Hidden Structures in Quantum Cryptanalysis

Xavier Bonnetain

December 12, 2019

European Research Council Established by the European Commission

Introduction	
00000	

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Cryptography

Aims at enabling secure communications

Introduction	
00000	

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Cryptography

Aims at enabling secure communications

An adversary appears!

She wants to attack the communication.

Introduction	
00000	

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Cryptography

Aims at enabling secure communications

A quantum adversary appears!

She wants to attack the communication.

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Quantum computing

Classical of	computing		Quantum c	omputing
X	Input		$ x\rangle$	Input
↓ a, b,	Intermediate values		$ a,b,\ldots\rangle$	Intermediate state
$\downarrow \\ y$	Final result		$ert ec{y} \longrightarrow \mathcal{Y}$	Final measurement
		ļ		

Differences

- More possibilities $|0\rangle,\,|1\rangle,\,|0\rangle-|1\rangle\dots$
- Reversible computing
- New operators $H: \ket{b} \mapsto \frac{1}{\sqrt{2}} \left(\ket{0} + (-1)^{b} \ket{1} \right)$

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Quantum Adversary

First model: Classical queries (Q1)

- The adversary can perform quantum computing
- The adversary is restricted to classical queries : $x \mapsto f(x)$

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Quantum Adversary

First model: Classical queries (Q1)

- The adversary can perform quantum computing
- The adversary is restricted to classical queries : $x \mapsto f(x)$

Second model: Quantum queries (Q2)

- The adversary can perform quantum computing
- Can do quantum queries : $\sum_{x} \ket{x} \ket{0} \mapsto \sum_{x} \ket{x} \ket{f(x)}$

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Reference quantum algorithms

Shor's algorithm [Sho94]

Solves the factorization and discrete logarithm problems in polynomial time.

Quantum Search [Gro96]

- Search space of size 2ⁿ, quantum test circuit T_{χ} for χ
- Find **s** such that $\chi(\mathbf{s}) = 1$ in $2^{\mathbf{n}/2}$ iterations of T_{χ}

Quantum Collision search [BHT98]

- $f: \{0,1\}^n \to \{0,1\}^n$, find $x \neq y: f(x) = f(y)$
- Classically: 2^{n/2} operations
- Brassard-Høyer-Tapp: 2^{n/3} operations and 2^{n/3} quantum memory

Introduction	
00000	

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Outline

- **2** The Offline Simon's Algorithm
- **3** Hidden shift algorithms
- 4 Key exchanges

Introduction	Simon's algorithm	The Offline Simon's Algorithm	Hidden shift algorithms	Key exchanges
00000	•000000000	000000000	00000000000000	00000000000

Simon's algorithm ○●○○○○○○○ The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Simon's problem

Simon's problem

- $f: \{0,1\}^n \to \{0,1\}^n$
- $s \in \{0,1\}^n$
- $\forall x, y, f(y) = f(x) \Leftrightarrow x \oplus y \in \{0, s\}$
- f hides the period s
- Goal : find s, given oracle access to f.

Classical resolution

Find a collision, in $\Omega(2^{n/2})$ samples.

Quantum resolution

Simon's algorithm, in $\mathcal{O}\left(\mathbf{n}\right)$ quantum queries, $\mathcal{O}\left(\mathbf{n}^{3}\right)$ classical operations

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Simon's algorithm [Sim94]

Quantum circuit

• Start from $\left|0\right\rangle \left|0\right\rangle$

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Simon's algorithm [Sim94]

- \bullet Start from $\left|0\right\rangle \left|0\right\rangle$
- Apply H: $rac{1}{2^{n/2}}\sum_{x=0}^{2^n-1}\ket{x}\ket{0}$

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Simon's algorithm [Sim94]

- \bullet Start from $\left|0\right\rangle \left|0\right\rangle$
- Apply H: $\frac{1}{2^{n/2}}\sum_{x=0}^{2^n-1}\ket{x}\ket{0}$
- Apply O_f : $rac{1}{2^{n/2}}\sum_{x=0}^{2^n-1} \ket{x}\ket{f(x)}$

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Simon's algorithm [Sim94]

- \bullet Start from $\left|0\right\rangle \left|0\right\rangle$
- Apply H: $\frac{1}{2^{n/2}}\sum_{x=0}^{2^n-1}|x\rangle |0\rangle$
- Apply O_f : $\frac{1}{2^{n/2}}\sum_{x=0}^{2^n-1} \ket{x}\ket{f(x)}$
- Measure the second register: get $f(x_0)$ and project to $\frac{1}{\sqrt{2}}(|x_0\rangle + |x_0 \oplus s\rangle)$

