + b
√
−D|2 = a2 + Db2

Trace trα = α + α̂ 2a



Examples, again

Let [n] : E → E be the multiplication-by-n map. We have

deg[n] = n2, tr[n] = 2n.

Let πE be the Frobenius endomorphism of E/Fq. Then

deg πE = q, tr πE = q + 1−#E (Fq)

Hasse bound: | tr πE | ≤ 2
√
q

More generally, if α ∈ End(E ), then

discα = (trα)2 − 4 degα ≤ 0 =⇒ | trα| ≤ 2
√

degα.
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Computing the trace of an endomorphism

Problem: computing traces of endomorphisms

Given an elliptic curve E/Fq and α ∈ End(E ), compute Trα := α + α̂ ∈ Z.

Why? Ordinary case

Point counting! Also, tr πE reveals the structure of Z[πE ] as an algebra.

Why? Supersingular case

Four endomorphisms α1, α2, α3, α4 span End(E ) ⇐⇒ det(tr(αi α̂j))i ,j = p2.

Moreover, computing traces yields a multiplication table for the basis α1, α2, α3, α4.
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Schoof’s algorithm

If we know
t` := trα (mod `)

for primes ` such that
∏
` ` > 4

√
degα then we can recover trα with the CRT.

Algorithm 1: Schoof’s algorithm

Input: Ordinary E/Fq

Output: tr(πE )
Set ` = 2 and M = 1;
while M ≤ 4

√
q do

Compute t` = tr πE mod `;
Update M = M · `;
Update ` with the next prime after `;

Solve t ≡ t` (mod `) for t ∈ [−2
√
q, 2
√
q] with CRT;

return t
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Computing t` = trα mod `

Suppose (`, q) = 1. An endomorphism α ∈ End(E ) acts on E [`] ∼= (Z/`Z)2 as a
“matrix”

α` := α
∣∣
E [`]
∈ End(E [`]) ∼= M2(Z/`Z)

Schoof’s method for computing t`

Compute t` by computing the characteristic polynomial of α`. We have

trα ≡ Tr (α`) (mod `).

Rather than working with points in E [`]: find 0 ≤ c < ` such that

α2
` + [degα]` = cα`

by computing coordinate functions modulo the division polynomial ψ`, the monic
polynomial vanishing precisely x(P) for P 6= 0 ∈ E [`]
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Computing tr πE

Let E/Fp be given by y2 = f (x) and α = πE and n = dlog pe.

The cost of computing t` is dominated by the cost of computing

π` = (xp mod ψ`(x), (f (p−1)/2 mod ψ`(x))y)

Since degψ` = (`2 − 1)/2, can compute tr πE (mod `) in O(n4 log n) bit operations
(fast euclidean division, Kronecker substitution, fast euclidean algorithm, and
M(n) = O(n log n) (Harvey–van der Hoeven)).

By the Prime Number Theorem: require t` for O(n/log n) primes `, resulting in a
O(n5) algorithm for computing tr πE .



Rational isogenies

Let E : y2 = f (x) be defined over Fq. Every separable isogeny φ : E → E ′ has a
standard form1

φ(x , y) =

(
u(x)

v(x)
, c

(
u(x)

v(x)

)′
y

)
, where v(x) =

∏
06=P∈ker φ

(x − x(P)).

We have deg u = deg v + 1 = degψ.

φ is Fq-rational ⇐⇒ c ∈ Fq and u/v ∈ Fq(x) ⇐⇒ c ∈ Fq, ker φ is Gal(Fq)-stable.

Write v = gcd(f , v)g2. Then h(x) := gcd(f , v)g is the kernel polynomial of φ. When
φ is normalized (i.e. c = 1), φ is defined over Fq if and only if h(x) ∈ Fq[x ].

1Bostan–Morain–Salvy–Schost, 2008



Elkies’ method for computing t` = tr πE mod `

For 50% of primes ` (asymptotically), ` is an Elkies’ primes for E , meaning E admits
a Fq-rational `-isogeny φ. Note φ is rational ⇐⇒ πE fixes ker φ ⊂ E [`]. In this case,

πE
∣∣
ker φ
∈ End(ker φ) ∼= Z/`Z

By working modulo the kernel polynomial h(x) of φ, find 0 ≤ c < ` such that

α2
∣∣
ker φ

+ [degα]
∣∣
ker φ

= c(α
∣∣
ker φ

)

Then t` = c . This gives a speedup of a factor of ` = O(log p) in computing t`, because

degψ` = (`2 − 1)/2, deg h(x) = (`− 1)/2.

Assuming heuristics “beyond” GRH, the SEA algorithm computes tr πE in
O(n4(log n)2) bit operations (n = log p).
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Representing endomorphisms

Now assume α ∈ End(E ) is represented by a sequence of L many Fq-rational isogenies
φi of degree at most d , each φi in standard form:

α = φL ◦ · · · ◦ φ1.

Figure: G (313, 2), The 2-isogeny graph in characteristic 313



Schoof’s algorithm for supersingular endomorphisms

Assume α = φL ◦ · · · ◦ φ1 is an endomorphism of E/Fq, each φi = (ui/vi , ysi/ti ) in
standard form, ` an odd prime. Compute t` := trα mod ` by finding 0 ≤ c < ` such
that

α2
` + [degα]` = cα`.

