Fast polynomial reduction for generic bivariate ideals

Joris van der Hoeven, Robin Larrieu

Laboratoire d'Informatique de l'Ecole Polytechnique (LIX)

CARAMBA Seminar – Nancy 23 / 05 / 2019

Let $\langle A, B \rangle$ be the ideal generated by A and B $(A, B \in \mathbb{K}[X, Y])$.

- Given $P \in \mathbb{K}[X, Y]$, check if $P \in \langle A, B \rangle$. (ideal membership test)
- Compute a normal form of $\bar{P} \in \mathbb{K}[X, Y]/\langle A, B \rangle$. (computation in the quotient algebra)

Let $\langle A, B \rangle$ be the ideal generated by A and B $(A, B \in \mathbb{K}[X, Y])$.

- Given $P \in \mathbb{K}[X, Y]$, check if $P \in \langle A, B \rangle$. (ideal membership test)
- Compute a normal form of $\bar{P} \in \mathbb{K}[X, Y]/\langle A, B \rangle$. (computation in the quotient algebra)

Let $\langle A, B \rangle$ be the ideal generated by A and B $(A, B \in \mathbb{K}[X, Y])$.

- Given $P \in \mathbb{K}[X, Y]$, check if $P \in \langle A, B \rangle$. (ideal membership test)
- Compute a normal form of $\bar{P} \in \mathbb{K}[X, Y]/\langle A, B \rangle$. (computation in the quotient algebra)

- Fast Gröbner basis algorithms rely on linear algebra (ex: F4, F5...)
- Can we do it with polynomial arithmetic?

Let $\langle A, B \rangle$ be the ideal generated by A and B $(A, B \in \mathbb{K}[X, Y])$.

- Given $P \in \mathbb{K}[X, Y]$, check if $P \in \langle A, B \rangle$. (ideal membership test)
- Compute a normal form of $\bar{P} \in \mathbb{K}[X, Y]/\langle A, B \rangle$. (computation in the quotient algebra)

- Fast Gröbner basis algorithms rely on linear algebra (ex: F4, F5...)
- Can we do it with polynomial arithmetic?
 - Given a Gröbner basis G, can we reduce P modulo G faster?

Let $\langle A, B \rangle$ be the ideal generated by A and B $(A, B \in \mathbb{K}[X, Y])$.

- Given $P \in \mathbb{K}[X, Y]$, check if $P \in \langle A, B \rangle$. (ideal membership test)
- Compute a normal form of $\bar{P} \in \mathbb{K}[X, Y]/\langle A, B \rangle$. (computation in the quotient algebra)

- Fast Gröbner basis algorithms rely on linear algebra (ex: F4, F5...)
- Can we do it with polynomial arithmetic?
 - Given a Gröbner basis G, can we reduce P modulo G faster?
 - Are these ideas useful to compute G faster?

Main result

For generic ideals in two variables, reduction is possible with quasi-optimal complexity.

If A,B are given in total degree and if we use the degree-lexicographic order, then the Gröbner basis can also be computed efficiently.

References

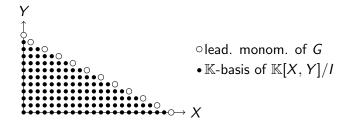
- van der Hoeven, L. Fast reduction of bivariate polynomials with respect to sufficiently regular Gröbner bases (ISSAC '18).
- van der Hoeven, L. Fast Gröbner basis computation and polynomial reduction for generic bivariate ideals (to appear in AAECC).

Outline

- Mey ingredients
 - Dichotomic selection strategy
 - Truncated basis elements
 - Rewriting the equation
- Vanilla Gröbner bases
 - Definition
 - Terse representation
 - Reduction algorithm
- Case of the grevlex order
 - Presentation of the setting
 - Concise representation
 - Reduction algorithm

Outline

- Mey ingredients
 - Dichotomic selection strategy
 - Truncated basis elements
 - Rewriting the equation
- 2 Vanilla Gröbner bases
- Case of the grevlex order



- $A, B: O(n^2)$ coefficients
- $\mathbb{K}[X, Y]/I$: dimension $O(n^2)$
- $G: O(n^3)$ coefficients $(O(n^2)$ for each $G_i)$

Reduction using *G* needs at least $O(n^3) \implies$ reduction with less information?

