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It is all about the balance

Model
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Linear algebra Linear

Easy

Non-linear algebra | Non-linear

Pragmatic approach — Use more powerful models,

Hard

if we can compute efficiently with them.

| study how to exploit ther inputs’ structure to compute faster.

Matias BENDER Polynomial systems, sparsity, and applications

February 25, 2022 1 /23



| work in computer algebra. | focus on

Matias BENDER Polynomial systems, sparsity, and applications February 25, 2



| work in computer algebra. | focus on

Solving structured polynomial systems

@ Solving polynomial systems of degree at most d in C[xq, ..., xy].

e
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{2x2—xy+ y?—4x—2y+3=0 d=2
n =
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x2—xy+2y?2—2x—4y+3=0
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D 2x2 —xy+ y>—4x—2y+3=0 d=2
ense x> —xy4+2y?—2x—4y+3=0 n=2

@ Different methods: symbolic and numerical
(Today: Grobner bases, resultants, numerical linear algebra approaches)

e It is an intrinsically hard problem — complexity d9(".

@ In applications — the problems have some structure.

Sparse

— xy — 4 x +3=0
2y —2x—4y+3=0

Matias BENDER Polynomial systems, sparsity, and applications February 25, 2022 2 /23



| work in computer algebra. | focus on

Solving structured polynomial systems

@ Solving polynomial systems of degree at most d in C[xq, ..., xy].
D 2x2 —xy+ y>—4x—2y+3=0 d=2
ense x> —xy4+2y?—2x—4y+3=0 n=2

@ Different methods: symbolic and numerical
(Today: Grobner bases, resultants, numerical linear algebra approaches)

e It is an intrinsically hard problem — complexity d9(".

@ In applications — the problems have some structure.

Sparse

— xy — 4 x +3=0
2y —2x—4y+3=0

@ To improve complexity — exploit sparsity.

Matias BENDER Polynomial systems, sparsity, and applications February 25, 2022 2 /23



| work in computer algebra. | focus on

Solving structured polynomial systems

@ Solving polynomial systems of degree at most d in C[xq, ..., xy].
D 2x2 —xy+ y>—4x—2y+3=0 d=2
ense x> —xy4+2y?—2x—4y+3=0 n=2

@ Different methods: symbolic and numerical
(Today: Grobner bases, resultants, numerical linear algebra approaches)

e It is an intrinsically hard problem — complexity d9(".

@ In applications — the problems have some structure.

Sparse

— xy — 4 x +3=0
2y —2x—4y+3=0

@ To improve complexity — exploit sparsity.

Applications

Tensor decomposition, topological data analysis, computational biology.
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Outline of the talk

@ Classical tools to solve dense polynomial systems
@ Grobner bases
@ Resultants

© Sparse polynomials

© Solving sparse systems
@ Grobner bases
@ Numerical linear algebra approaches
@ Complete intersections over toric varieties
@ Determinantal formulas for mixed multilinear systems

@ Applications

© Future work
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o C[x] =C|x,...,xs], polynomial ring in n indeterminates over C.
@ Polynomial = 3"  cox® € C[x]. @ Monomial — x¢, for o € N”.J
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Grobner basics

e C[x] = C|xq,..., x|, polynomial ring in n indeterminates over C.
@ Polynomial = )" cox® € C[x]. @ Monomial — x¢, for a € N".J

@ Grobner basis (GB) of (fi,...,f) :={> 7_; hifi : hj € C[x]}
— set of generators (g1, ..., 8s) with special properties.

<f1,...,fr>=<g1,._,,g5> J
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Grobner basics

e C[x] = C|xq,..., x|, polynomial ring in n indeterminates over C.
@ Polynomial = )" cox® € C[x]. @ Monomial — x¢, for a € N".J

@ Grobner basis (GB) of (fi,...,f) :={> 7_; hifi : hj € C[x]}
— set of generators (g1, ..., 8s) with special properties.

<f1,...,fr>=<g1,._,,g5> J

It depends on a monomial ordering.
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Grobner basics

o C[x] =C|x,...,xs], polynomial ring in n indeterminates over C.
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Grobner basics

o C[x] =C|x,...,xs], polynomial ring in n indeterminates over C.
@ Polynomial = 3"  cox® € C[x]. @ Monomial — x¢, for o € N”.J
e Grobner basis (GB) of (fi,...,f) :={> 7_; hifi : hj € C[x]}

— set of generators (g1, ..., 8s) with special properties.
@ Generalize Row Echelon Form for linear systems.

@ We can use it to compute
o ldeal membership: Given h', there exists hy,..., h, such i =3 . h; f;?

o Certify no common solutions over C: 1 =3%"_h; f;?
e Solve: {pe C": fi(p)=---=f(p)=0}.

o Compute other algebraic and geometric invariants.
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0-dim square
dense system

[Buc65, Laz83, Fiy

Grobner basis
wrt GRevlLex

Normal
forms

Multiplication
[FGLMQE]/ maps
Grobner basis
wrt Lex
Solution

Under suitable assumptions
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Computing Grobner bases - [Lazard '83]

(A, k..., fp)----- -> Grobner basis
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Computing Grobner bases - [Lazard '83]

(A, k..., fp)----- -> Grobner basis
Sylvester map l
0d : (g1,---.80) > 28 fi
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Computing Grobner bases - [Lazard '83]

(A, k..., fp)----- -> Grobner basis
Sylvester map l
0d : (g1,---.80) > 28 fi {
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coest:(xo‘ f)

coeffs:(xV )
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Computing Grobner bases - [Lazard '83]

(A, k..., fp)----- -> Grobner basis
Sylvester map l
0d : (g1,---.80) > 28 fi {
xP1>xP2> ...

coest:(xo‘ f)

coeffs:(xV h)

-
Gaussian

elimination

coeffs:(x” f)

Complexity <+ Size of matrix — In generic coord., d < Castelnuovo-Mumford (CM) reg.
[Bayer, Stillman '87]
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Computing Grobner bases - [Lazard '83]

(A, k..., fp)----- -> Grobner basis
Sylvester map l
0d : (g1,---.80) > 28 fi {
xP1>xP2> ...

