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Multipoint evaluation

Given d complex numbers zi, evaluate all the f(zy).

Root finding

Find all the complex solutions (i of f(z) = 0.
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Problems

Discrete data
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Continuous data

(>
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Evaluation output

= Arbitrary precision
= Finite precision

Light-year: 9460730472 580800 m
9.460 - 10*° m

Root finding output

= Initial point and program for convergence

Newton: g = 2

Tpy1 = Tk — —f,((a;'z))

» |solating disk
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Numerically ill-conditioned root finding

210 —2(222 -1)?=0  [Mignotte 82]
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Outline
Forest of low-precision arithmetic
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Conditioning of root finding

¢ simple root of f CeUCC
in the unit disk neighborhood of ¢

Condition number [Biirgisser 2013]

[W(f+h) =) 1
2 Q)]

R¢ = lim€_>0 MaX| p||<e

Proof: 0= (f+h)(W(f+h)) — f((f))
~ h(¢)+ f (O (f +h) —¥(f)) 6/21



Properties of polynomials

= Small condition number = large isolating disks
[Kantorovitch 1948]

= Random coefficients = small condition number
[Cucker, Krick, Malajovich, Wshebor 2012]

» Random coefficients = large isolating disks
[Hough, Krishnapour, Peres, Virag 2009]
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State of the art: multipoint evaluation

Evaluate f(z) on d points with error in 2™ |ag| < 2™

Horner

ap + z(a1 + 2(- -+ + z(ag—1 + zaq) -+ )

— multipoint evaluation in O(d?m) bit operations
Divide and conquer

» f(zx) = f(z) mod (2 — 2)

— multipoint evaluation in:
= (O(d) arithmetic operations [Fiduccia 1972]

. 5(d(d+ m)) bit operations [van der Hoeven 2008] 8/21



State of the art: multipoint evaluation

Evaluation on the roots of unity w;, = e™/4
[
® ®
[ o
® °
®

— evaluation on wy, in O(dm) using Fast Fourier Transform
[Gauss 1805, Cooley, Tukey 1965, Schonhage 1982]

— multipoint evaluation in O(d3/2m3/2) bit operations

[van der Hoeven 2008]
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State of the art: root finding

[Hubbard, Schleicher, Sutherland 2001]

Newton

Ln+1 = Ln — }f/((?;))

Aberth-Ehrlich variant (1967)
F(z) f(z)

— (z—2z2)(z—2q)

Approximate factorization

R STEE SR LA 7/ / 1\

— approximation in O(d(d + m)) bit operations

Other methods [Schonhage 1982, Pan 2002]

Subdivision, Weierstrass, eigenvalue of companion matrix, ...
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State of the art: root finding

Piecewise linear approximation

AN

N

g

4

— piecewise linear or polynomial with constant degrees

[Boyd 2006, etc.]
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Hyperbolic approximation
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g(z) = f(y+ pz) mod 2™

5(%) polynomials of degree m

12/21



Hyperbolic approximation computation

Do m times
SCALE d coefficients

FFT on d/m roots of unity 13/21
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Hyperbolic approximation complexity

Do m times
SCALE d coefficients
FFT on d/m roots of unity

Scale

= Each: O(dm) bit operations
= Total: O(dm?) bit operations
— Good enough it m is constant
= Total amortized : O(dm) bit operations
— with fast multipoint evaluation or numerical composition

FFT

= Each: 5(%771)
= TJotal: 5(dm) 14/21



INPUT:
= f polynomial of degree d
= d points z;
= precision m

OUTPUT:
= ;. such that

yk — flze)| <2771

Compute m-hyperbolic approximation of f
For each pair of disk D and polynomial g:

QUERY the ng points in D
EVALUATE g on the n; points




= f squarefree polynomial

OUTPUT:
= d root-isolating disks

Compute 1-hyperbolic approximation of f
For each polynomial g:

APPROXIMATE roots of g
COMPUTE enclosing disks
Check if we have d isolating disks 16/21




(dlog(||f]|r)) [New]

INPUT:
= f squarefree polynomial

OUTPUT:
= d root-isolating disks

Compute 2-hyperbolic approximation of f
For each polynomial g:

APPROXIMATE roots of g
COMPUTE enclosing disks
Check if we have d isolating disks 16/21




(dlog(||f]|r)) [New]

= f squarefree polynomial

OUTPUT:
= d root-isolating disks

Compute m-hyperbolic approximation of f
For each polynomial g:

APPROXIMATE roots of g
COMPUTE enclosing disks

Check if we have d isolating disks



(dlog(||f]|r)) [New]

ey |
B V’ijv"& INPUT:
/‘qln‘;}ﬁ?iiéé%"\ = f squarefree polynomial

(Eétj'?’"a’?s‘;;é‘) OUTPUT:

= d root-isolating disks
AT TR COMPLEXITY:
7 N TR0 o

\‘.,‘" (X ""’i’ = O(dm) bit operations

L7 + min O (log(|fI|x)

Compute m-hyperbolic approximation of f
For each polynomial g:

APPROXIMATE roots of g
COMPUTE enclosing disks
Check if we have d isolating disks




Roots distribution

an ill-conditioned
problem in generaly
Trefethen and Bau

X ",.véx/

computation of their zeros»
Bilirgisser, Cucker, Cardozo

[Edelman, Iﬁostla%%] GanGOD § .
..HYPerbollc \LL
[Neﬁ @I condition ﬂ
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Roots distribution

an ill-conditioned
problem in generaly
Trefethen and Bau

For uniform
distribution of
coefficients

For uniform q&i
distribution of ez« Typical polynomials are
roots % well-conditioned for the

v, oL
"oV

Ycomputation of their zeros»
Bilirgisser, Cucker, Cardozo

[Edelman, Iﬁostla%%] @anGOD § .
..HYPerbollc \LL
[Neﬁ @I condition ﬂ
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End of the story?

Ongoing work
f*(2) = lao| + -+ + |aal|2|*

Adaptive approximation

|f(y+pz) —g(2)|| <27 fF(2)

Based on Newton polygon

= Used in MPSolve for initial root module estimation
= Can be used for adaptive repartition of disks

A °

—log(|ax|) .
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Complexity: a geometric problem




Complexity: a geometric problem

Case |a,| =1 @Bﬁw
A
t

n(t) < min(+,d) = O(d) artanh(=y) uniform
Case |a;| = (Z) [M. 2021]
n(t) = O(Vd) = O(d) arctan(-y) uniform
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Thank you!
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