To compute α` = α
∣∣
E [`]

: let (a(x), b(x)y) = (x , y) and then for i = 1, . . . , L update

(a, by) =

(
ui (a)

vi (a)
,
si (a)

ti (a)
by

)
where arithmetic takes place in Fq[x ]/(ψ`(x)).

Letting n = dlog qe and assuming d = O(1) and L = O(n), we have a O(n4 log n)
algorithm for computing t` and a O(n5) algorithm for trα.



Every prime is an Elkies prime for a supersingular elliptic curve

Proposition

Suppose E/Fq is supersingular, where q = pa is a prime power, and let φ : E → E ′ be
an isogeny. If j(E ) 6= 0, 1728,

ker φ is defined over

{
Fq : a is even

Fq2 : a is odd.

Proof: Suppose q = p2a. Then (Waterhouse 69) tr πE = ±2pa so πE = [±pa], so

EndFq
(E ) = EndFq(E ).

If φ : E → E ′ is an isogeny, then I = Hom(E ′,E )φ is a left ideal of End(E ), and

ker φ =
⋂
α∈I

kerα.

All kerα are Fq-rational, so ker φ is Fq-rational.
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The SEA algorithm for supersingular endomorphisms

Suppose E/Fq is supersingular. Then j(E ) ∈ Fp2 .

Assume E itself is defined over Fp2 , and j(E ) 6= 0, 1728.

In this case, πE = [±p].

Then E/Fp2 has all of its `-isogenies defined over Fp2 .

Every prime is an Elkies prime for supersingular E !

But α ∈ End(E ) need not fix ker φ

Compute trα mod ` by finding c such that the characteristic equation

α2
∣∣
ker φ

+ [degα]
∣∣
ker φ

= c(α
∣∣
ker φ

)

holds in Hom(ker φ,E [`])
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Theorem (M.–Panny–Sotáková–Wills)

Let α = φL ◦ · · · ◦ φ1 be an endomorphism of a supersingular elliptic curve E defined
over Fq, let n = dlog pe, and let ` = O(n) be an odd prime. Let d = max{deg φi}.
Then t` := trα (mod `) can be computed in an expected O(n3(log n)3 + dLn2 log n)
bit operations.

The time complexity simplifies to O(n3(log n)3) when d = O(1) and L = O(n).

Work projectively, so we only need O(1) inversions in Fq[x ]/(h(x))

Complexity estimate uses fast euclidean division, Kronecker substitution,
M(n) = O(n log n) (HvdH2019).

Where’s GRH?? Kunzweiler-Robert (ANTS 2024) give an unconditional algorithm
to compute Φ`(X ,Y ) in time O(`3(log `)3)!



Theorem (M.–Panny–Sotáková–Wills)

Let α = φL ◦ · · · ◦ φ1 be a separable endomorphism of a supersingular elliptic curve E
defined over Fq with j(E ) 6= 0, 1728. Let n = dlog qe. Assume that L log d = O(n).
Then trα can be computed with O(n4(log n)2 + dLn3) bit operations. When d = O(1)
and L = O(n), the complexity is O(n4(log n)2).



Beyond the SEA algorithm: computing t` for `|#E (Fp2)

Since we assume E/Fp2 is supersingular and j(E ) 6= 0, 1728, we know
#E (Fp2) = (p ± 1)2. To compute t` = trα mod ` for `|#E (Fp2):

1 find P 6= 0 ∈ E [`](Fp2)

2 Compute (α + α̂)(P)

3 solve a small discrete log: t` is the solution to

cP = (α + α̂)(P).



Beyond the SEA algorithm: computing tp

Let ωE be an invariant differential for E . Then α∗ωE = cαωE for some cα ∈ Fp2 , and
the map

End(E )→ Fp2

α 7→ cα

is a homomorphism of rings, and (when E is supersingular)

trα ≡ TrFp2/Fp
cα (mod p).

We can “read off” cα from α: for separable α, we have

α(x , y) =

(
N(x)

D(x)
, cα ·

(
N(x)

D(x)

)′
y

)



Beyond the SEA algorithm: computing tp

Let ωE be an invariant differential for E . Then α∗ωE = cαωE for some cα ∈ Fp2 , and
the map

End(E )→ Fp2

α 7→ cα

is a homomorphism of rings, and (when E is supersingular)

trα ≡ TrFp2/Fp
cα (mod p).

We can “read off” cα from α: for separable α, we have

α(x , y) =

(
N(x)

D(x)
, cα ·

(
N(x)

D(x)

)′
y

)



Timings

Implemented in sagemath. To demonstrate the asymptotic speedups offered:
1 For each b ∈ [16, . . . , 32], repeat 5 times:

1 Compute random b-bit prime p, pseudorandom supersingular E/Fp2 , and
endomorphism α ∈ End(E ) of degree ≈ p4

2 Compute trα using Schoof (i.e. get t` with division polynomials), SEA (i.e get t`
with kernel polynomials), SEA + “mod p”, SEA + “mod p” + “points”







Thank you! Questions?