Theorem (van der Hoeven – ACA 2015)

The extended reduction of P modulo G can be computed in quasi-linear time for the size of the equation

$$P = \sum_{i} Q_{i}G_{i} + R$$

Theorem (van der Hoeven – ACA 2015)

The extended reduction of P modulo G can be computed in quasi-linear time for the size of the equation

$$P = \sum_{i} Q_{i}G_{i} + R$$

• But this equation has size $\Theta(n^3)$ and we would like to achieve $\tilde{O}(n^2)$ complexity. . .

Theorem (van der Hoeven – ACA 2015)

The extended reduction of P modulo G can be computed in quasi-linear time for the size of the equation

$$P = \sum_{i} Q_{i}G_{i} + R$$

- But this equation has size $\Theta(n^3)$ and we would like to achieve $\tilde{O}(n^2)$ complexity. . .
- Somehow reduce the size of the equation.

Dichotomic selection strategy

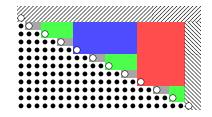
The extended reduction is not unique: several ways to reduce each term.

- The remainder is unique if G is a Gröbner basis.
- The quotients depend on a selection strategy.

Dichotomic selection strategy

The extended reduction is not unique: several ways to reduce each term.

- The remainder is unique if G is a Gröbner basis.
- The quotients depend on a selection strategy.



- n/2 quotients of degree d
- n/4 quotients of degree 2d
- n/8 quotients of degree 4d
- ...

 \implies The degree of the quotients is controlled.

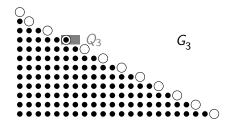
What is 125 231 546 432 quo 12 358 748 151 ?

What is 125 231 546 432 quo 12 358 748 151 ?

If we know the size of the quotient, then only a few head terms are relevant.

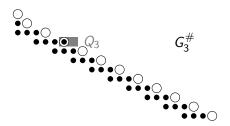
What is 125 231 546 432 quo 12 358 748 151 ?

If we know the size of the quotient, then only a few head terms are relevant.



What is 125 231 546 432 quo 12 358 748 151 ?

If we know the size of the quotient, then only a few head terms are relevant.



With the dichotomic selection strategy, $G^{\#} := (G_0^{\#}, \dots, G_n^{\#})$ requires only $\tilde{O}(n^2)$ coefficients.

 $P - \sum Q_i G_i \approx P - \sum Q_i G_i^{\#}$ up to a certain precision. We need to increase this precision to continue the computation.

 $P - \sum Q_i G_i \approx P - \sum Q_i G_i^{\#}$ up to a certain precision. We need to increase this precision to continue the computation.

Remark

The Gröbner basis is generated by A and $B \implies$ redundant information.

There must be some relations between the G_i .

 $P-\sum Q_iG_i\approx P-\sum Q_iG_i^\#$ up to a certain precision. We need to increase this precision to continue the computation.

Remark

The Gröbner basis is generated by A and $B \implies$ redundant information.

There must be some relations between the G_i .

Assume there is $\mathcal{I}_i \subset \{0, \dots, n\} \setminus \{i\}$ and (small) polynomials a_j such that $G_i = \sum_{j \in \mathcal{I}_i} a_j G_j$.

 $P-\sum Q_iG_i\approx P-\sum Q_iG_i^\#$ up to a certain precision. We need to increase this precision to continue the computation.

Remark

The Gröbner basis is generated by A and $B \implies$ redundant information.

There must be some relations between the G_i .

Assume there is $\mathcal{I}_i \subset \{0, \dots, n\} \setminus \{i\}$ and (small) polynomials a_j such that $G_i = \sum_{i \in \mathcal{I}_i} a_i G_j$.

Assume also that for $j \in \mathcal{I}_i$, $G_i^{\#}$ has higher precision than $G_i^{\#}$.

 $P - \sum Q_i G_i \approx P - \sum Q_i G_i^{\#}$ up to a certain precision. We need to increase this precision to continue the computation.

Remark

The Gröbner basis is generated by A and $B \implies$ redundant information.

There must be some relations between the G_i .

Assume there is $\mathcal{I}_i \subset \{0, \dots, n\} \setminus \{i\}$ and (small) polynomials a_j such that $G_i = \sum_{j \in \mathcal{I}_i} a_j G_j$.

Assume also that for $j \in \mathcal{I}_i$, $G_i^{\#}$ has higher precision than $G_i^{\#}$.

