
Paul Zimmermann October 6, 2011

Short Division of Long Integers
(joint work with David Harvey)

The problem to be solved

Divide efficiently

a p-bit floating-point number

by another p-bit f-p number
in the 100-10000 digit range

Paul Zimmermann - Short Division of Long Integers October 6, 2011- 2

From www.mpfr.org/mpfr-3.0.0/timings.html (ms):

Maple Mathematica Sage GMP MPF MPFR
digits 12.00 6.0.1 4.5.2 5.0.1 3.0.0
100
mult 0.0020 0.0006 0.00053 0.00011 0.00012
div 0.0029 0.0017 0.00076 0.00031 0.00032
sqrt 0.032 0.0018 0.00132 0.00055 0.00049
1000
mult 0.0200 0.007 0.0039 0.0036 0.0028
div 0.0200 0.015 0.0071 0.0040 0.0058
sqrt 0.160 0.011 0.0064 0.0049 0.0047

10000
mult 0.80 0.28 0.11 0.107 0.095
div 0.80 0.56 0.28 0.198 0.261
sqrt 3.70 0.36 0.224 0.179 0.176

Paul Zimmermann - Short Division of Long Integers October 6, 2011- 3

www.mpfr.org/mpfr-3.0.0/timings.html

What is GMP (GNU MP)?

I the most popular library for arbitrary-precision arithmetic
I distributed under a free license (LGPL) from gmplib.org

I main developer is Torbjörn Granlund
I contains several layers: mpn (arrays of words), mpz (integers),

mpq (rationals), mpf (floating-point numbers)
I mpn is the low-level layer, with optimized assembly code for

common hardware, and provides optimized implementations of
state-of-the-art algorithms

Paul Zimmermann - Short Division of Long Integers October 6, 2011- 4

gmplib.org

Can we do better than GMP?

An anonymous reviewer said:
What are the paper’s weaknesses?
The resulting performance, in the referee’s

opinion, is only marginally better a standard

exact-quotient algorithm in GMP. One can

expect about 10% improvement. It seems to be

a weak result for the sophisticated recursive

algorithm with the big error analysis effort.

Paul Zimmermann - Short Division of Long Integers October 6, 2011- 5

What is GNU MPFR?

I a widely used library for arbitrary-precision floating-point
arithmetic

I distributed under a free license (LGPL) from mpfr.org

I main developers are Guillaume Hanrot, Vincent Lefèvre,
Patrick Pélissier, Philippe Théveny and Paul Zimmermann

I contrary to GMP mpf, implements correct rounding and
mathematical functions (exp, log, sin, ...)

I implements Sections 3.7 (Extended and extendable precisions)
and 9.2 (Recommended correctly rounded functions) of IEEE
754-2008

I aims to be (at least) as efficient than other arbitrary-precision
floating-point without correct rounding

Paul Zimmermann - Short Division of Long Integers October 6, 2011- 6

mpfr.org

The problem to be solved (binary fp division)

Assume we want to divide a > 0 of p bits by b > 0 of p bits, with
a quotient c of p bits.

First write a = ma · 2ea and b = mb · 2eb such that:
I mb has exactly p bits
I 2p−1 ≤ ma/mb < 2p (ma has 2p − 1 or 2p bits)

The problem reduces to finding the p-bit correct rounding of
ma/mb with the given rounding mode.

We do not assume that the divisor b is invariant, thus we do not
allow precomputations involving b.

Paul Zimmermann - Short Division of Long Integers October 6, 2011- 7

Division routine mpfr div in MPFR 3.0.x

The MPFR division routine relies on the (GMP) low-level division
with remainder mpn divrem.

mpn divrem computes q and r such that

ma = qmb + r with 0 ≤ r < mb.

Since 2p−1 ≤ ma/mb < 2p, q has exactly p bits.

The correct rounding of the quotient is q or q + 1 depending on
the rounding mode.