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Simon's algorithm [Sim94]

- \bullet Start from $\left|0\right\rangle \left|0\right\rangle$
- Apply H: $\frac{1}{2^{n/2}}\sum_{x=0}^{2^n-1}|x\rangle |0\rangle$
- Apply O_f : $rac{1}{2^{n/2}}\sum_{x=0}^{2^n-1}\ket{x}\ket{f(x)}$
- Measure the second register: get $f(x_0)$ and project to $\frac{1}{\sqrt{2}}(|x_0\rangle + |x_0 \oplus s\rangle)$
- Reapply H: $\frac{1}{2^{n/2}} \sum_{y=0}^{2^n-1} (-1)^{x_0 \cdot y} \ket{y} + (-1)^{(x_0 \oplus s) \cdot y} \ket{y}$

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Simon's algorithm [Sim94]

Quantum circuit

- \bullet Start from $\left|0\right\rangle \left|0\right\rangle$
- Apply H: $\frac{1}{2^{n/2}}\sum_{x=0}^{2^n-1}|x\rangle |0\rangle$
- Apply O_f : $rac{1}{2^{n/2}}\sum_{x=0}^{2^n-1}\ket{x}\ket{f(x)}$
- Measure the second register: get $f(x_0)$ and project to $\frac{1}{\sqrt{2}}(|x_0
 angle+|x_0\oplus s
 angle)$
- Reapply H: $\frac{1}{2^{n/2}} \sum_{y=0}^{2^n-1} (-1)^{x_0 \cdot y} \ket{y} + (-1)^{(x_0 \oplus s) \cdot y} \ket{y}$
- The state is $rac{1}{2^{n/2}}\sum_{y=0}^{2^n-1}(-1)^{x_0\cdot y}(1+(-1)^{s\cdot y})\ket{y}$

The y_0 we measure must satisfy $1 + (-1)^{s \cdot y_0} \neq 0 \Rightarrow y_0 \cdot s = 0$.

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Simon's algorithm [Sim94]

Simon's problem

- $f: \{0,1\}^n \to \{0,1\}^n$, $s \in \{0,1\}^n$
- $\forall x, y, f(y) = f(x) \Leftrightarrow x \oplus y \in \{0, s\}$
- Goal : find s, given oracle access to f.

Simon's algorithm

- Superposition queries $\sum_{x} \ket{x} \ket{f(x)}$
- Sample $y: \mathbf{s} \cdot y = 0$
- Repeat $O(\mathbf{n})$ times and solve the system

Generalizations

- Works if $\forall x, y, f(y) = f(x) \Leftarrow x \oplus y \in \{0, s\}$
- Works with multiple periods

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Simon-based cryptanalysis

General idea

Create a periodic function from a cipher, whose period is a secret.

Characteristics

- Polynomial time, only $\mathcal{O}(n)$ queries
- Require quantum queries

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

The Even-Mansour Cipher

Built from a random permutation $P : \{0,1\}^n \rightarrow \{0,1\}^n$.

$$E_{k_1,k_2}(x)=k_2\oplus P(x\oplus k_1)$$

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Classical collision attack

Let
$$f(x) = E_{\mathbf{k_1}, k_2}(x) \oplus P(x) = k_2 \oplus P(x \oplus \mathbf{k_1}) \oplus P(x)$$

It satisfies $f(x \oplus \mathbf{k_1}) = f(x)$: a collision of f yields $\mathbf{k_1}$ w.h.p.

Attack Cost

• Time 2^{n/2}, memory 1

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Classical data-time tradeoff

Let $g(y) = P(y) \oplus P(y \oplus 1)$, then

$$g(x \oplus \mathbf{k_1}) = E_{\mathbf{k_1}, k_2}(x) \oplus E_{\mathbf{k_1}, k_2}(x \oplus \mathbf{1})$$

Attack

- Collect *D* values of $E_{\mathbf{k}_1,k_2}(x) \oplus E_{\mathbf{k}_1,k_2}(x \oplus \mathbf{1})$
- Store a database \mathcal{D} of size D
- Find y such that $g(y) \in \mathcal{D}$, in time $2^n/D$
- With good probability $y = x \oplus \mathbf{k_1}$

Trade-off curve: $T \cdot D = 2^{n}$, uses D memory.