Then replacing $Q_i G_i^{\#}$ by $\sum_{j \in \mathcal{I}_i} Q_i a_j G_j^{\#}$ increases the precision.

Outline

- Mey ingredients
- Vanilla Gröbner bases
 - Definition
 - Terse representation
 - Reduction algorithm
- Case of the grevlex order

Definition: Vanilla Gröbner stairs

We consider the term orders $\prec_k (k \in \mathbb{N}^*)$ as the weighted-degree lexicographic order with weights (X : 1, Y : k).

Vanilla Gröbner stairs

The monomials below the stairs are the minimal elements with respect to \prec_k



Example for k = 4 and an ideal I of degree D = 237

Retractive property

let $\mathcal{I}:=\{0,1,n\}$. The retractive property means that for any $i\leqslant n$ we have a linear combination

$$G_i = \sum_{i \in \mathcal{I}} C_{i,j} \;\; G_j$$

Retractive property

For $\ell \in \mathbb{N}^*$, let $\mathcal{I}_{\ell} := \{0, 1, n\} \cup \ell \mathbb{N} \cap (0, n)$. The retractive property means that for any $i, \ell \leqslant n$ we have a linear combination

$$G_i = \sum_{j \in \mathcal{I}_\ell} C_{i,j,\ell} G_j$$
 with $\deg_k C_{i,j,\ell} = O(k\ell)$.

Retractive property

For $\ell \in \mathbb{N}^*$, let $\mathcal{I}_{\ell} := \{0, 1, n\} \cup \ell \mathbb{N} \cap (0, n)$. The retractive property means that for any $i, \ell \leqslant n$ we have a linear combination

$$G_i = \sum_{j \in \mathcal{I}_\ell} C_{i,j,\ell} G_j$$
 with $\deg_k C_{i,j,\ell} = O(k\ell)$.

More precisely, $\deg_k C_{i,j,\ell} < k(2\ell - 1)$.

Retractive property

For $\ell \in \mathbb{N}^*$, let $\mathcal{I}_{\ell} := \{0, 1, n\} \cup \ell \mathbb{N} \cap (0, n)$. The retractive property means that for any $i, \ell \leqslant n$ we have a linear combination

$$G_i = \sum_{j \in \mathcal{I}_\ell} C_{i,j,\ell} G_j$$
 with $\deg_k C_{i,j,\ell} = O(k\ell)$.

More precisely, $\deg_k C_{i,j,\ell} < k(2\ell - 1)$.

A Gröbner basis for the *k*-order is vanilla if it is a vanilla Gröbner stairs and has the retractive property.

Conjecture: vanilla Gröbner bases are generic

Experimentally, for generators chosen at random, and for various term orders, the Gröbner basis is vanilla.

Terse representation

Proposition

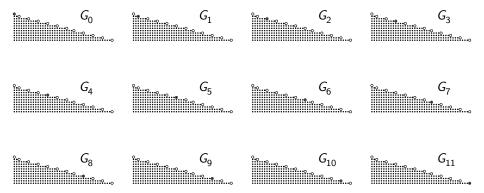
With the dichotomic selection strategy and with $p_i = \max(2^l \text{ dividing } i)$, we have $\deg_Y Q_i < p_i$ and $\deg_X Q_i < kp_i$ so $\deg_k Q_i < 2kp_i$.

Terse representation

Vanilla Gröbner bases admit a terse representation constituted of:

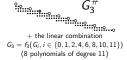
- $G_i^\# := G_i \text{ for } i \in \{0, 1, n\}.$
- $G_i^{\#}$ is the truncation at precision $2kp_i$ of G_i for 1 < i < n.
- the retraction coefficients $C_{i,j,\ell}$ for $\ell=2,4,\ldots$, $j\in I_{\ell}$, i a multiple of $\ell/2$.

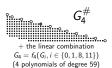
Terse representation – Example

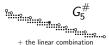


Terse representation – Example

(5 polynomials of degree 27)

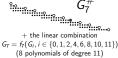


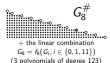




 $G_5 = f_5(G_i, i \in \{0, 1, 2, 4, 6, 8, 10, 11\})$

(8 polynomials of degree 11)





(8 polynomials of degree 11)

Reduction algorithm

Theorem

Let $P = \sum_i Q_i G_i^\# + \tilde{R}$ be an extended reduction of P w.r.t. $G^\#$. Then $P = \sum_i Q_i G_i$ is in normal form with respect to G.