) «
coeffs:(x fl) } reductions
to zero

reductions

coeffs:(xV )
: to zero

R ———_—
Gaussian Redundant
elimination : computations

[ -

reductions

coeffs.(x” f) ;
. o zero

Complexity <+ Size of matrix — In generic coord., d < Castelnuovo-Mumford (CM) reg.
[Bayer, Stillman '87]
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Computing Grobner bases - [Lazard '83] + [Faugere '02]

(A, k..., 1) Grobner basis
P1>xB2s
xo‘. f
x7.f2
T |
x7 f,

Complexity <> Size of matrix — In generic coord., d < Castelnuovo-Mumford (CM) reg.
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Computing Grobner bases - [Lazard '83] + [Faugere '02]

(A, k..., 1) Grobner basis
P1>xB2s
x*f
x7f
_— _—
F5 Gaussian
criterion elim.
- [
x? f,

Complexity <> Size of matrix — In generic coord., d < Castelnuovo-Mumford (CM) reg.
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Computing Grobner bases - [Lazard '83] + [Faugere '02]

(f, h,...,f,) regular sequence Grobner basis
xBr>xB2> ..
x*f
. No reds.
x7 f suneeeyl [ to zero
_ _L>
F5 Gaussian
criterion : elim.
T [ .
x° f,

Complexity <> Size of matrix — In generic coord., d < Castelnuovo-Mumford (CM) reg.
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Computing Grobner bases - [Lazard '83] + [Faugere '02]

(f, h,...,f,) regular sequence Grobner basis
xBr>xB2> ..
x*f
. No reds.
x7 f suneeeyl [ to zero
_ _L>
F5 Gaussian
criterion : elim.
T [ .
x° f,

Complexity <> Size of matrix — In generic coord., d < Castelnuovo-Mumford (CM) reg.
— Macaulay bound: CM reg. = Y7  deg(fi) —n+1
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[FGLMO3] maps
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Under suitable assumptions
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0-dim square
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1
: Noreds. o [Fau02]
to zero !

5 < | [BS87] e mm e e e -
Grobner basis i regularity

wrt GRevlLex |  t---—"-----

Normal
forms
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[FGLM93] maps
Grobner basis
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Under suitable assumptions
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0-dim square
dense system
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1 No reds., [Fau02]

! to zero !
[ 1

Grobner basis [ [BS87]r =< - - - - -

wrt GRevLex

Normal
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<—>LCM regularity |

Multiplication
maps

[FGLMO3]
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0-dim square
dense system

oo . [Buc65, Laz83, Fau99) Add polynomial
 No reds. l«— [Fau02]
L, B0 Resultant
= 2 Bpocccnacna
Grobner basis [ ]I CM regularity : Macaulay resultant
wrt GRevlLex R formula [Macl16]
Y
Sylvester-type
Normal formula
forms
Schur complement
[ASSS]
Multiplication
[FGLMQj]/ maps \ELale, AS88, Mou9g]
A
Grobner basis Eigenvalues /
wrt Lex Eigenvectors
—
Solution

Under suitable assumptions
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The resultant and Sylvester-type formulas

Projective resultant

Necessary and sufficient condition for a homogeneous system in
(fo,...,f) € C[xo, ..., x]""! to have solutions in P".
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The resultant and Sylvester-type formulas

Projective resultant

Necessary and sufficient condition for a homogeneous system in
(fo,...,f) € C[xo, ..., x]""! to have solutions in P".

Example : Resultant of linear forms = Determinant

aax+ay+az=0
bix+byy+b3z=0 has a solution over P?
ax+coy+cz=0

day a2 asj
det | b1 by b3 =0
i € G
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The resultant and Sylvester-type formulas

Projective resultant

Necessary and sufficient condition for a homogeneous system in
(fo,...,f) € C[xo, ..., x]""! to have solutions in P".

Classical way of computing resultant — Sylvester-type formula

n
(gOa'”agn) '_)Zglﬁ
i=0
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The resultant and Sylvester-type formulas

Projective resultant

Necessary and sufficient condition for a homogeneous system in
(fo,.-,fn) € C[xo, ..., %)™ to have solutions in P".

Classical way of computing resultant — Sylvester-type formula

(g0, 8n) > Y _&if

Macaulay resultant matrix [Macaulay, 1916]
x> xy xz y? yz Zz?
fi= aix’?+axy+ayxz+ flf Zl Zz 23 4 a5
asy’>+asyz+ ag 22 Xf2 1 b2 E R
fri= bix+by+bz vz " b b b
o %
= ax+oytcz v ‘o o o
zf3 a 0 G
Determinant = Resultant - ExtraFactor.
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The resultant and Sylvester-type formulas

Projective resultant

Necessary and sufficient condition for a homogeneous system in
(fo,.-,fn) € C[xo, ..., %)™ to have solutions in P".

Classical way of computing resultant — Sylvester-type formula

(g0, 8n) > Y _&if

Macaulay resultant matrix [Macaulay, 1916]
x> xy xz y? yz Zz?
fi= aix’?+axy+ayxz+ flf Zl Zz 23 4 a5
asy’>+asyz+ ag 22 Xf2 & b2 E R
hi= bix+byy+bsz }Z/fz e by e b:; by
o %
fi: axt+oyt+cz v ‘o o o
zf3 a 0 G
Determinant = Resultant - ExtraFactor.

Determinantal formula — ExtraFactor is a constant.
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Solving via Sylvester-type formulas

@ We want to compute the two solutions «, 3 € C? of (f1, f)

fir= 1x>°+ —1xy+4x+—-2y>+-5y+3
hi= 1x+—-1y+-—1
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Solving via Sylvester-type formulas

@ We want to compute the two solutions «, 3 € C? of (f1, f)

fir= 1x>+—1xy+4x+—2y*+—-5y+3
hi= 1x+—-1y+-—1

@ Introduce f3 := —1x+ 2y + 1 and consider a Sylvester-type formula.
2 xy x y* |y 1
f|l1 -1 4 -2|-5 3
L1 -1 -1
Mg | Mip \ X1
v Vi = yh 1 1| -1
2,1 2,2 f2 1 -1 -1
yh -1 2 1
f3 -1 2 1
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Solving via Sylvester-type formulas

@ We want to compute the two solutions «, 3 € C? of (f1, f)

fi =
fo =

1x2+ —1xy+4x+—-2y>+ -5y +3
Ix+—-1y+ -1

@ Introduce 3 := —1x+ 2y + 1 and consider a Sylvester-type formula.
x> xy x y*|y 1
f|l1 -1 4 -2|-5 3
L1 -1 -1
Mg [ Mg\ _ 2
i i = yh 1 1| -1
2,1 2,2 f2 1 _1 _1
yfs -1 2 1
f3 -1 2 1

@ Schur complement of M, «» Multiplication map of f3 in C[x, y]/(f, f2)

0 4
10

/\772,2 =My — Mo, Ml_il My, = (
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Solving via Sylvester-type formulas