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Quantum attack [KM12]

Quantum attack

$$f(x) = E_{\mathbf{k}_1, k_2}(x) \oplus P(x)$$
 satisfies $f(x \oplus \mathbf{k}_1) = f(x)$.

Even-Mansour is broken in polynomial time in the Q2 model.

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Simon-based cryptanalysis

- Distinguishers on Feistel constructions
- Multiple quantum slide attacks
- AEZ
- Multiple modes of operation
- Quantum related-key attacks
- . . .

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Simon-based cryptanalysis

- Distinguishers on Feistel constructions
- Multiple quantum slide attacks
- AEZ
- Multiple modes of operation
- Quantum related-key attacks
- . . .

Require quantum queries

Introduction	Simon's algorithm	The Offline Simon's Algorithm	Hidden shift algorithms
00000	0000000000	●00000000	00000000000000

Key exchanges

The Offline Simon's Algorithm

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Example: FX construction

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Example: FX construction

Quantum attack: "Grover-meet-Simon" [LM17]

- Quantum search for **k**

Total time is

$$\underbrace{poly(\mathbf{n})}_{\text{Simon's algo}} \times \mathbf{G}$$

$$\underbrace{\frac{2^{|\mathbf{k}|/2}}{\text{Grover's iterates}}}$$

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Our remark on FX [BHNSS19]

The function:

$$f_z(x) = \mathsf{FX}_{\mathbf{k}_1, k_2, \mathbf{k}}(x) \oplus E_z(x)$$

has $f_z(x \oplus \mathbf{k_1}) = f_z(x)$ if $z = \mathbf{k}$ (the good one). f_z is a sum:

$$f_z(x) = \underbrace{\mathsf{FX}_{\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}}(x)}_{\text{Independent}} \oplus \underbrace{E_z(x)}_{\text{Grover search}}$$

of z: online
function f
function g

For one query to f_z

- Do one quantum query to $FX_{k_1,k_2,k}(x)$ (fixed!)
- Add $E_z(x)$ (only depends on public information)

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

A new test algorithm

- **1** Begin with $\mathcal{O}(\mathbf{n})$ states of the form $\sum_{x \in \{0,1\}^n} |x\rangle |f(x)\rangle$
- 2 Make queries to g and build: $\sum_{x \in \{0,1\}^n} |x\rangle | (f \oplus g)(x) \rangle$
- With Simon's algorithm, obtain a single output bit: whether *f* ⊕ *g* has a period or not
- Revert the computations, query g again, put the "sample states" back to

 $\sum_{x \in \{0,1\}^{\mathsf{n}}} |x\rangle |f(x)\rangle$

This emulates a reversible quantum circuit that tests for the periodicity of $f \oplus g$, with only preprocessed queries to f.

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Our Q2 attack on FX

The queries to $FX_{\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}}(x)$ are made beforehand.

Test function

- Fetch the sample states $\sum_{x \in \{0,1\}^n} |x\rangle |\mathsf{FX}_{\mathbf{k}_1,k_2,\mathbf{k}}(x)\rangle$
- Create the Simon states $\sum_{x \in \{0,1\}^n} |x\rangle |\mathsf{FX}_{\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}}(x) \oplus E_z(x) \rangle$
- Test if there is a period
- Revert the operations and get back the sample states

Quantum search cost

- Time unchanged
- Queries reduced from $\mathcal{O}\left(\mathbf{n}2^{|\mathbf{k}|/2}\right)$ to $\mathcal{O}\left(\mathbf{n}\right)$
- Needs $\mathcal{O}\left(\mathbf{n}^{2}\right)$ Qubits

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Back to the Even-Mansour cipher

Producing the sample states with Q1 queries is possible. . . in time 2^n , with the whole codebook.

 \implies not an attack.

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Q1 attack on Even-Mansour

We separate k_1 in two parts.

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Q1 attack on Even-Mansour (ctd.)

$$f(x)=E_{k_1,k_2}(x\|0^{\mathsf{n}-\mathsf{u}})\oplus P(x\|\mathsf{k}_1^{(2)})$$
 has period $\mathsf{k}_1^{(1)}$

• Produce the sample states $\sum_{x} |x\rangle |E_{k_1,k_2}(x||0^{n-u})\rangle$ • Search the good $\mathbf{k}_1^{(2)}$ (**n** - **u** bits)

Data: 2^{u}

Memory: $\mathcal{O}(nu)$

Time: $2^{u} + 2^{(n-u)/2}$

Balances when Data = Time = $2^{n/3}$

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Q1 attack on the FX construction

We do the same, with more guesses in Grover's algorithm: Data = Time = $2^{(n+m)/3}$.