For rounding to nearest, if r < mb/2, the correct rounding is q; if
r > mb/2, the correct rounding is q + 1.

Paul Zimmermann - Short Division of Long Integers October 6, 2011- 8

What’s new with GMP 5?

In GMP 5, the floating-point division (mpf div) calls mpn div q,
which only computes the (exact) quotient, and is faster (on
average) than mpn divrem or its equivalent mpn tdiv qr.

This is based on an approximate Barrett’s algorithm, presented at
ICMS 2006.

In most cases computing one more word of the quotient is enough
to decide the correct rounding:

I pad the dividend with two zero low words
I pad the divisor with one zero low word
I one will obtain one extra quotient low word

Paul Zimmermann - Short Division of Long Integers October 6, 2011- 9

Our goal

Design an approximate division routine for arrays of n words

An array of n words [an−1, ..., a1, a0] represents the integer

an−1β
n−1 + · · ·+ a1β + a0

with β = 264

We want a rigorous error analysis and a O(n) error

Paul Zimmermann - Short Division of Long Integers October 6, 2011- 10

Plan of the talk

I Mulders’ short product
I Mulders’ short division
I Barrett’s algorithm
I `-fold Barrett’s algorithm (cf Hasenplaugh, Gaubatz, Gopal,

Arith’18)

Paul Zimmermann - Short Division of Long Integers October 6, 2011- 11

Mulders’ short product for polynomials (2000)
Short product: compute the upper half of U · V , U and V having
n terms (degree n − 1)

With Karatsuba’s
multiplication,
can save 20%
over a full product.

Paul Zimmermann - Short Division of Long Integers October 6, 2011- 12

Our variant of Mulders’s algorithm for integers

Algorithm ShortMul.
Input: U =

∑n−1
i=0 uiβ

i , V =
∑n−1

i=0 viβ
i , integer n

Output: an integer approximation W of UVβ−n

1: if n < n0 then
2: W ← ShortMulNaive(U,V , n)
3: else
4: choose a parameter k, n/2 + 1 ≤ k < n, `← n − k
5: write U = U1β

` + U0, V = V1β
` + V0

6: write U = U ′1βk + U ′0, V = V ′1βk + V ′0
7: W11 ← Mul(U1,V1, k) . 2k words
8: W10 ← ShortMul(U ′1,V0, `) . ` most significant words
9: W01 ← ShortMul(U0,V ′1, `) . ` most significant words

10: W ← bW11β
2`−nc+ W10 + W01

Paul Zimmermann - Short Division of Long Integers October 6, 2011- 13

Lemma
The output of Algorithm ShortMul satisfies

UVβ−n − (n − 1) < W ≤ UVβ−n.

(In other words, the error is less than n ulps.)

Paul Zimmermann - Short Division of Long Integers October 6, 2011- 14

Mulders’ short division (2000)

U is unknown
V is known
W = UV is known

1. estimate Uhigh from Vhigh and Whigh, subtract UhighVhigh from
W
2. compute U ′highVlow and subtract from W
3. estimate Ulow from V ′high and the remainder W

Paul Zimmermann - Short Division of Long Integers October 6, 2011- 15

Our variant of Mulders’ short division for integers
Algorithm ShortDiv.
Input: W =

∑2n−1
i=0 wiβ

i , V =
∑n−1

i=0 viβ
i , with V ≥ βn/2

Output: an integer approximation U of Q = bW /V c
1: if n < n1 then
2: U ← Div(W ,V) . Returns bW /V c
3: else
4: choose a parameter k, n/2 < k ≤ n, `← n − k
5: write W = W1β

2` + W0, V = V1β
` + V0, V = V ′1βk + V ′0

6: (U1,R1)← DivRem(W1,V1)
7: write U1 = U ′1βk−` + S with 0 ≤ S < βk−`

8: T ← ShortMul(U ′1,V0, `)
9: W01 ← R1β

` + (W0 div β`)− Tβk

10: while W01 < 0 do (U1,W01)← (U1 − 1,W01 + V)
11: U0 ← ShortDiv(W01 div βk−`,V ′1, `)
12: return U1β

` + U0

Paul Zimmermann - Short Division of Long Integers October 6, 2011- 16

Lemma
The output U of Algorithm ShortDiv satisfies, with Q = bW /V c:

Q ≤ U ≤ Q + 2(n − 1).

