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Introduction

Let (A, B) be the ideal generated by A and B (A, B € K[X, Y]).
e Given P € K[X, Y], check if P € (A, B).
(ideal membership test)

o Compute a normal form of P € K[X, Y]/(A, B).
(computation in the quotient algebra)
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e Fast Grobner basis algorithms rely on linear algebra (ex: F4,
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Introduction

Let (A, B) be the ideal generated by A and B (A, B € K[X, Y]).
e Given P € K[X, Y], check if P € (A, B).
(ideal membership test)

o Compute a normal form of P € K[X, Y]/(A, B).
(computation in the quotient algebra)

Classical solution using Grobner bases.

e Fast Grobner basis algorithms rely on linear algebra (ex: F4,
F5...)
@ Can we do it with polynomial arithmetic?

o Given a Grobner basis G, can we reduce P modulo G faster?
o Are these ideas useful to compute G faster?
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Introduction

Main result

For generic ideals in two variables, reduction is possible with
quasi-optimal complexity.

If A,B are given in total degree and if we use the
degree-lexicographic order, then the Grobner basis can also be
computed efficiently.

References
@ van der Hoeven, L. Fast reduction of bivariate polynomials
with respect to sufficiently regular Grébner bases (ISSAC '18).
@ van der Hoeven, L. Fast Grobner basis computation and

polynomial reduction for generic bivariate ideals (to appear in
AAECC).
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© Key ingredients
@ Dichotomic selection strategy
@ Truncated basis elements
@ Rewriting the equation

© Vanilla Grobner bases
@ Definition
@ Terse representation
@ Reduction algorithm

© Case of the grevlex order
@ Presentation of the setting
@ Concise representation
@ Reduction algorithm
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Key ingredients Dichotomic selection strategy
Truncated basis elements
Rewriting the equation

Presentation of the problem

olead. monom. of G
o K-basis of K[X, Y]//

o A, B: O(n?) coefficients
e K[X, Y]/I: dimension O(n?)
e G: O(n®) coefficients (O(n?) for each G;)

Reduction using G needs at least O(n3) == reduction with less
information?
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Key ingredients Dichotomic selection strategy
Truncated basis elements
Rewriting the equation

Presentation of the problem

Theorem (van der Hoeven — ACA 2015)

The extended reduction of P modulo G can be computed in
quasi-linear time for the size of the equation

PZZQ,‘Gf-i-R
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Presentation of the problem

Theorem (van der Hoeven — ACA 2015)

The extended reduction of P modulo G can be computed in
quasi-linear time for the size of the equation

PZZQ,‘Gf-i-R

o But this equation has size ©(n?) and we would like to achieve
O(n?) complexity. . .

Joris van der Hoeven and Robin Larrieu Reduction for generic bivariate ideals



Key ingredients Dichotomic selection strategy
Tru asis elements
Rewri he equation

Presentation of the problem

Theorem (van der Hoeven — ACA 2015)

The extended reduction of P modulo G can be computed in
quasi-linear time for the size of the equation

P=> QG +R

@ But this equation has size ©(n3) and we would like to achieve
O(n?) complexity. . .
@ —> Somehow reduce the size of the equation.
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Key ingredients Dichotomic selection strategy
Truncated basis elements
Rewriting the equation

Dichotomic selection strategy

The extended reduction is not unique: several ways to reduce each
term.

@ The remainder is unique if G is a Grobner basis.

@ The quotients depend on a selection strategy.
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Dichotomic selection strategy

The extended reduction is not unique: several ways to reduce each
term.

@ The remainder is unique if G is a Grobner basis.