This is because the monomials in normal form are minimal w.r.t. \prec_k .

Reduction algorithm

Theorem

Let $P = \sum_i Q_i G_i^\# + \tilde{R}$ be an extended reduction of P w.r.t. $G^\#$. Then $P = \sum_i Q_i G_i$ is in normal form with respect to G.

This is because the monomials in normal form are minimal w.r.t. \prec_k .

Algorithm

• Compute an extended reduction w.r.t. $G^{\#}$

Reduction algorithm

Theorem

Let $P = \sum_i Q_i G_i^\# + \tilde{R}$ be an extended reduction of P w.r.t. $G^\#$. Then $P = \sum_i Q_i G_i$ is in normal form with respect to G.

This is because the monomials in normal form are minimal w.r.t. \prec_k .

Algorithm

- Compute an extended reduction w.r.t. $G^{\#}$
- Use the retraction coefficients to find S_0 , S_1 , S_n such that $\sum_i Q_i G_i = S_0 G_0 + S_1 G_1 + S_n G_n$.

Theorem

Let $P = \sum_i Q_i G_i^\# + \tilde{R}$ be an extended reduction of P w.r.t. $G^\#$. Then $P = \sum_i Q_i G_i$ is in normal form with respect to G.

This is because the monomials in normal form are minimal w.r.t. \prec_k .

Algorithm

- Compute an extended reduction w.r.t. $G^{\#}$
- Use the retraction coefficients to find S_0 , S_1 , S_n such that $\sum_i Q_i G_i = S_0 G_0 + S_1 G_1 + S_n G_n$.
- Set $R := P S_0 G_0 S_1 G_1 S_n G_n$.

Applications

Multiplication in $\mathbb{A} := \mathbb{K}[X, Y]/I$: Multiply-then-reduce in time $\tilde{O}(n^2)$.

Change of basis:

$$P \in \mathbb{A}^{[4]}$$

$$\downarrow \\ P \in \mathbb{A}^{[42]}$$

Perform a Gröbner walk (log n steps in time $\tilde{O}(n^2)$ each).

$$\mathbb{A}^{[4]} \longleftrightarrow \mathbb{A}^{[8]} \longleftrightarrow \mathbb{A}^{[16]} \longleftrightarrow \mathbb{A}^{[32]} \longleftrightarrow \mathbb{A}^{[42]}$$

(assuming these terse representations have been precomputed).

Outline

- 1 Key ingredients
- Vanilla Gröbner bases
- Case of the grevlex order
 - Presentation of the setting
 - Concise representation
 - Reduction algorithm

Presentation of the setting

- $I = \langle A, B \rangle$ with generic $A, B \in \mathbb{K}[X, Y]$ given in total degree.
- Use the degree reverse lexicographic order to compute *G*.
- $\deg A = \deg B = n$ (also works if $\deg B = m \geqslant n$).
- We want to reduce P with deg P = d.

Presentation of the setting

- $I = \langle A, B \rangle$ with generic $A, B \in \mathbb{K}[X, Y]$ given in total degree.
- Use the degree reverse lexicographic order to compute *G*.
- $\deg A = \deg B = n$ (also works if $\deg B = m \geqslant n$).
- We want to reduce P with deg P = d.

Remark

In this case, G is not vanilla: the shape of the stairs do not match.

- \circ lead. monom. of G
- vanilla stairs

• Reduced Gröbner basis:

$$G_{i+2}^{\mathrm{red}} = \mathit{Spol}(G_i^{\mathrm{red}}, G_{i+1}^{\mathrm{red}}) \; \mathrm{rem} \; G_0^{\mathrm{red}}, \ldots, G_{i+1}^{\mathrm{red}}$$

Reduced Gröbner basis:

$$G_{i+2}^{\text{red}} = Spol(G_i^{\text{red}}, G_{i+1}^{\text{red}}) \text{ rem } G_0^{\text{red}}, \dots, G_{i+1}^{\text{red}}$$

• Remark: $G_{i+2} = Spol(G_i, G_{i+1})$ rem G_i, G_{i+1} also gives a Gröbner basis.