(In other words, the error is less than 2n ulps.)

Paul Zimmermann - Short Division of Long Integers October 6, 2011- 17

The optimal cutoff k in ShortMul and ShortDiv heavily depends on
n. There is no simple formula. Instead, we determine the best k(n)
by tuning, for say n < 1000 words (about 20000 digits).

For ShortMul the best k varies between 0.5n and 0.64n, for
ShortDiv it varies between 0.54n and 0.88n (for a particular
computer and a given version of GMP).

Paul Zimmermann - Short Division of Long Integers October 6, 2011- 18

Barrett’s Algorithm (1987)

Goal: given W and V , compute quotient Q and remainder R:

W = QV + R

1. compute an approximation I of 1/V
2. compute an approximation Q = WI of the quotient
3. (optional) compute the remainder R = W − QV and adjust if

necessary

When V is not invariant, computing 1/V is quite expensive:
I `-fold reduction from Hasenplaugh, Gaubatz, Gopal (Arith’18,

2007) (LSB variant)
I for ` = 2, HGG is exactly Karp-Markstein division (1997)

Paul Zimmermann - Short Division of Long Integers October 6, 2011- 19

2-fold division (Karp-Markstein)
1. compute an approximation I of 1/V to n/2 words
2. deduce the upper n/2 words Q1 = ShortMul(W , I, n/2)

3. subtract Q1V from W , giving W ′

4. deduce the lower n/2 words Q0 = ShortMul(W ′, I, n/2)

In step 3, Q1V is a (n/2)× n multiplication, giving a 3n/2 product.

However, we know the upper n/2 words match with W , and we
are not interested in the lower n/2 words.

This is exactly a middle product (Hanrot, Quercia, Zimmermann,
2004):

V

Q1
middle

product
upper

lower

@
@

@
@

@

@
@

@
@

@

Paul Zimmermann - Short Division of Long Integers October 6, 2011- 20

The 3-fold division algorithm

Paul Zimmermann - Short Division of Long Integers October 6, 2011- 21

The integer middle product (Harvey 2009)
Input: X of m words and Y of n words, with m ≥ n

X =
m−1∑
i=0

xiβ
i , Y =

n−1∑
j=0

yjβ
j

Output:MPm,n(X ,Y) =
∑

0≤i<m,0≤j<n
n−1≤i+j≤m−1

xiyjβ
i+j−n+1

Lemma

|(XY − βn−1MPm,n(X ,Y)) mod βm| < (n − 1)βn

Classical case: m = 2n − 1 with n2 word-products.
Quadratic-time algorithms: n2.
Karatsuba-like middle product: O(n1.58...).
FFT-variant: O(M(n)).

Paul Zimmermann - Short Division of Long Integers October 6, 2011- 22

`-fold Barrett division
Algorithm FoldDiv(`), ` ≥ 2.
Input: W =

∑2n−1
i=0 wiβ

i , V =
∑n−1

i=0 viβ
i , with V ≥ βn/2, W < βnV

Output: an integer approximation U of Q = bW /V c
1: if n < n2 then return U ← Div(W ,V)
2: k ← dn/`e
3: write V = V1β

n−(k+1) + V0 . V1 has k + 1 words
4: I ← b(β2(k+1) − 1)/V1c
5: r ← n, Wr ←W , U ← 0
6: while r > k + 1 do . invariant: 0 ≤Wr < βrV
7: Qr ← ShortMul(Wr div βn+r−(k+1), I, k + 1)
8: Qr ← min(Qr , β

k+1 − 1)
9: Tr ← MPr+1,k+1(V div βn−r ,Qr)