@ The quotients depend on a selection strategy.

e @ n/2 quotients of degree d
[ X X ] .

coe @ n/4 quotients of degree 2d
[ X X ]

b @ n/8 quotients of degree 4d
[ X X J

[ X X J

[ X X J ° :

[ X X ]

= The degree of the quotients is controlled.
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Key ingredients Dichotomic selection strategy
Truncated basis elements
Rewriting the equation

Truncated basis elements

What is 125231546432 quo 12358 748151 7
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Truncated basis elements

What is 125231546432 quo 12358748151 7
If we know the size of the quotient, then only a few head terms are
relevant.
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Truncated basis elements

What is 125231546432 quo 12358748151 7
If we know the size of the quotient, then only a few head terms are
relevant.
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Key ingredients Dichotomic selection strategy
Truncated basis elements
Rewriting the equation

Truncated basis elements

What is 125231546432 quo 12358748151 7
If we know the size of the quotient, then only a few head terms are

relevant.
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With the dichotomic selection strategy, G* = (GF,...,GY)
requires only O(n?) coefficients.
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Key ingredients Dichotomic selection stra
Truncated basis elements
Rewriting the equation

Rewriting the equation

P-> QG ~P-> Q,-Gi# up to a certain precision. We need to
increase this precision to continue the computation.
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Rewriting the equation

P-> QG ~P-> Q,-Gi# up to a certain precision. We need to
increase this precision to continue the computation.

The Grobner basis is generated by A and B =—> redundant
information.
There must be some relations between the G;.
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Rewriting the equation

P-> QG ~P-> Q,-Gi# up to a certain precision. We need to
increase this precision to continue the computation.

The Grobner basis is generated by A and B =—> redundant
information.
There must be some relations between the G;.

Assume there is Z; C {0,...,n} \ {i} and (small) polynomials a;
such that G; = 3 ;7. 3;G;.
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Rewriting the equation

P-> QG ~P-> Q,-Gi# up to a certain precision. We need to
increase this precision to continue the computation.

The Grobner basis is generated by A and B =—> redundant
information.
There must be some relations between the G;.

Assume there is Z; C {0,...,n} \ {i} and (small) polynomials a;
such that G; = 3 ;7. 3;G;.
Assume also that for j € 7;, GJ# has higher precision than GI-#.
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Key ingredients Dichotomic selection strategy
Truncated basis elements
Rewriting the equation

Rewriting the equation

P-> QG ~P-> Q,-Gi# up to a certain precision. We need to
increase this precision to continue the computation.

The Grobner basis is generated by A and B =—> redundant
information.
There must be some relations between the G;.

Assume there is Z; C {0,...,n} \ {i} and (small) polynomials a;
such that G; = 3 ;7. 3;G;.

Assume also that for j € 7;, GJ# has higher precision than GI-#.
Then replacing Q,-Gi# by ZjeI,— Q,-aJ-Gj# increases the precision.
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Vanilla Grébner bases

Outline

© Vanilla Grébner bases
@ Definition
@ Terse representation
@ Reduction algorithm
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Terse representation
Reduction algorithm
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Definition
Vanilla Grobner bases Terse representation
Reduction algorithm

Definition: Vanilla Grobner stairs

We consider the term orders < (k € N*) as the weighted-degree
lexicographic order with weights (X : 1, Y : k).
Vanilla Grobner stairs

The monomials below the stairs are the minimal elements with
respect to <y
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Example for k = 4 and an ideal / of degree D = 237

Joris van der Hoeven and Robin Larrieu Reduction for generic bivariate ideals



Definition
Vanilla Grobner bases Terse representation
Reduction algorithm

Definition: Retractive property

Retractive property

let Z :={0,1,n} . The retractive
property means that for any i < n we have a linear combination

G=)Y GCj G

jeT
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Definition
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Definition: Retractive property

Retractive property

For ¢ € N*, let Z, := {0,1, n} U/N N (0, n). The retractive
property means that for any i/, ¢ < n we have a linear combination

Gi = Z Ci,j,ﬂc;j with degk C’.d‘f = O(kf)
JEL,
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Definition: Retractive property

Retractive property

For ¢ € N*, let Z, := {0,1, n} U/N N (0, n). The retractive
property means that for any i/, ¢ < n we have a linear combination

Gi = Z Ci,j,ﬂc;j with degk C’.d‘f = O(k[)
JEL,

More precisely, deg, Cij, < k(2¢ —1).
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Definition: Retractive property

Retractive property

For ¢ € N*, let Z, := {0,1, n} U/N N (0, n). The retractive
property means that for any i/, ¢ < n we have a linear combination

G = Z Ci,j,EGj with degk CiJj = O(k[)
JEL,

More precisely, deg, Cij, < k(2¢ —1).