@ We want to compute the two solutions «, 3 € C? of (1, f)

fir= 1x>+—1xy+4x+—2y*+-5y+3
hi= 1x+—-1y+-—1

@ Introduce 3 := —1x+ 2y + 1 and consider a Sylvester-type formula.
f 1 -1 4 —2| -5 3
xb 1 -1 -1
Mii | Mio _ yh 1 -1 -1
( Vo1 | Mho ) T 1 -1 -1
v =1 2 1
f3 -1 ‘ 2 1

@ Schur complement of M, «» Multiplication map of f3 in C[x,y]/(f, f2)

~ 1 0 4
Map = Mz 2 — M1 My o M1,2=< 1 0 )

February 25, 2022 8 / 23
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Solving via Sylvester-type formulas

@ We want to compute the two solutions «, 3 € C? of (f1, )

fi= 1x°+ —1xy+4x+—-2y>+-5y+3
h= 1Ix+—-1y+ -1

@ Introduce 3 := —1x+ 2y + 1 and consider a Sylvester-type formula.
fi 1 -1 4 —2| -5 3
xb 1 -1 -1
Mia | Mip \ _ vy 1 1] -1
Ma 1 M 2 - f 1 —1 —1
Vi -1 2 1
f -1 ‘ 2 1

@ Schur complement of M, <> Multiplication map of f3 in C[x, y]/(fi, f2)
Mo = My — My My L My 5 = < . )
@ Eigenvalues of l\772,2 [Lazard, 1981]
fila)=2  and  f(B)=-2.
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Solving via Sylvester-type formulas

@ We want to compute the two solutions c, 3 € C? of (1, f)

fir= 1x>+—1xy+4x+—-2y>+-5y+3
hi= 1x+—-1y+ -1

@ Introduce f3 := —1x+ 2y + 1 and consider a Sylvester-type formula.
fi 1 -1 4 —2| -5 3
xb 1 -1 -1
Mia | Mip \ _ yf 1 -1 -1
( M1 | Moo )7 fy 1 -1 -1
Vs —1 2 1
fs -1 2 1

@ Schur complement of M, <> Multiplication map of f3 in C[x, y]/(fi, &)
Mo = My — M1 My L My s = ( 9 . )

@ Eigenvalues of /\772,2 < f(a) =2 and f(B) = —2. [Lazard, 1981]

@ Eigenvectors of 1\712,2 [Auzinger & Stetter, 1988]

(v)=(5) = (7)=(F)
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0-dim square
dense system

jmm - ,  [Buc65, Laz83, Fau99]
 No reds. l«— [Fau02]
L, B0 Resultant

Grobner basis Castelnuovo-Mumford Macaulay resultant
wrt GRevlLex |« _ _regularity [BS87] formula [Mac16]
_______ A
77> Sylvester-type
Normal formula
forms
Schur
complement
Multiplication
[FGLM9j]/ maps \ELale, AS88, Mou9g]
A
Grobner basis Eigenvalues /
wrt Lex Eigenvectors
—
Solution

Under suitable assumptions
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Sparse polynomials / systems
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Sparse polynomials / systems

o Newton polytope of f =" cox* — Convex hull of {a : ¢, # O}J

@ Sparse polynomial — Its Newton polytope is “small”.

L+xy+xy+x%2+x3y = 140-x+0-y+0-x>+xy +0-y*+
0-x3+x%2y +0-xy2+0-y3+
0-x*+x3y 4+ x2y2 +0-xy3+0-y*
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Sparse polynomials / systems

@ Sparse polynomial — Its Newton polytope is “small”.

o Newton polytope of f =" cox* — Convex hull of {a : ¢, # O}J

@ Unmixed sparse system — Polynomials with equal Newton polytope.J

fi=1+xy +x°y +x2y2
+x%y

4

f =3 —xy +x%y —x*y?
+x%y

4

Matias BENDER
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fy =2+ xy — x°y +x°y2
+x3y

4
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Sparse polynomials / systems

o Newton polytope of f =" cox* — Convex hull of {a : ¢, # O}J

@ Sparse polynomial — Its Newton polytope is “small”.

@ Unmixed sparse system — Polynomials with equal Newton polytope.J

@ Mixed sparse system — Different Newton polytope.

fi=1+xy+ x°y +x2y2 fr =1+ xy + xy? + xy° fi =1+ x4+ xy +x2y
3y 1x2)2

4 4 4

Matias BENDER Polynomial systems, sparsity, and applications February 25, 2022 9 /23



Exploiting sparsity [Gelfand, Kapranov, & Zelevinsky '90]

@ Sparse resultant — Generalization of the resultant for sparse systems.
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Exploiting sparsity [Gelfand, Kapranov, & Zelevinsky '90]

@ Sparse resultant — Generalization of the resultant for sparse systems.

@ Geometrically — Instead of projective space, use proj. toric variety.
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Exploiting sparsity [Gelfand, Kapranov, & Zelevinsky '90]

@ Sparse resultant — Generalization of the resultant for sparse systems.
@ Geometrically — Instead of projective space, use proj. toric variety.

@ Algebraically — Replace classical algebra for a semigroup subalgebra.
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Exploiting sparsity [Gelfand, Kapranov, & Zelevinsky ’

@ Sparse resultant — Generalization of the resultant for sparse systems.
@ Geometrically — Instead of projective space, use proj. toric variety.

@ Algebraically — Replace classical algebra for a semigroup subalgebra.
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1+xy+x2y+xy? € Clxy,x?y,xy?] C C[x,y]
@ Important cases:

o Multiprojective space P™ x --- x P,
— Multihomogeneous polynomials f; € C[x1]q,, ® - - - ® C[x/]q; -
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Exploiting sparsity [Gelfand, Kapranov, & Zelevinsky '90]

@ Sparse resultant — Generalization of the resultant for sparse systems.
@ Geometrically — Instead of projective space, use proj. toric variety.

@ Algebraically — Replace classical algebra for a semigroup subalgebra.

10 *
*
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* ook ok % ok %

4

* ok ok % ok % % %

2

*
P
P

* ok Kk ok ok K

14+ xy+x2y+xy? € Clxy,x%y,xy? C C[x,y]
@ Important cases:
o Multiprojective space P™ x --- x P,
— Multihomogeneous polynomials f; € C[x1]q,, ® - - - ® C[x/]q,
e Weighted projective space P(wy, ..., w,).
— Weighted homogeneous polynomials deg(x;) = w;.

ot
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Grobner bases for sparse systems

Joint work with Jean-Charles Faugere & Elias Tsigaridas.
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Computing Grobner bases for sparse systems

sparse (fi,f, ..., f,) Grobner basis

xP1>xP2> . I

x*fi
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F5 Gaussian
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T [
x° f,

Complexity <+ Size of matrix



Computing Grobner bases for sparse systems

sparse (fl,fz,--.

l

Pr>xP2> .