Reduced Gröbner basis:

$$G_{i+2}^{\mathrm{red}} = Spol(G_i^{\mathrm{red}}, G_{i+1}^{\mathrm{red}}) \; \mathrm{rem} \; G_0^{\mathrm{red}}, \dots, G_{i+1}^{\mathrm{red}}$$

• Remark: $G_{i+2} = Spol(G_i, G_{i+1})$ rem G_i, G_{i+1} also gives a Gröbner basis.

$$\left(\begin{array}{c}G_{i+1}\\G_{i+2}\end{array}\right)=M_i\left(\begin{array}{c}G_i\\G_{i+1}\end{array}\right)$$

Reduced Gröbner basis:

$$G_{i+2}^{\mathsf{red}} = \mathsf{Spol}(G_i^{\mathsf{red}}, G_{i+1}^{\mathsf{red}}) \; \mathsf{rem} \; G_0^{\mathsf{red}}, \dots, G_{i+1}^{\mathsf{red}}$$

• Remark: $G_{i+2} = Spol(G_i, G_{i+1})$ rem G_i, G_{i+1} also gives a Gröbner basis.

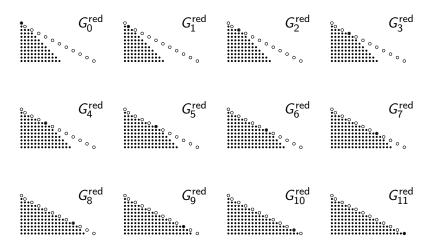
$$\left(\begin{array}{c}G_{i+k}\\G_{i+k+1}\end{array}\right)=M_{i,k}\left(\begin{array}{c}G_{i}\\G_{i+1}\end{array}\right)$$

- Reduced Gröbner basis: $G_{i+2}^{\text{red}} = Spol(G_i^{\text{red}}, G_{i+1}^{\text{red}}) \text{ rem } G_0^{\text{red}}, \dots, G_{i+1}^{\text{red}}$
- Remark: $G_{i+2} = Spol(G_i, G_{i+1})$ rem G_i, G_{i+1} also gives a Gröbner basis.

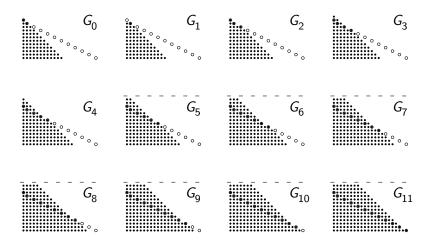
$$\left(\begin{array}{c}G_{i+k}\\G_{i+k+1}\end{array}\right)=M_{i,k}\left(\begin{array}{c}G_{i}\\G_{i+1}\end{array}\right)$$

 $G_0 \cong A$, $G_1 \cong B$ and well-chosen $M_{i,k}$ hold all information about G. Also, little information is required to compute the $M_{i,k}$.

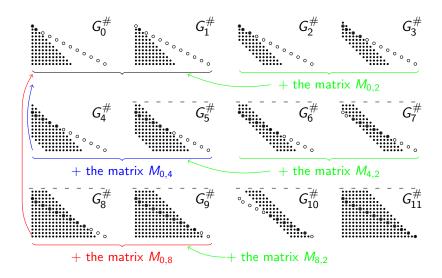
Concise representation – Example



Concise representation – Example



Concise representation – Example



Reminder

 \wedge monomials in normal form are **NOT** the minimal monomials w.r.t. \prec

 \implies Cannot simply reduce w.r.t. $G^{\#}$.

Reminder

 \wedge monomials in normal form are **NOT** the minimal monomials w.r.t. \prec

 \implies Cannot simply reduce w.r.t. $G^{\#}$.

Must perform the substitutions on the fly during the computation

• Start reducing using $G_i^{\#}$.

Reminder

 \wedge monomials in normal form are **NOT** the minimal monomials w.r.t. \prec

 \implies Cannot simply reduce w.r.t. $G^{\#}$.

Must perform the substitutions on the fly during the computation

- Start reducing using $G_i^{\#}$.
- The precision of $G_i^{\#}$ is chosen (by definition) sufficient to compute Q_i .

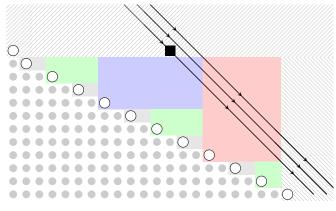
Reminder

 \wedge monomials in normal form are **NOT** the minimal monomials w.r.t. \prec

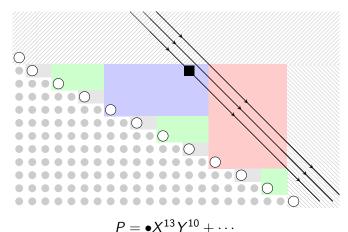
 \implies Cannot simply reduce w.r.t. $G^{\#}$.