A Grobner basis for the k-order is vanilla if it is a vanilla Grobner
stairs and has the retractive property.

Conjecture: vanilla Grobner bases are generic

Experimentally, for generators chosen at random, and for various
term orders, the Grobner basis is vanilla.
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Definition
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Reduction algorithm

Terse representation

Proposition

With the dichotomic selection strategy and with

pi = max(2’ dividing i), we have degy Q; < p; and degy Q; < kp;
so deg, Qi < 2kp;.

Terse representation
Vanilla Grobner bases admit a terse representation constituted of:

o G :=G;forie{0,1,n}.
° G,-# is the truncation at precision 2kp; of G; for 1 < i < n.

@ the retraction coefficients C;j, for £ =2,4,..., j €Iy, i a
multiple of /2.

Joris van der Hoeven and Robin Larrieu Reduction for generic bivariate ideals
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Definition
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Terse representation — Example
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Definition
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Terse representation — Example

+ the linear com + the linear combinati
G =hH(Gi€{0,1,4811}) G =fK(Gi<{0,1,2,4,6,8,10,11})
(5 polynomials of degree 27) (8 polynomials of degree 11)

9
+ the linear combination + the linear combination © + the linear combination

Gy = f4(Gi, i € {0,1,8,11}) Gs = f5(Gi,i € {0,1,2,4,6,8,10,11})  Gs = f5(Gi,i € {0,1,4,8,11})  G; = £(G;,i € {0,1,2,4,6,8,10,11})

(4 polynomials of degree 59) (8 polynomials of degree 11) (5 polynomials of degree 27) (8 polynomials of degree 11)

6§ 6§ Glo i

+ the linear combination ° + the linear combination e + the linear combination ’
Gg = f3(Gj, i € {0,1,11}) Gy = fo(Gj,i € {0,1,2,4,6,8,10,11})  Gio = f10(Gj, i € {0,1,4,8,11})
(3 polynomials of degree 123) (8 polynomials of degree 11) (5 polynomials of degree 27)

s van der Hoeven and Robin Larrieu tion for generic bivariate ideals




Definition
Vanilla Grobner bases Terse representation
Reduction algorithm

Reduction algorithm

Let P =", QG + R be an extended reduction of P w.rt. G#.
Then P =), Q;G; is in normal form with respect to G.

This is because the monomials in normal form are minimal w.r.t.
<k-
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Reduction algorithm

Let P =", QG + R be an extended reduction of P w.rt. G#.
Then P =), Q;G; is in normal form with respect to G.

This is because the monomials in normal form are minimal w.r.t.
<k-

Algorithm

e Compute an extended reduction w.r.t. G#
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Definition
Vanilla Grobner bases Terse representation
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Reduction algorithm

Let P =", QG + R be an extended reduction of P w.rt. G#.
Then P =), Q;G; is in normal form with respect to G.

This is because the monomials in normal form are minimal w.r.t.
<k-

Algorithm

e Compute an extended reduction w.r.t. G#

@ Use the retraction coefficients to find Sp, S1, S, such that
Zi QiGi = S0Go + 5161 + SnGp.
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Definition
Vanilla Grobner bases Terse representation
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Reduction algorithm

Let P =", QG + R be an extended reduction of P w.rt. G#.
Then P =), Q;G; is in normal form with respect to G.

This is because the monomials in normal form are minimal w.r.t.
<k-

Algorithm

e Compute an extended reduction w.r.t. G#

@ Use the retraction coefficients to find Sp, S1, S, such that
> QiGi = SoGo + 51G1 + 5,6
@ Set R:=P — SyGg — 51G; — S5,G,,.
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Definition
Vanilla Grobner bases Terse representation
Reduction algorithm

Applications

Multiplication in A := K[X, Y]//: Multiply-then-reduce in time
O(n?).