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Summary

The offline approach

We reuse the quantum queries for each iteration of Simon's algorithm when the periodic function allows it.

Consequences

- Drastically reduces the number of quantum queries.
- Allows to convert a Q2 attack into a Q1 attack.
- Provides the best known Q1 attacks
| Intro | du | cti | on | |
|-------|----|-----|----|--|
| 000 | 00 | | | |

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms •••••••• Key exchanges

Hidden shift algorithms

Xavier Bonnetain

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms ○●○○○○○○○○○○○○ Key exchanges

Avoiding Simon's attacks [AR17]

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms ○●○○○○○○○○○○○○ Key exchanges

Avoiding Simon's attacks [AR17]

Properties

•
$$f(x) = EM_{+}(x) - EM_{+}(x+1)$$
 $g(x) = P(x) - P(x+1)$

•
$$f(x) = g(x + k_1)$$

Security

- No (known) polynomial algorithm
- Hidden shift algorithm!

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Hidden shift problem

Hidden shift problem

- $f,g:\mathcal{G} \to X$ injective
- $s \in \mathcal{G}$

•
$$f(x) = g(x + s)$$

• Goal : find s, given oracle access to f and g.

Classical resolution

Find a collision, in $\Omega(2^{n/2})$ samples.

Easy cases

- $\mathcal{G} = (\mathbb{Z}/(2))^n$: Simon's algorithm
- f = g: Shor's algorithm

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Labeled qubits (in $\mathbb{Z}/(2^n)$)

• Start with $\left|0\right\rangle \left|0\right\rangle \left|0\right\rangle$

Xavier Bonnetain

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Labeled qubits (in $\mathbb{Z}/(2^n)$)

• Start with
$$|0\rangle |0\rangle |0\rangle$$

• Apply
$$H : \sum_{b=0}^{1}, \sum_{x=0}^{2^{n-1}} |b\rangle |x\rangle |0\rangle$$

Xavier Bonnetain

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Labeled qubits (in $\mathbb{Z}/(2^n)$)

- Start with $|0\rangle |0\rangle |0\rangle$ Apply $H : \sum_{b=0}^{1}, \sum_{x=0}^{2^{n}-1} |b\rangle |x\rangle |0\rangle$
- Apply the quantum oracles

$$\sum_{x} \ket{0} \ket{x} \ket{f(x)} + \ket{1} \ket{x} \ket{g(x)}$$

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Labeled qubits (in $\mathbb{Z}/(2^n)$)

- Start with $|0\rangle |0\rangle |0\rangle$ Apply $H : \sum_{h=0}^{1} \sum_{x=0}^{2^{n}-1} |b\rangle |x\rangle |0\rangle$
- Apply the quantum oracles

$$\sum_{x} \ket{0} \ket{x} \ket{f(x)} + \ket{1} \ket{x} \ket{g(x)}$$

• Measure in the last register $y = f(x_0) = g(x_0 + s)$ $|0\rangle |x_0\rangle + |1\rangle |x_0 + s\rangle$

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Labeled qubits (in $\mathbb{Z}/(2^n)$)

- Start with $|0\rangle |0\rangle |0\rangle$ Apply $H : \sum_{h=0}^{1} \sum_{x=0}^{2^{n}-1} |b\rangle |x\rangle |0\rangle$
- Apply the quantum oracles

$$\sum_{x} \ket{0} \ket{x} \ket{f(x)} + \ket{1} \ket{x} \ket{g(x)}$$

- Measure in the last register $y = f(x_0) = g(x_0 + s)$ $|0\rangle |x_0\rangle + |1\rangle |x_0 + s\rangle$
- Apply a quantum Fourier Transform

$$\sum_{\ell} \exp\left(2i\pi \frac{x_0\ell}{2^n}\right) \left|0\right\rangle \left|\ell\right\rangle + \exp\left(2i\pi \frac{(x_0+s)\ell}{2^n}\right) \left|1\right\rangle \left|\ell\right\rangle$$