., ) regular sequence
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Complexity <+ Size of matrix
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Computing Grobner bases for sparse systems
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x*fi
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Complexity <+ Size of matrix
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Computing Grobner bases for sparse systems

sparse (f;, ...

l

Pr>xP2> .

x*fi
x"
_—
F5
criterion
x° f,

. ) regularsequence

Grobner basis

|

Many reds.

to zero

_t .

Gaussian
elim.

Complexity <+ Size of matrix — No Macaulay bound for d
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Computing Grobner bases for sparse systems

Given fi,...,f, € C[x] and different polytopes P; = NewtonPolytope(f;).
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@ Exploit sparsity — compute over multigraded semigroup algebras.
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Given fi,...,f, € C[x] and different polytopes P; = NewtonPolytope(f;).
Our algorithm [BFT18], [BFT19]

@ Exploit sparsity — compute over multigraded semigroup algebras.

For n = 2, consider semigroup algebra C[S] multigraded by N2.
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Computing Grobner bases for sparse systems

Given fi,...,f, € C[x] and different polytopes P; = NewtonPolytope(f;).

Our algorithm

[BFT18], [BFT19]

@ Exploit sparsity — compute over multigraded semigroup algebras.

For n = 2, consider semigroup algebra C[S] multigraded by N2.
x (@) ¢ C[Sl(d,ar) ¢ @ € (i Py + daPy) N Z"
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Computing Grobner bases for sparse systems

Given fi,...,f, € C[x] and different polytopes P; = NewtonPolytope(f;).
Our algorithm [BFT18], [BFT19]

@ Exploit sparsity — compute over multigraded semigroup algebras.

For n = 2, consider semigroup algebra C[S] multigraded by N2.

x () o ClS)(dh,a) ¢ @ € (iPL+ 2 P2) N Z"
+ P

(1,0)
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Computing Grobner bases for sparse systems

Given fi,...,f, € C[x] and different polytopes P; = NewtonPolytope(f;).
Our algorithm [BFT18], [BFT19]

@ Exploit sparsity — compute over multigraded semigroup algebras.

For n = 2, consider semigroup algebra C[S] multigraded by N2.

x () o ClS)(dh,a) ¢ @ € (iPL+ 2 P2) N Z"
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Py
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Given fi,...,f, € C[x] and different polytopes P; = NewtonPolytope(f;).
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@ Exploit sparsity — compute over multigraded semigroup algebras.

For n = 2, consider semigroup algebra C[S] multigraded by N2.
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Computing Grobner bases for sparse systems

Given fi,...,f, € C[x] and different polytopes P; = NewtonPolytope(f;).
Our algorithm [BFT18], [BFT19]

@ Exploit sparsity — compute over multigraded semigroup algebras.

In unmixed case (all pols same Newton polytope, P = P;),
— approach considered in [Faugere, Spaenlehauer, Svartz '14].
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Our algorithm [BFT18], [BFT19]

@ Exploit sparsity — compute over multigraded semigroup algebras.

@ New Koszul-F5 criterion — Under mild assumptions, no reds. to zero.
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Computing Grobner bases for sparse systems
Given fi,...,f, € C[x] and different polytopes P; = NewtonPolytope(f;).

Our algorithm [BFT18], [BFT19]

@ Exploit sparsity — compute over multigraded semigroup algebras.

@ New Koszul-F5 criterion — Under mild assumptions, no reds. to zero.

Careful — polynomials are NOT regular sequence

o But Koszul complex exact at “big enough” degree — predict syzygies.

Matias BENDER Polynomial systems, sparsity, and applications February 25, 2022 13 / 23



Computing Grobner bases for sparse systems

Given fi, ..., f, € C[x] and different polytopes P; = NewtonPolytope(f;).

Our algorithm [BFT18], [BFT19]

@ Exploit sparsity — compute over multigraded semigroup algebras.

@ New Koszul-F5 criterion — Under mild assumptions, no reds. to zero.

Matias BENDER Polynomial systems, sparsity, and applications February 25, 2022 13 / 23



Computing Grobner bases for sparse systems

Given fi, ..., f, € C[x] and different polytopes P; = NewtonPolytope(f;).

Our algorithm [BFT18], [BFT19]

@ Exploit sparsity — compute over multigraded semigroup algebras.

@ New Koszul-F5 criterion — Under mild assumptions, no reds. to zero.

@ Complexity bounds for square systems — Complexity of solving sparse sys.

Matias BENDER Polynomial systems, sparsity, and applications February 25, 2022 13 / 23



Computing Grobner bases for sparse systems

Given fi, ..., f, € C[x] and different polytopes P; = NewtonPolytope(f;).

Our algorithm [BFT18], [BFT19]

@ Exploit sparsity — compute over multigraded semigroup algebras.

@ New Koszul-F5 criterion — Under mild assumptions, no reds. to zero.
@ Complexity bounds for square systems — Complexity of solving sparse sys.

Biggest matrix has size >, Pi N Z".
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Computing Grobner bases for sparse systems

Given fi, ..., f, € C[x] and different polytopes P; = NewtonPolytope(f;).

Our algorithm [BFT18], [BFT19]

@ Exploit sparsity — compute over multigraded semigroup algebras.

@ New Koszul-F5 criterion — Under mild assumptions, no reds. to zero.

@ Complexity bounds for square systems — Complexity of solving sparse sys.
Biggest matrix has size >, Pi N Z". > deg(f;)

@ Improvements for special cases — Generalization of the Macaulay bound

e Multihomogeneous systems P™ x --- x P,
> multideg(f;) — (n1,...,n.)+(1,...,1)
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Computing Grobner bases for sparse systems

Given fi, ..., f, € C[x] and different polytopes P; = NewtonPolytope(f;).

Our algorithm [BFT18], [BFT19]

@ Exploit sparsity — compute over multigraded semigroup algebras.

@ New Koszul-F5 criterion — Under mild assumptions, no reds. to zero.

@ Complexity bounds for square systems — Complexity of solving sparse sys.
Biggest matrix has size >, Pi N Z". > deg(f;)

@ Improvements for special cases — Generalization of the Macaulay bound

e Multihomogeneous systems P™ x --- x P,

> multideg(f;) — (ng,...,nr) +(1,..., 1)
o Unmixed systems (all pols same Newton polytope, P = P;).

> deg(f;) — codegree(P) + 1

v

Complexity for variant of [Faugere, Spaenlehauer, Svartz ’14].)
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Computing Grobner bases for sparse systems

Given fi, ..., f, € C[x] and different polytopes P; = NewtonPolytope(f;).

Our algorithm [BFT18], [BFT19]

@ Exploit sparsity — compute over multigraded semigroup algebras.