Change of basis:

P c A4

P c Al%2:

Perform a Grébner walk (log n steps in time O(n?) each).

Al Al Alle] A2 A2

(assuming these terse representations have been precomputed).
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© Case of the grevlex order
@ Presentation of the setting
@ Concise representation
@ Reduction algorithm
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Presentation of the setting
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Reduction algorithm
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Presentation of the setting
Concise representation
Case of the grevlex order Reduction algorithm

Presentation of the setting

e | = (A, B) with generic A, B € K[X, Y] given in total degree.
@ Use the degree reverse lexicographic order to compute G.

e deg A = deg B = n (also works if deg B = m > n).

@ We want to reduce P with deg P = d.
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Presentation of the setting

e | = (A, B) with generic A, B € K[X, Y] given in total degree.
@ Use the degree reverse lexicographic order to compute G.

o deg A = deg B = n (also works if deg B = m > n).

@ We want to reduce P with deg P = d.

In this case, G is not vanilla: the shape of the stairs do not match.

olead. monom. of G
- vanilla stairs

0000000000000 00 ¢
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Presentation of the setting
Concise representation
Case of the grevlex order Reduction algorithm

Concise representation

@ Reduced Grobner basis:

red red red red red
G[$5 = Spol(G[*¢, G[$9) rem G*, ..., G[$9
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Case of the grevlex order Reduction algorithm

Concise representation

@ Reduced Grobner basis:

red red red red red
G[$5 = Spol(G[*¢, G[$9) rem G*, ..., G[$9

@ Remark: Gjip = Spol(G;, Gj;+1) rem G;, Gj11 also gives a
Grobner basis.
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Presentation of the setting
Concise representation
Case of the grevlex order Reduction algorithm

Concise representation

@ Reduced Grobner basis:

red red red red red
G[$5 = Spol(G[*¢, G[$9) rem G*, ..., G[$9

@ Remark: Gjip = Spol(G;, Gj;+1) rem G;, Gj11 also gives a

Grobner basis.
Git1 G
= M;
< Giy2 > ( Git1 )
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Presentation of the setting
Concise representation
Case of the grevlex order Reduction algorithm

Concise representation

@ Reduced Grobner basis:

red red red red red
G[$5 = Spol(G[*¢, G[$9) rem G*, ..., G[$9

@ Remark: Gjip = Spol(G;, Gj;+1) rem G;, Gj11 also gives a
Grobner basis.

Giyk > < G; >
- M;
( Gitkt1 K\ G
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Presentation of the setting
Concise representation
Case of the grevlex order Reduction algorithm

Concise representation

@ Reduced Grobner basis:

red red red red red
G[$5 = Spol(G[*¢, G[$9) rem G*, ..., G[$9

@ Remark: Gjip = Spol(G;, Gj;+1) rem G;, Gj11 also gives a
Grobner basis.

Gitk > ( G; >
( Gitk+1 “\ G

Go = A, G1 = B and well-chosen M; , hold all information
about G. Also, little information is required to compute the M, .
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Concise representation
Case of the grevlex order Reduction algorithm

Concise representation — Example

+ the matrix My g
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Presentation of the setting
Concise representation
Case of the grevlex order Reduction algorithm

Reduction algorithm

Reminder

/A monomials in normal form are NOT the minimal monomials
w.rt. <
— Cannot simply reduce w.r.t. G#.
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Concise representation
Case of the grevlex order Reduction algorithm

Reduction algorithm

Reminder
/A monomials in normal form are NOT the minimal monomials

w.r.t. <
— Cannot simply reduce w.r.t. G#.

Must perform the substitutions on the fly during the computation

@ Start reducing using G,.#.

Reduction for generic bivariate ideals
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Reduction algorithm

Reminder
/A monomials in normal form are NOT the minimal monomials

w.r.t. <
— Cannot simply reduce w.r.t. G#.

Must perform the substitutions on the fly during the computation
@ Start reducing using G,.#.
@ The precision of G,-# is chosen (by definition) sufficient to

compute Q;.