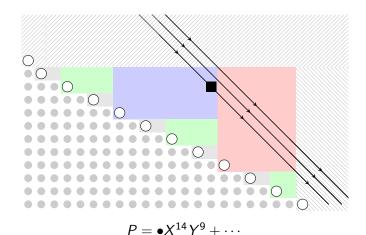
Must perform the substitutions on the fly during the computation

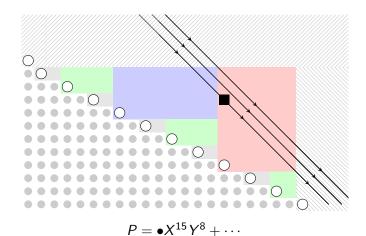
- Start reducing using $G_i^{\#}$.
- The precision of $G_i^{\#}$ is chosen (by definition) sufficient to compute Q_i .
- Once Q_i is known, replace Q_iG_i by $S_kG_k + S_{k+1}G_{k+1}$ to increase precision.

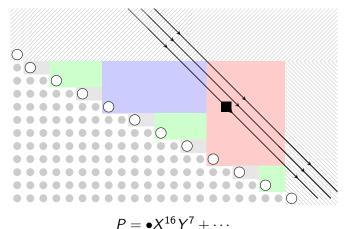


$$P = \bullet X^{12}Y^{11} + \cdots$$

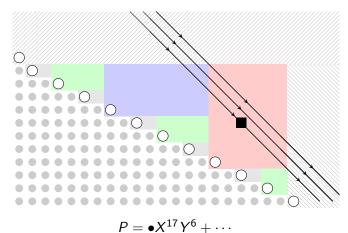




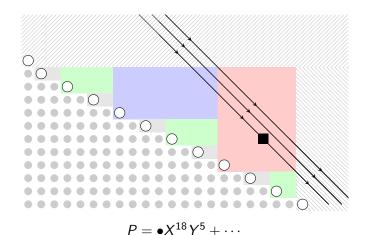


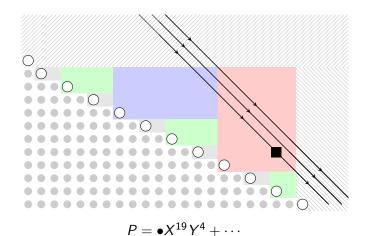


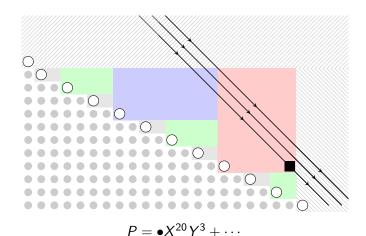
$$P = \bullet X \circ Y' + \cdots$$

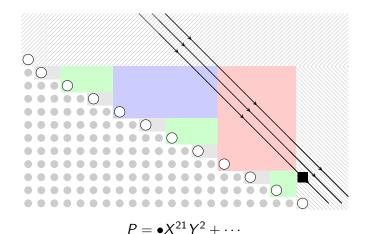


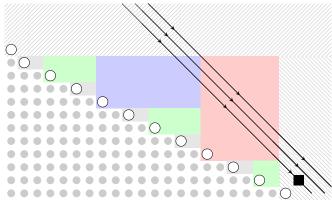
$$F = \bullet \lambda \quad i \quad + \cdots$$