@ New Koszul-F5 criterion — Under mild assumptions, no reds. to zero.

@ Complexity bounds for square systems — Complexity of solving sparse sys.
Biggest matrix has size >, Pi N Z". > deg(f;)

@ Improvements for special cases — Generalization of the Macaulay bound

e Multihomogeneous systems P™ x --- x P,
S multideg(f;) — (n1,...,nr) +(1,..., 1)
o Unmixed systems (all pols same Newton polytope, P = P;).
3 deg(f) — codegree(P) + 1
o Not all variables in all P;.

v
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Solving numerically sparse systems

Joint work with Simon Telen.
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Symbolic-numerical approaches to solve sparse systems

In applications — sparse polynomials with noisy coefficients, and
we need to approximate solutions.
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Symbolic-numerical approaches to solve sparse systems

In applications — sparse polynomials with noisy coefficients, and
we need to approximate solutions.

In degenerate situations (e.g. 'sols. going to co’) — Sparse GBs or resultants
— large numerical errors (for every solution!).

fi=—14+x+x>+y+xy,
fhi=—1+x+(3—-107)x>+2y+2xy.

1014 102

|| ——Cond. numb.
—— Max. [|sol.|

109 -

1077

10* 10-12

101 L L L I

-17
10 0
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Symbolic-numerical approaches to solve sparse systems

In applications — sparse polynomials with noisy coefficients, and
we need to approximate solutions.

fi=l—x—x>—y—xy,

fi=1—-x—(5/2-107)x"

—2y—5/2xy
102 residual of all sols | | A
"7 Cclassical methods g
1071
10712 -
10717 L L L L L L
0 2 4 6 8 10 12 14

February 25, 2022 14 / 23
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Symbolic-numerical approaches to solve sparse systems

In applications — sparse polynomials with noisy coefficients, and
we need to approximate solutions.

Our algorithm [BT20],[BT21] m_

@ Homogenize polynomials over Cox ring fi=l—x—x>—y—xy,
(homogeneous coord. ring of toric variety). f=1—x—(5/2— 1077)x2
—2y—5/2xy
1072 | residual of all sols =
classical methods .,r‘ /s

—+— EigenvalueSolver.j1

1077 F

10~ 12

—17 Y
2 0 2 4 6 8 10 12 14

February 25, 2022 14 / 23
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Symbolic-numerical approaches to solve sparse systems

In applications — sparse polynomials with noisy coefficients, and
we need to approximate solutions.

Our algorithm [BT20],[BT21] m_

@ Homogenize polynomials over Cox ring fi=l—x—x>—y—xy,
(homogeneous coord. ring of toric variety). f=1—x—(5/2— 10,7))(2
@ Consider Sylvester map (g — > fi gi) at "big 2y —5/2xy

enough” (known) degree.

1072 residual of all sols i
classical methods Pav.rd
—+ EigenvalueSolver.jl y

1077 F

10~ 12

—17
2 0 2 4 6 8 10 12 14
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Symbolic-numerical approaches to solve sparse systems

In applications — sparse polynomials with noisy coefficients, and
we need to approximate solutions.

Our algorithm [BT20],[BT21] m_

@ Homogenize polynomials over Cox ring fi=l—x—x>—y—xy,
(hom-ogeneous coord. ring of toric variety). . f=1—x—(5/2— 10,7))(2
@ Consider Sylvester map (g — > fi gi) at "big 5 5/2
enough” (known) degree. —2y=5/2xy
@ Using numerical linear algebra tools 1072 [ residul of al sl =

(QR with optimal pivoting, SVD)
— reduce to eigenvalue comput. (mult. maps).

—+— EigenvalueSolver.j1

1077 F

10~ 12

—17 L |
2 0 2 4 6 8 10 12 14

14 / 23
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Symbolic-numerical approaches to solve sparse systems

In applications — sparse polynomials with noisy coefficients, and
we need to approximate solutions.

Our algorithm [BT20],[BT21] m_

@ Homogenize polynomials over Cox ring fi=l—x—x>—y—xy,
(homogeneous coord. ring of toric variety). f=1—x—(5/2— 10,7))(2
@ Consider Sylvester map (g — > fi gi) at "big 2y —5/2xy

enough” (known) degree.

@ Using numerical linear algebra tools 1072[_ residual of all sols
. . . . classical methods
(QR with optimal pivoting, SVD) . EigenvalueSolver.jl
— reduce to eigenvalue comput. (mult. maps).

1077 F

@ In contrast to homotopy continuation — works | 2077

even better with overdetermined sys. oty T e iR
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Symbolic-numerical approaches to solve sparse systems

In applications — sparse polynomials with noisy coefficients, and
we need to approximate solutions.

Our algorithm [BT20],[BT21] m_

@ Homogenize polynomials over Cox ring fi=l—x—x>—y—xy,
(homogeneous coord. ring of toric variety). f=1—x—(5/2— 10,7))(2
@ Consider Sylvester map (g — > fi gi) at "big 2y —5/2xy

enough” (known) degree.

@ Using numerical linear algebra tools 1072[_ residual of all sols
. . . . classical methods
(QR with optimal pivoting, SVD) . EigenvalueSolver.jl
— reduce to eigenvalue comput. (mult. maps).

1077 F

@ In contrast to homotopy continuation — works | 2077

even better with overdetermined sys. oty T e iR

@ Toy implem. in Julia: EigenvalueSolver. jl ) T )

Matias BENDER Polynomial systems, sparsity, and applications February 25, 2022 14 / 23



How to improve efficiency?

Matias BENDER Polynomial systems, sparsity, and applications February 25, 2022 15 / 23



How to improve efficiency?

o Extremely important efficient linear algebra.

Matias BENDER Polynomial systems, sparsity, and applications February 25, 2022 15 / 23



How to improve efficiency?

o Extremely important efficient linear algebra.
— However, CM reg. is theoretical limit.

Matias BENDER Polynomial systems, sparsity, and applications February 25, 2022 15 / 23



How to improve efficiency?

o Extremely important efficient linear algebra.
— However, CM reg. is theoretical limit.

@ Work with smaller matrices:

Matias BENDER Polynomial systems, sparsity, and applications February 25, 2022 15 / 23



How to improve efficiency?

o Extremely important efficient linear algebra.
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@ Work with smaller matrices:

o Homogenize “better’ — Consider algebras with smaller CM reg.
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How to improve efficiency?

o Extremely important efficient linear algebra.
— However, CM reg. is theoretical limit.

@ Work with smaller matrices:

o Homogenize “better’ — Consider algebras with smaller CM reg.

o We use a broader class of smaller matrices to solve.
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Complete intersections over toric
varieties

Joint work with Pierre-Jean Spaenlehauer.