Reduction for generic bivariate ideals
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Presentation of the setting
Concise representation
Case of the grevlex order Reduction algorithm

Reduction algorithm

Reminder

/A monomials in normal form are NOT the minimal monomials
w.rt. <
— Cannot simply reduce w.r.t. G#.

Must perform the substitutions on the fly during the computation
@ Start reducing using G,.#.
@ The precision of G,-# is chosen (by definition) sufficient to
compute Q;.

@ Once Q; is known, replace Q;G; by Sk Gy + Sk11Gk11 to
increase precision.

Joris van der Hoeven and Robin Larrieu Reduction for generic bivariate ideals



Presentation of the setting
Concise representation
Case of the grevlex order Reduction algorithm

Reduction algorithm — Example

P:0X12Y11+"'
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Reduction algorithm — Example
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Reduction algorithm — Example
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Reduction algorithm — Example
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Presentation of the setting
Concise representation
Case of the grevlex order Reduction algorithm

Reduction algorithm — Example

Q10G10 = S5Gs + 59%9&

P=eY19 ...
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Presentation of the setting
Concise representation
Case of the grevlex order Reduction algorithm

Reduction algorithm — Example

(Qo+ So)Gy = SoGo+ 51

P=eY18 ...
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Presentation of the setting
Concise representation
Case of the grevlex order Reduction algorithm

Reduction algorithm — Example

Joris van der Hoeven and Robin Larrieu Reduction for generic bivariate ideals
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Concise representation
Case of the grevlex order Reduction algorithm

Reduction algorithm — Example

-

P=eY® ...
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Reduction algorithm — Example

-

P=eY! ...
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Concise representation
Case of the grevlex order Reduction algorithm

Reduction algorithm — Example

=

P=eYl ...
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Presentation of the setting
Concise representation
Case of the grevlex order Reduction algorithm

Reduction algorithm — Example

P=eYd ...
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Concise representation
Case of the grevlex order Reduction algorithm
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Implementation
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(https://www.lix.polytechnique.fr/~larrieu/)
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Implementation

@ Proof-of-concept implementation in SageMath
(https://www.lix.polytechnique.fr/~larrieu/)

@ More serious implementation in Mathemagix (package larrix)

Actually achieves O(n?) complexity.
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Benchmarks

Outperforms state-of-the-art libraries
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Benchmarks

Outperforms state-of-the-art libraries
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Note: those libraries support > 2 variables and non-generic settings
while we do not.
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Applications

Concise representation

Structure of K[X, Y]/(A, B) in time O(n?).

| \

Reduction

o Quasi-optimal ideal membership test P €7 (A, B).

@ Quasi-optimal multiplication in K[X, Y]/(A, B).

o Compute the reduced Grbner basis in time O(n®).
(In general, the concise representation is sufficient)
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Applications

Concise representation

Structure of K[X, Y]/(A, B) in time O(n?).

Reduction
o Quasi-optimal ideal membership test P €7 (A, B).
@ Quasi-optimal multiplication in K[X, Y]/(A, B).

o Compute the reduced Grbner basis in time O(n®).
(In general, the concise representation is sufficient)

Other consequence

The resultant of A and B can be computed in O(n**¢) over Fy,.
See Fast computation of generic bivariate resultants (van der
Hoeven and Lecerf)
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Conclusion

Vanilla Grobner bases

Assuming sufficient genericity:
o Can precompute a terse representation (space O(n?)).

@ Can reduce in time O(nz) using this representation.

Grevlex order, generators given in total degree

Assuming sufficient genericity:
e Can compute efficiently a concise representation (space O(n?)).

@ Can reduce in time O(n2) using this representation.
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Conclusion

Vanilla Grobner bases

Assuming sufficient genericity:
o Can precompute a terse representation (space O(n?)).

@ Can reduce in time O(nz) using this representation.

Grevlex order, generators given in total degree

Assuming sufficient genericity:
e Can compute efficiently a concise representation (space O(n?)).

@ Can reduce in time O(n2) using this representation.

Generalization:
@ Relax the genericity assumptions 7 — seems feasible.
@ More than 2 variables 7 — not so clear.

Thank you for your attention
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