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Labeled qubits (in $\mathbb{Z}/(2^n)$)

- Start with $|0\rangle |0\rangle |0\rangle$ Apply $H : \sum_{h=0}^{1} \sum_{x=0}^{2^{n}-1} |b\rangle |x\rangle |0\rangle$
- Apply the quantum oracles

$$\sum_{x} \ket{0} \ket{x} \ket{f(x)} + \ket{1} \ket{x} \ket{g(x)}$$

- Measure in the last register $y = f(x_0) = g(x_0 + s)$ $|0\rangle |x_0\rangle + |1\rangle |x_0 + s\rangle$
- Apply a guantum Fourier Transform

$$\sum_{\ell} \exp\left(2i\pi \frac{x_0\ell}{2^n}\right) \left|0\right\rangle \left|\ell\right\rangle + \exp\left(2i\pi \frac{(x_0+s)\ell}{2^n}\right) \left|1\right\rangle \left|\ell\right\rangle$$

• Measure l

$$|\psi_\ell
angle = |0
angle + \exp\left(2i\pirac{s\ell}{2^n}
ight)|1
angle$$

Xavier Bonnetain

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Combining qubits

Labeled qubits

•
$$|\psi_{\ell}\rangle = |0\rangle + \exp\left(2i\pi \frac{s\ell}{2^n}\right)|1\rangle$$

•
$$|\psi_{2^{n-1}}\rangle = |0\rangle + (-1)^{s}|1\rangle$$

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Combining qubits

Labeled qubits

•
$$|\psi_{\ell}\rangle = |0\rangle + \exp\left(2i\pi \frac{s\ell}{2^n}\right)|1\rangle$$

•
$$|\psi_{2^{n-1}}\rangle = |0\rangle + (-1)^{s}|1\rangle$$

Combination: CNOT [Kup05]

$$\begin{array}{c|c} |\psi_{\ell_1}\rangle & & |\psi_{\ell}\rangle \\ |\psi_{\ell_2}\rangle & & & \triangleright \end{array} \qquad (\ell_1, \ell_2) \mapsto \ell_1 \pm \ell_2 \mod 2^n$$

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Kuperberg's first algorithm [Kup05]

Look for partial collisions

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Kuperberg's first algorithm [Kup05]

Look for partial collisions

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Kuperberg's first algorithm [Kup05]

Look for partial collisions

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Kuperberg's first algorithm [Kup05]

Look for partial collisions

Introduction	
00000	

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Summary

Algorithms principles

- Produce random $|\psi_{\ell}\rangle = |0
 angle + \exp\left(2i\pi\frac{s\ell}{2^n}\right)|1
 angle$
- $\bullet\,$ Combine them to converge to $\ket{\psi_{2^{n-1}}}=\ket{0}+(-1)^{s}\ket{1}$

Complexity

Asymptotic complexity
$$\widetilde{\mathcal{O}}\left(2^{\sqrt{2\log_2(3)n}}\right)$$
 quantum time and memory

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

New results

Algorithm Improvements

More efficient recovery of the other bits of s, gain $\mathcal{O}(\mathbf{n})$.

Simulations

Heuristic complexity of $0.7 \times 2^{1.8\sqrt{n}}$ quantum time and memory.

Simon-meets-Kuperberg

More efficient algorithm for $(\mathbb{Z}/(2^w))^p$

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Regev's variant [Reg04]

Same principles, different combination method.

• Start with
$$|\psi_{\ell_1}\rangle, \dots |\psi_{\ell_k}\rangle$$

$$\bigotimes_{j} \left| \psi_{\ell_{j}} \right\rangle = \sum_{b_{j} \in \{0,1\}} \exp \left(2i\pi \frac{s}{2^{n}} \left(\sum \ell_{j} b_{j} \right) \right) \left| b_{1} \right\rangle \dots \left| b_{k} \right\rangle$$

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Regev's variant [Reg04]

Same principles, different combination method.

• Start with $|\psi_{\ell_1}\rangle, \dots |\psi_{\ell_k}\rangle$

$$\bigotimes_{j} \left| \psi_{\ell_{j}} \right\rangle = \sum_{b_{j} \in \{0,1\}} \exp\left(2i\pi \frac{s}{2^{n}} \left(\sum \ell_{j} b_{j}\right)\right) \left| b_{1} \right\rangle \dots \left| b_{k} \right\rangle$$

• Compute $\sum_{j} \ell_j b_j \mod 2^m$

$$\sum_{b_j \in \{0,1\}} \exp\left(2i\pi \frac{s}{2^n} \left(\sum \ell_j b_j\right)\right) |b_1\rangle \dots |b_k\rangle \left|\sum \ell_j b_j \mod 2^m\right\rangle$$

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Regev's variant [Reg04]

Same principles, different combination method.