Matias BENDER Polynomial systems, sparsity, and applications February 25, 2022 15 / 23



Complete intersections over toric varieties

Given fi, ..., f, € C[x] and different polytopes P; = NewtonPolytope(f;).

Assume P; C Q.
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Complete intersections over toric varieties

Given fi, ..., f, € C[x] and different polytopes P; = NewtonPolytope(f;).
Assume P; C Q. The CM regularity bounded by

Mixed case wrt Py,..., P,

> deg(f))
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Complete intersections over toric varieties

Given fi, ..., f, € C[x] and different polytopes P; = NewtonPolytope(f;).
Assume P; C Q. The CM regularity bounded by

Mixed case wrt Py,..., P, Unmixed case wrt Q (*)

Z deg(f;) Z deg(f;) — codegree(Q) + 1
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Complete intersections over toric varieties

Given fi, ..., f, € C[x] and different polytopes P; = NewtonPolytope(f;).
Assume P; C Q. The CM regularity bounded by

Mixed case wrt Py,..., P, Unmixed case wrt Q (*)

Z deg(f;) Z deg(f;) — codegree(Q) + 1

P1

(*) Requires regularity assumptions!

dim(homogenized(f1), ..., homogenized(f;)) = n — i, for every i.
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Complete intersections over toric varieties

Given fi,..., f, € C[x] and different polytopes P; = NewtonPolytope(f).

When can homogenize? i.e dim(hom(f),...,hom(f;)) = n— i, for every i.
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Complete intersections over toric varieties

Given fi,..., f, € C[x] and different polytopes P; = NewtonPolytope(f).

When can homogenize? i.e dim(hom(f),...,hom(f;)) = n— i, for every i.

Necessary and sufficient cond. for homogenization [BS22+]

Given a n-dim compact toric variety X,
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Complete intersections over toric varieties

Given fi,..., f, € C[x] and different polytopes P; = NewtonPolytope(f).

When can homogenize? i.e dim(hom(f),...,hom(f;)) = n— i, for every i.

Necessary and sufficient cond. for homogenization [BS22+]

Given a n-dim compact toric variety X, monomials sets Ay, ..., A, C Cox(X),
For generic system flh, cosy 7 B f,-h only contains monomials in A;,
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Complete intersections over toric varieties

Given fi,..., f, € C[x] and different polytopes P; = NewtonPolytope(f).
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Necessary and sufficient cond. for homogenization [BS22+]

Given a n-dim compact toric variety X, monomials sets Ay, ..., A, C Cox(X),
For generic system flh, e f,h s.t. f,-h only contains monomials in A;,

o Combinatorial criterion to determine dim({f}’ = --- = £ = 0}) in X.

In classical projective setting P”

Fix monomial sets Ay, ..., A,, s.t. deg(x®) = deg(x?), for every x* x5 € A;.
Choose generic system fi, ..., f, such that
fi = ZXO‘EA,' Ci.o X%, for generic ¢; o, € C.
o We determine dim(Vpn(fi, ..., f)).
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Complete intersections over toric varieties

Given fi,..., f, € C[x] and different polytopes P; = NewtonPolytope(f).

When can homogenize? i.e dim(hom(f1),..., hom(f;)) = n— i, for every i.

Necessary and sufficient cond. for homogenization [BS22+]

Given a n-dim compact toric variety X, monomials sets Ay, ..., A, C Cox(X),
For generic system flh, cee f,h s.t. f,.h only contains monomials in A;,

o Combinatorial criterion to determine dim({f}’ = --- = £ = 0}) in X.

Generalizes sufficient cond. (r = n) by [Rojas'94],[Bihan&Soprunov'19],[Chen’19].
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When can homogenize? i.e dim(hom(f),...,hom(f;)) = n— i, for every i.

Necessary and sufficient cond. for homogenization [BS22+]

Given a n-dim compact toric variety X, monomials sets Ay, ..., A, C Cox(X),
For generic system flh, o fhst fih only contains monomials in A;,

o Combinatorial criterion to determine dim({f{’ = --- = £/ = 0}) in X.

Our approach extends to rational polytopes.

Regular sequences for weighted projective spaces [BS22+]

For C[x] such that deg(x;) = w;. A generic system with degrees di, ..., d,
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Complete intersections over toric varieties

Given fi,..., f, € C[x] and different polytopes P; = NewtonPolytope(f).

When can homogenize? i.e dim(hom(f),...,hom(f;)) = n— i, for every i.

Necessary and sufficient cond. for homogenization [BS22+]

Given a n-dim compact toric variety X, monomials sets Ay, ..., A, C Cox(X),
For generic system flh, o fhst fih only contains monomials in A;,

o Combinatorial criterion to determine dim({f{’ = --- = £/ = 0}) in X.

Our approach extends to rational polytopes.

Regular sequences for weighted projective spaces [BS22+]

For C[x] such that deg(x;) = w;. A generic system with degrees di, ..., d,
is a regular sequence, if and only if, for all S € {0,...,n},

{i : d; Zjeswjzzoﬂ > |S|+r—n—1.

Necessary for specialized GB algorithms [Faugere,Safey El Din&Verron'16]
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Determinantal formulas for mixed
multilinear systems

Joint work with J.-C. Faugere, A. Mantzaflaris & E. Tsigaridas.
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Solving using resultant formulas

@ Until now, solve via Sylvester map (g — > _ fi gi).
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Solving using resultant formulas

@ Until now, solve via Sylvester map (g — > fi gi).
@ To solve using smaller matrices — more general maps.

e Compute resultant of f — formula as factor in det. of matrix M(f).

Det(M(f)) = Resultant(f) - ExtraFactor(f).

Generalization of solving strategy for Sylvester maps [BFMT18|

@ Solve using general class of resultant formulas.
@ Do not compute the resultant — only linear algebra.

@ Solve by computing eigenvalues. (Matrices are not mult. maps!)