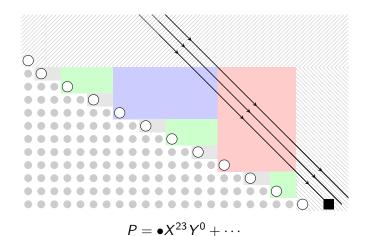


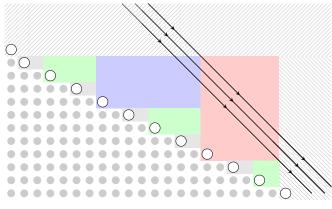




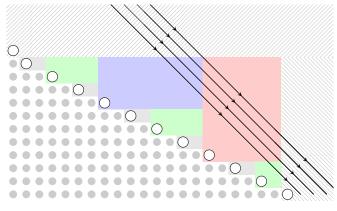


$$P = \bullet X^{22}Y^1 + \cdots$$

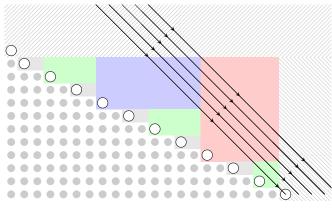




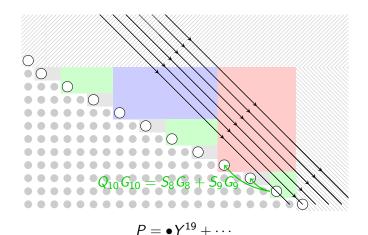
$$P = \bullet Y^{22} + \cdots$$

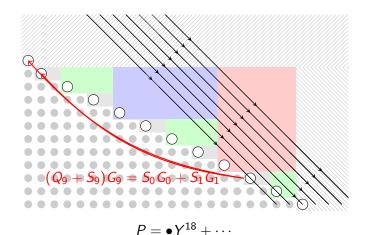


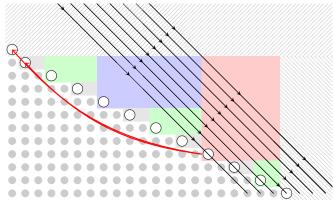
$$P = \bullet Y^{21} + \cdots$$



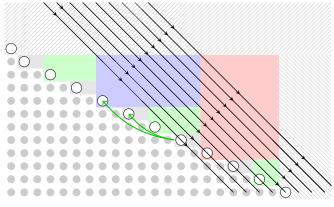
$$P = \bullet Y^{20} + \cdots$$



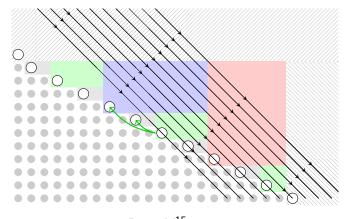




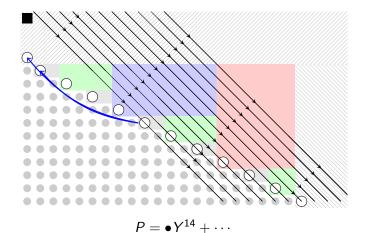
$$P = \bullet Y^{17} + \cdots$$

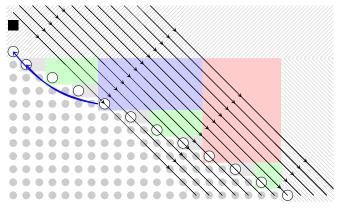


$$P = \bullet Y^{16} + \cdots$$

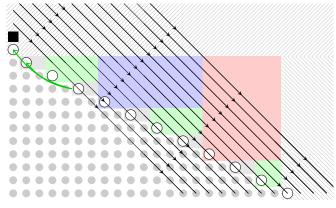


$$P = \bullet Y^{15} + \cdots$$

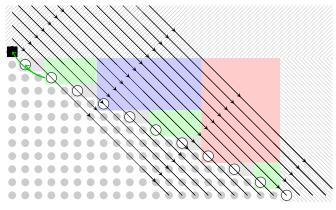




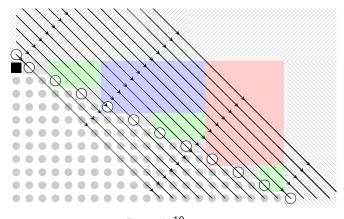
$$P = \bullet Y^{13} + \cdots$$



$$P = \bullet Y^{12} + \cdots$$

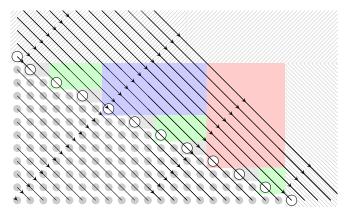


$$P = \bullet Y^{11} + \cdots$$



$$P = \bullet Y^{10} + \cdots$$





$$P = 0$$

Implementation

 Proof-of-concept implementation in SageMath (https://www.lix.polytechnique.fr/~larrieu/)

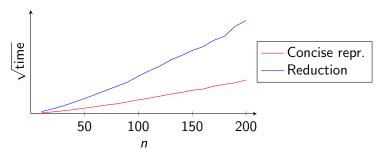
Implementation

- Proof-of-concept implementation in SageMath (https://www.lix.polytechnique.fr/~larrieu/)
- More serious implementation in Mathemagix (package larrix)

Implementation

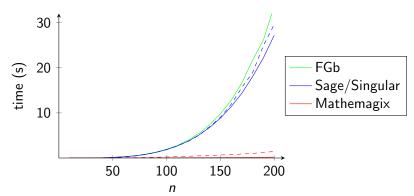
- Proof-of-concept implementation in SageMath (https://www.lix.polytechnique.fr/~larrieu/)
- More serious implementation in Mathemagix (package larrix)

Actually achieves $\tilde{O}(n^2)$ complexity.