• Start with $|\psi_{\ell_1}\rangle, \dots |\psi_{\ell_k}\rangle$

$$\bigotimes_{j} \left| \psi_{\ell_{j}} \right\rangle = \sum_{b_{j} \in \{0,1\}} \exp\left(2i\pi \frac{s}{2^{n}} \left(\sum \ell_{j} b_{j}\right)\right) \left| b_{1} \right\rangle \dots \left| b_{k} \right\rangle$$

• Compute $\sum_{j} \ell_j b_j \mod 2^m$

$$\sum_{b_j \in \{0,1\}} \exp\left(2i\pi \frac{s}{2^n} \left(\sum \ell_j b_j\right)\right) |b_1\rangle \dots |b_k\rangle \left|\sum \ell_j b_j \mod 2^m\right\rangle$$

• Measure a value V

$$\sum_{b_j \in \{0,1\}, \sum_j \ell_j b_j \mod 2^m = V} \exp\left(2i\pi \frac{s}{2^n} \left(\sum \ell_j b_j\right)\right) |b_1\rangle \dots |b_k\rangle$$

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Regev's variant [Reg04]

• Measure a value V

$$\sum_{b_j \in \{0,1\}, \sum_j \ell_j b_j \mod 2^m = V} \exp\left(2i\pi \frac{s}{2^n} \left(\sum \ell_j b_j\right)\right) |b_1\rangle \dots |b_k\rangle$$

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Regev's variant [Reg04]

• Measure a value V

$$\sum_{b_j \in \{0,1\}, \sum_j \ell_j b_j \mod 2^m = V} \exp\left(2i\pi \frac{s}{2^n} \left(\sum \ell_j b_j\right)\right) |b_1\rangle \dots |b_k\rangle$$

 \bullet Find two solutions $(b_1,\ldots,b_k),(b'_1,\ldots,b'_k)$ of

$$\sum_{j} \ell_j b_j \mod 2^m = V$$

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Regev's variant [Reg04]

• Measure a value V

$$\sum_{b_j \in \{0,1\}, \sum_j \ell_j b_j \mod 2^m = V} \exp\left(2i\pi \frac{s}{2^n} \left(\sum \ell_j b_j\right)\right) |b_1\rangle \dots |b_k\rangle$$

• Find two solutions $(b_1,\ldots,b_k),(b'_1,\ldots,b'_k)$ of

$$\sum_{j} \ell_j b_j \mod 2^m = V$$

• Project on them

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Regev's variant [Reg04]

• Measure a value V

$$\sum_{b_j \in \{0,1\}, \sum_j \ell_j b_j \mod 2^m = V} \exp\left(2i\pi \frac{s}{2^n} \left(\sum \ell_j b_j\right)\right) |b_1\rangle \dots |b_k\rangle$$

• Find two solutions $(b_1,\ldots,b_k),(b_1',\ldots,b_k')$ of

$$\sum_{j} \ell_j b_j \mod 2^m = V$$

- Project on them
- Map (b_1,\ldots,b_k) to 0, (b_1',\ldots,b_k') to 1

$$|0
angle+\exp\left(2i\pirac{s}{2^n}\left(\sum\ell_jb'_j-\sum\ell_jb_j
ight)
ight)|1
angle$$

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Regev's variant [Reg04]

• Measure a value V

$$\sum_{b_j \in \{0,1\}, \sum_j \ell_j b_j \mod 2^m = V} \exp\left(2i\pi \frac{s}{2^n} \left(\sum \ell_j b_j\right)\right) |b_1\rangle \dots |b_k\rangle$$

• Find two solutions $(b_1,\ldots,b_k),(b_1',\ldots,b_k')$ of

$$\sum_{j} \ell_j b_j \mod 2^m = V$$

- Project on them
- Map (b_1,\ldots,b_k) to 0, (b'_1,\ldots,b'_k) to 1

$$|0
angle+\exp\left(2i\pirac{s}{2^{n}}\left(\sum\ell_{j}b_{j}^{\prime}-\sum\ell_{j}b_{j}
ight)
ight)|1
angle$$