Matias BENDER Polynomial systems, sparsity, and applications February 25, 2022 17 / 23



Example : Solving using Koszul-type formula

fi = Txoyo + —8xoy1 + —1xiyo + 2x1y1 }

eC[X,Y
f, .= —5xoy0+ Txoy1 + —1xiy0 + —1xiyi [ ]
f3:= —6x20+9%2z1 + —1xiz0+ —2x21 € Clx, Z]
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Example : Solving using Koszul-type formula

fo := 3 xoy020 + —Ixoy0z1 + —4 x0y120 + 2 Xoy121 X, Y, Z]
+1X1y020 +2 X1Y0Z1 + 2 X1y12p + -2 X1Y121

fi == Txoyo + —8xoy1 + —1x1y0 + 2x101 }

eC[X,Y
f .= =5 xoy0 + 7T xoy1 + —1x1y0 + —1xiy1 [ ]
f3:= —6xp20 + Ox0z1 + —1x120 + —2x121 € C[X, Z]
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Example : Solving using Koszul-type formula

fo := 3 x0y020 + —1xoy0z1 + —4 xoy120 + 2 X0y121 e C[X,Y,Z]
+1xi1y020 + 2 x1¥021 + 2 x1y120 + —2 X111
fi .= Txoyo + —8x0y1 + —1x1y0 + 2x1y1 }
eCX,Y
f .= =5 xoy0 + 7T xoy1 + —1x1y0 + —1xiy1 | !
f3:= —6x20+9%2z1 + —1xiz0+ —2x21 € Clx, Z]
r 5 -7 1 1 1
7 -8 -1 2
-1 -1 -5 7
7 -1 -1 —5
1 -2 -7 8
2 9 2 -2 -1 2
2 ) 9 -2 2 -1
1 —6 -1 2 3 -4
| —4 2 —6 -1 1 3 ]
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Example : Solving using Koszul-type formula

fo = Xo)’ozo + —1Ixgyoz1 + —4 xoy120 + 2 Xgy121
+1x1y020 + 2 x1y021 + 2x1y120 + —2 X1)121
fi:= Txoyo+ —8xoy1 + —1x1y0 +2x101

fr:= —bxoyo+ Txoy1 + —1xiyo+ —1xiy
f3 — —6X020 + 9X021 4+ -1 X120 + -2 X121
[ 5 —7 1 1 i

7 -8 -1 2
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Example : Solving using Koszul-type formula

fo = Xoyozo + —1xoy0z1 + —4 X0y120 + 2 X0y121
+1x1y020 +2x1¥021 + 2x1y120 + —2Xx1y121
7xoy0 + —8x0y1 + —1x1y0 + 2xay1

= —5xy +7xy1 +—1xiyo + —1xiy1

flore )
li

f:= —bx0z0+9x0z1 +—1x120+ —2x121
r 5 —7 1 1 b
7 -8 —1 2
—1 —1 —5 7
7 —1 —1 —5
Ml,l M1,2 1 -2 | =7 8
= 8 —2 1 —7
2 9 —2 2| -1 2
M 2 —2 9 —2 2 —1
2,1 M, 1 —6 —1 2 _a
| —4 2 —6 -1 1 |
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Example : Solving using Koszul-type formula

fo = Xoono + —1lxoyoz1 + —4 x0y120 + 2 Xoy121
+1x1y020 + 2x1y021 + 2x1y120 + —2 x1y121

h = Txoyo+ —8xoy1 + —1x1y0+ 2xiy1
= —=5xy0 +Txoy1 + —1xiy0+ —1xiy1
f:= —bxpz0+9x0z1+ —1x120 + —2x121
5 -7 1 1
7 -8 -1 2
1 1| -5 7
7 ~1 1 —5
M1 | My 1 2|1 8
- 8 —2 1 -7
2 9 2 2| -1 2
Iy 2 _2 9 2 2 1
2,1 M, 1 —6 1 2 4
—4 2 —6 —1 1 ]

Eigenvalues of M,

(1:1;1:1;1:1))=3
((1:3; 1:2; 1:3)) =1

XO.VOZO

XO}’OZO
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Determinantal formulas for mixed multilinear systems

@ We can solve using matrix M(f) (in certain class) [BFMT18]
Det(M(f)) = Resultant(f) - ExtraFactor(f).
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Determinantal formulas for mixed multilinear systems

@ We can solve using matrix M(f) (in certain class) [BFMT18]
@ Smallest possible matrix <> no ExtraFactor(f) (Determinantal Formula)

Det(M(f)) = Resultant(f)

@ Determinantal formulas do not exist for general systems.

Determinantal formulas for mixed multilinear sys. [BFMT21]

@ First det. formulas for mixed sparse systems (different Newton polytopes).
@ Special mixed multilinear sys: {fy,...,} C C[X1]®...9 C[Xa]®C[Y1] ®...Q C[Y5].
Star multilinear system:
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Determinantal formulas for mixed multilinear systems

@ We can solve using matrix M(f) (in certain class) [BFMT18]
@ Smallest possible matrix <> no ExtraFactor(f) (Determinantal Formula)

Det(M(f)) = Resultant(f)

@ Determinantal formulas do not exist for general systems.

Determinantal formulas for mixed multilinear sys. [BFMT21]

@ First det. formulas for mixed sparse systems (different Newton polytopes).

@ Special mixed multilinear sys: {fy,...,} C C[X1]®...9 C[Xa]®C[Y1] ®...Q C[Y5].

Star multinear system: Bipartite bilinear system:
fc € C[X1h ® ... C[Xah @ C[Yj, ]1- fic € CIX; 11 ® C[Yj, 1
® _QOCvih CX] O*O -~
CX ® -+ ® C[Xala O{O C[Yalh C[X2] OX | 1
\ : : B "
O C[Ysh C[Xa] O/O [Ys]
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@ We can solve using matrix M(f) (in certain class) [BFMT18]
@ Smallest possible matrix <> no ExtraFactor(f) (Determinantal Formula)
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@ First det. formulas for mixed sparse systems (different Newton polytopes).

@ Special families of mixed multilinear systems.
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Determinantal formulas for mixed multilinear systems

@ We can solve using matrix M(f) (in certain class) [BFMT18]
@ Smallest possible matrix <> no ExtraFactor(f) (Determinantal Formula)

Det(M(f)) = Resultant(f)

@ Determinantal formulas do not exist for general systems.

Determinantal formulas for mixed multilinear sys. [BFMT21]

@ First det. formulas for mixed sparse systems (different Newton polytopes).
@ Special families of mixed multilinear systems.
@ These systems arise in applications — Multiparameter eigenvalue problem.

Generalized Eigenvalue Problem

([ a5 )]
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Determinantal formulas for mixed multilinear systems

@ We can solve using matrix M(f) (in certain class) [BFMT18]
@ Smallest possible matrix <> no ExtraFactor(f) (Determinantal Formula)

Det(M(f)) = Resultant(f)

@ Determinantal formulas do not exist for general systems.

Determinantal formulas for mixed multilinear sys. [BFMT21]

@ First det. formulas for mixed sparse systems (different Newton polytopes).

@ Special families of mixed multilinear systems.

@ These systems arise in applications — Multiparameter eigenvalue problem.

@ Generalization of the Generalized Eigenvalue Problem
-7 -3 12 2 -7 -1 Vo
Ao + A1 + X =0
-8 =2 13 1 -7 -1 Vi
—-11 -3 —4 0 wo
Ao =0
4 1 -1 -1 wq
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@ Determinantal formulas do not exist for general systems.