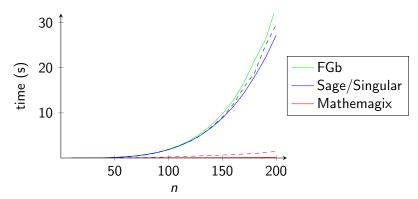
Benchmarks

Outperforms state-of-the-art libraries



Benchmarks

Outperforms state-of-the-art libraries



Note: those libraries support > 2 variables and non-generic settings while we do not.

Applications

Concise representation

Structure of $\mathbb{K}[X,Y]/\langle A,B\rangle$ in time $\tilde{O}(n^2)$.

Reduction

- Quasi-optimal ideal membership test $P \in {}^{?}\langle A, B \rangle$.
- Quasi-optimal multiplication in $\mathbb{K}[X, Y]/\langle A, B \rangle$.
- Compute the reduced Gröbner basis in time $\tilde{O}(n^3)$. (In general, the concise representation is sufficient)

Applications

Concise representation

Structure of $\mathbb{K}[X,Y]/\langle A,B\rangle$ in time $\tilde{O}(n^2)$.

Reduction

- Quasi-optimal ideal membership test $P \in {}^{?}\langle A, B \rangle$.
- Quasi-optimal multiplication in $\mathbb{K}[X, Y]/\langle A, B \rangle$.
- Compute the reduced Gröbner basis in time $\tilde{O}(n^3)$. (In general, the concise representation is sufficient)

Other consequence

The resultant of A and B can be computed in $O(n^{2+\varepsilon})$ over \mathbb{F}_q . See Fast computation of generic bivariate resultants (van der Hoeven and Lecerf)

Vanilla Gröbner bases

Assuming sufficient genericity:

- Can precompute a terse representation (space $\tilde{O}(n^2)$).
- Can reduce in time $\tilde{O}(n^2)$ using this representation.

Grevlex order, generators given in total degree

Assuming sufficient genericity:

- Can compute efficiently a concise representation (space $\tilde{O}(n^2)$).
- Can reduce in time $\tilde{O}(n^2)$ using this representation.

Vanilla Gröbner bases

Assuming sufficient genericity:

- Can precompute a terse representation (space $\tilde{O}(n^2)$).
- Can reduce in time $\tilde{O}(n^2)$ using this representation.

Grevlex order, generators given in total degree

Assuming sufficient genericity:

- ullet Can compute efficiently a concise representation (space $\tilde{O}(n^2)$).
- Can reduce in time $\tilde{O}(n^2)$ using this representation.

Generalization:

- Relax the genericity assumptions?
- More than 2 variables ?

Vanilla Gröbner bases

Assuming sufficient genericity:

- Can precompute a terse representation (space $\tilde{O}(n^2)$).
- Can reduce in time $\tilde{O}(n^2)$ using this representation.

Grevlex order, generators given in total degree

Assuming sufficient genericity:

- Can compute efficiently a concise representation (space $\tilde{O}(n^2)$).
- Can reduce in time $\tilde{O}(n^2)$ using this representation.

Generalization:

- ullet Relax the genericity assumptions ? o seems feasible.
- More than 2 variables ? → not so clear.

Vanilla Gröbner bases

Assuming sufficient genericity:

- Can precompute a terse representation (space $\tilde{O}(n^2)$).
- Can reduce in time $\tilde{O}(n^2)$ using this representation.

Grevlex order, generators given in total degree

Assuming sufficient genericity:

- Can compute efficiently a concise representation (space $\tilde{O}(n^2)$).
- Can reduce in time $\tilde{O}(n^2)$ using this representation.

Generalization:

- ullet Relax the genericity assumptions ? o seems feasible.
- More than 2 variables ? → not so clear.

Thank you for your attention