• New labeled qubit $|\psi_\ell\rangle$, with $\ell = \sum \ell_j b'_j - \sum \ell_j b_j$, $2^m |\ell|$

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Pipeline of routines

Routine

- Input: $\ket{\psi_{\ell_1}}, \ldots \ket{\psi_{\ell_k}}, m$
- Output: $|\psi_\ell
 angle$, $2^m|\ell$
- Needs to compute the solutions of $\sum_{j} \ell_j b_j \mod 2^m = V$

Algorithm cost [CJS14]

- $\widetilde{\mathcal{O}}\left(2\sqrt{2n\log_2(n)}\right)$ quantum time and queries
- $\mathcal{O}(\mathbf{n})$ quantum memory

Introduction	Simon's algorithm	The Offline Simon's Algorithm	Hidden shift algorithms	Key exchange
00000	000000000	000000000	000000000000000000000000000000000000000	000000000

New tradeoffs

Algorithm cost

- Number of queries: increases with n/k
- Classical cost: increases with k

$$L(\alpha, c) = 2^{(c+o(1))\mathbf{n}^{\alpha}\log(\mathbf{n})^{1-\alpha}}$$

Subset-sum algorithm of dimension k in 2^{bk}

Tradeoffs

- Minimal classical cost: $L(1/2, \sqrt{b})$
- Tradeoff classical $L(1 \alpha, *)$, quantum $L(\alpha, *)$ ($\alpha < 1/2$)
- Minimal quantum cost: $\mathcal{O}(\mathbf{n}^{\alpha+1})$, with classical $\widetilde{\mathcal{O}}(2^{b\mathbf{n}/\alpha})$ $(\alpha \geq 1)$

Introduction
00000

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Summary

Hidden shift problem

$$f,g:\mathcal{G} o X, f(x) = g(x+s)$$

Many tradeoffs

- Most time-efficient: $2^{\sqrt{2n}}$ [Kup13]
- Can trade between classical and quantum time, classical memory, quantum queries
- Even a small quantum computer reduces the cost

Special cases

- $\mathcal{G} = (\mathbb{Z}/(2))^n$: Simon's algorithm
- Intermediate case $\mathcal{G} = \left(\mathbb{Z}/(2^w)\right)^p$
- f = g: Shor's algorithm

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Hidden shift Cryptanalysis

General idea

Create from a cipher two functions that fullfill f(x) = g(x + s).

Applications

- Ciphers with modular addition instead of xors
- Polynomial MACs
- Offline variant possible

Numerical estimates for Even-Mansour-like constructions

- n = 128, 16 bits of security
- $\mathbf{n} = 1600$, 56 bits of security

Introduction	Simon's algorithm	The Offline Simon's Algorithm	Hidden shift algorithms	Key exchanges
00000	000000000	000000000	0000000000000	•0000000000

Key exchanges

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges ○●○○○○○○○○

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges ○●○○○○○○○○

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges ○●○○○○○○○○

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Diffie-Hellman Key Exchange

Protocol

Security

$$(g, [\alpha]g) \rightarrow \alpha$$

Xavier Bonnetain
Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Quantum Security of Diffie-Hellman

Discrete log

$$(g, [\alpha]g) \rightarrow \alpha$$

Hidden subgroup

• $f(x,y) = [x]g + [y][\alpha]g$

•
$$[\alpha]g = [1]([\alpha]g)$$

•
$$f(x, y) = f(x + \alpha, y - 1)$$

Broken with Shor's algorithm.

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Shor's algorithm [Sho94]

Shor's problem

- $f:\mathbb{Z}\to\mathbb{Z}$
- $r \in \mathbb{Z}$
- $\forall x, f(x) = f(x+r)$
- f hides the period r
- $r < 2^n$
- Goal : find r, given oracle access to f.

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Shor's circuit (f(x) = f(x + r))

Quantum circuit

• Start from $\left|0\right\rangle \left|0\right\rangle$

Measure biaised toward ℓ such that $\frac{r\ell}{2^n}$ is close to an integer.

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Shor's circuit (f(x) = f(x + r))

Quantum circuit

- Start from $\left|0\right\rangle \left|0\right\rangle$
- Apply H : $\sum_{x} \ket{x} \ket{0}$

Measure biaised toward ℓ such that $\frac{r\ell}{2^n}$ is close to an integer.