Determinantal formulas for mixed multilinear sys. [BFMT21]

@ First det. formulas for mixed sparse systems (different Newton polytopes).

@ Special families of mixed multilinear systems.

@ These systems arise in applications — Multiparameter eigenvalue problem.

@ Generalization of the Generalized Eigenvalue Problem
@ Applications in physics (Sturm-Liouville theory)
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Determinantal formulas for mixed multilinear systems

@ We can solve using matrix M(f) (in certain class) [BFMT18]
@ Smallest possible matrix <> no ExtraFactor(f) (Determinantal Formula)

Det(M(f)) = Resultant(f)

@ Determinantal formulas do not exist for general systems.

Determinantal formulas for mixed multilinear sys. [BFMT21]

@ First det. formulas for mixed sparse systems (different Newton polytopes).
@ Special families of mixed multilinear systems.
@ These systems arise in applications — Multiparameter eigenvalue problem.

@ Generalization of the Generalized Eigenvalue Problem
@ Applications in physics (Sturm-Liouville theory)

|:(—7)\0+12A1—7>\2) (—3)\o+2k1—)\2):| |:V0:|_0

(—8)\0+13/\1 —7)\2) (—2)\0+)\1—/\2) Vi

[ (11 +7M —4X) (=30 —\1) ] [ wo } 0

(420 + A1 — A2) (Mo +2A1 — X2) wi
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Determinantal formulas for mixed multilinear systems

@ We can solve using matrix M(f) (in certain class) [BFMT18]
@ Smallest possible matrix <> no ExtraFactor(f) (Determinantal Formula)

Det(M(f)) = Resultant(f)

@ Determinantal formulas do not exist for general systems.

Determinantal formulas for mixed multilinear sys. [BFMT21]

@ First det. formulas for mixed sparse systems (different Newton polytopes).
@ Special families of mixed multilinear systems.
@ These systems arise in applications — Multiparameter eigenvalue problem.

@ Generalization of the Generalized Eigenvalue Problem
@ Applications in physics (Sturm-Liouville theory)

(=7X+12X —7X) v+ (—3X0+2A1 —X)w =0
(=80 + 131 —7X2) vo+ (—2X0+ A — A2)vi =0
(11 X0+ 7M1 —4X) wo+ (—3X— A1) w1 =0
(Mo +A—X) wo+(Ro+2M —X) wi =0
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Determinantal formulas for mixed multilinear systems

@ We can solve using matrix M(f) (in certain class) [BFMT18]
@ Smallest possible matrix <> no ExtraFactor(f) (Determinantal Formula)

Det(M(f)) = Resultant(f)

@ Determinantal formulas do not exist for general systems.

Determinantal formulas for mixed multilinear sys. [BFMT21]

@ First det. formulas for mixed sparse systems (different Newton polytopes).
@ Special families of mixed multilinear systems.

@ These systems arise in applications — Multiparameter eigenvalue problem.

@ Generalization of the Generalized Eigenvalue Problem
@ Applications in physics (Sturm-Liouville theory)

fii=(—Tho+12M —7X) w+ (—3X+2M — X)wn
fri=(—8Xo+13A1 — TA2) vo+ (—2X0 + M1 — A2) v
fyi= (=11 ho + 7 A1 — 4X2) wo+ (=30 — A1) wy
fii= (420 + M = X2) wo + (ho + 20 — o) w
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Determinantal formulas for mixed multilinear systems

@ We can solve using matrix M(f) (in certain class) [BFMT18]
@ Smallest possible matrix <> no ExtraFactor(f) (Determinantal Formula)

Det(M(f)) = Resultant(f)

@ Determinantal formulas do not exist for general systems.

Determinantal formulas for mixed multilinear sys. [BFMT21]

@ First det. formulas for mixed sparse systems (different Newton polytopes).
@ Special families of mixed multilinear systems.

@ These systems arise in applications — Multiparameter eigenvalue problem.

@ Generalization of the Generalized Eigenvalue Problem
@ Applications in physics (Sturm-Liouville theory)

f = (77A0+12/\177)\2) Vo+(f3/\o+2)\1 7/\2) %1

fri=(=8X+13M —7X2) o+ (—2Xo+ A1 — A2)wn
fri=(=11X+7A —4X) wo+ (=3 X0 — A1) w
far=(4Xo+ A —X2) wo+ (Xo+2M — X2) wi
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Determinantal formulas for mixed multilinear systems

@ We can solve using matrix M(f) (in certain class) [BFMT18]
@ Smallest possible matrix <> no ExtraFactor(f) (Determinantal Formula)

Det(M(f)) = Resultant(f)

@ Determinantal formulas do not exist for general systems.

Determinantal formulas for mixed multilinear sys. [BFMT21]

@ First det. formulas for mixed sparse systems (different Newton polytopes).
@ Special families of mixed multilinear systems.

@ These systems arise in applications — Multiparameter eigenvalue problem.

@ Generalization of the Generalized Eigenvalue Problem
@ Applications in physics (Sturm-Liouville theory)

fi=(=TX+120 —7X) w+(—3X+2M - A)w
fri=(—8Xo+ 130 — 7X) vo + (—2 X0 + A1 — X)) wy
fii= (1100 + 7M1 — 422) wo+ (—3 %0 — A1) Wt
fa:= (420 +A1—X2) wo+ (Mo +2A1 — A2) wa
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Binary form decomposition

Joint work with J.-C. Faugere, L. Perret & E. Tsigaridas.
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Binary form decomposition

Binary form of degree D <— Symmetric tensor of dimension 2 X --- x 2 and order D.

Problem
Given a binary form f of degree D, a; € K C C,

D
f(x.y) = aix'y? € Clx,ylp
i=0

compute \i,..., A\, @1,...,0p P1,..., 03 € Kand r (rank) minimal such that,

r

Foy) =D Nilajx+By)°

j=1

v

Results [BFPT16],[BFPT21]
(ACM'’s SIGSAM Distinguished Student Author Award at ISSAC 2016)

@ Quasi-optimal algorithm to decompose binary forms in 5(D) ops.

@ Tight bounds for the algebraic degree of the decomposition.
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Other applications

Topological data analysis [B., Gafvert, Lesnick '22+]
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@ MPH can be computed using GB. [Carlsson, Singh & Zomorodian '09]
@ In practice, available software too slow for interesting inputs.
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@ We derive complexity bounds for computing MPH.

Soon available: Muphasa (Implemented in C++).

Computational biology [Schwieger, B., Siebert & Haase '20]

@ Grobner-basis-based approach to construct classifiers for Boolean networks.
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