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Shor's circuit (f(x) = f(x + r))

Quantum circuit

- \bullet Start from $\left|0\right\rangle \left|0\right\rangle$
- Apply $H: \sum_{x} \ket{x} \ket{0}$
- Apply the oracle $\sum_{x} \ket{x} \ket{f(x)}$

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Shor's circuit (f(x) = f(x + r))

Quantum circuit

- \bullet Start from $\left|0\right\rangle \left|0\right\rangle$
- Apply $H: \sum_{x} \ket{x} \ket{0}$
- Apply the oracle $\sum_{x} \ket{x} \ket{f(x)}$
- Measure the second register $\sum_{i=0}^{\alpha} |x_0 + jr\rangle$

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Shor's circuit (f(x) = f(x + r))

Quantum circuit

- \bullet Start from $\left|0\right\rangle \left|0\right\rangle$
- Apply $H: \sum_{x} \ket{x} \ket{0}$
- Apply the oracle $\sum_{x} \ket{x} \ket{f(x)}$
- Measure the second register $\sum_{i=0}^{\alpha} |x_0 + jr\rangle$

• Apply a QFT
$$\sum_{j=0}^{\alpha} \sum_{\ell} \exp\left(2i\pi \frac{(x_0+jr)\ell}{2^n}\right) |\ell\rangle$$

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Shor's circuit (f(x) = f(x + r))

Quantum circuit

- \bullet Start from $\left|0\right\rangle \left|0\right\rangle$
- Apply $H: \sum_{x} \ket{x} \ket{0}$
- Apply the oracle $\sum_{x} \ket{x} \ket{f(x)}$
- Measure the second register $\sum_{i=0}^{\alpha} |x_0 + jr\rangle$
- Apply a QFT $\sum_{j=0}^{\alpha} \sum_{\ell} \exp\left(2i\pi \frac{(x_0+jr)\ell}{2^n}\right) |\ell\rangle$
- Amplitude of ℓ :

$$\sum_{j=0}^{\alpha} \exp\left(2i\pi \frac{jr\ell}{2^n}\right)$$

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Shor's algorithm

Shor's problem

Given f such that
$$f(x) = f(x + r)$$
, find r.

Summary

- Sample biaised values
- Recover r in O(1) queries
- Generalizes to any abelian group

Applications

Breaks discrete log and factoring

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

A Dillema

The problem

- Commutation allows key exchange
- Commutative groups are too easy

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

A Dillema

The problem

- Commutation allows key exchange
- Commutative groups are too easy

Commutative group action

- G a commutative group
- X a set

•
$$*: G \times X \to X$$

•
$$g * (g' * x) = (gg') * x$$

Hard homogeneous space [Cou96]

- Given g, x, computing g * x is easy
- Given x, g * x, computing g is hard

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Group action Diffie-Hellman

Examples of schemes

- Ordinary isogeny-based schemes
- CSIDH
- But not SIKE

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Group action Diffie-Hellman

Protocol

Examples of schemes

- Ordinary isogeny-based schemes
- CSIDH
- But not SIKE

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Group action Diffie-Hellman

Protocol

Examples of schemes

- Ordinary isogeny-based schemes
- CSIDH
- But not SIKE

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Group action Diffie-Hellman

Protocol

Examples of schemes

- Ordinary isogeny-based schemes
- CSIDH
- But not SIKE

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Attacking the commutative group action

Inverting the group action

$$(\mathbf{x}, \alpha * \mathbf{x}) \to \alpha$$

A Hidden Shift!

•
$$f(z) = z * x$$

•
$$g(z) = z * (\alpha * x)$$

•
$$f(z+\alpha) = g(z)$$

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Numerical estimates for CSIDH

Claimed security

For $p\sim 512$ bits: $\simeq 2^{81}$ quantum operations, 2^{128} classical operations

A tradeoff

Attack in 2^{67} quantum operations, 2^{86} classical memory and operations

Safe instances

 $p\sim 2000$ bits: 2^{80} quantum operations, 2^{78} classical operations, 2^{49} classical memory

Simon's algorithm

The Offline Simon's Algorithm

Hidden shift algorithms

Key exchanges

Conclusion

New quantum algorithms

- The offline approach
- Improvements and tradeoffs for hidden shift algorithms

Many cryptanalyses

- Many instances of hidden structure scenarios
- Hidden structures are exploitable even with classical queries