10: Wr−k ← (Wr − Trβ
n−1) mods βn+r−k

11: U ← U + Qrβ
r−(k+1)

12: if Wr−k < 0 then Wr−k ←Wr−k + βr−kV , U ← U − βr−k

13: r ← r − k
14: Qr ← ShortMul(Wr div βn+r−(k+1), I, k + 1)
15: U ← U + (Qr div βk+1−r)

Paul Zimmermann - Short Division of Long Integers October 6, 2011- 23

Theorem
Assuming n + 8 < β/2 and ` ≤

√
n/2, Algorithm FoldDiv(`)

returns an approximation U of Q = bW /V c, with error less than
2n.

Paul Zimmermann - Short Division of Long Integers October 6, 2011- 24

Experimental results
Hardware: gcc16.fsffrance.org, 2.2Ghz AMD Opteron 8354

GMP: changeset 131005cc271b from 5.0 branch (≈ 5.0.1)

mulmid patch from David Harvey (threshold 36 words)

n 100 200 500 1000
mpn mul n 7.52 22.4 80.8 225
ShortMul 0.76 0.81 0.89 0.85
mpn invert 1.21 1.32 1.59 1.57
mpn mulmid n 1.12 1.20 1.45 1.59
mpn tdiv qr 1.74 1.86 2.35 2.46
mpn div q 1.22 1.34 1.79 1.87
ShortDiv 1.34 1.32 1.62 1.75
FoldDiv(2) 1.37 1.36 1.62 1.74
FoldDiv(3) 1.34 1.35 1.61 1.73
FoldDiv(4) 1.35 1.32 1.63 1.76

Paul Zimmermann - Short Division of Long Integers October 6, 2011- 25

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 100 200 300 400 500 600 700 800 900 1000

mpn_div_q
ShortDiv

FoldDiv2(2)
FoldDiv2(3)
FoldDiv2(4)

Paul Zimmermann - Short Division of Long Integers October 6, 2011- 26

Algorithm ShortMul is implemented in GNU MPFR since version
2.2.0 (2005)

Extended to the MPFR squaring operation in 2010

Algorithm ShortDiv is implemented in GNU MPFR since version
3.1.0 (2011)

Algorithm FoldDiv is not (yet) implemented since it requires a
middle-product routine, which is not (yet) provided by GMP

Paul Zimmermann - Short Division of Long Integers October 6, 2011- 27

From www.mpfr.org/mpfr-3.0.0/timings.html (ms):

Maple Mathematica Sage GMP MPF MPFR
digits 12.00 6.0.1 4.5.2 5.0.1 3.0.0
100
mult 0.0020 0.0006 0.00053 0.00011 0.00012
div 0.0029 0.0017 0.00076 0.00031 0.00032
sqrt 0.032 0.0018 0.00132 0.00055 0.00049
1000
mult 0.0200 0.007 0.0039 0.0036 0.0028
div 0.0200 0.015 0.0071 0.0040 0.0058
sqrt 0.160 0.011 0.0064 0.0049 0.0047

10000
mult 0.80 0.28 0.11 0.107 0.095
div 0.80 0.56 0.28 0.198 0.261
sqrt 3.70 0.36 0.224 0.179 0.176

Paul Zimmermann - Short Division of Long Integers October 6, 2011- 28

www.mpfr.org/mpfr-3.0.0/timings.html

MPFR 3.1.0 (canard à l’orange, Oct 3, 2011):

Maple Mathematica Sage GMP MPF MPFR
digits 12.00 6.0.1 4.7 5.0.2 3.1.0
100
mult 0.0020 0.0006 0.00056 0.00011 0.00013
sqr 0.00051 0.00009 0.00010
div 0.0029 0.0017 0.00078 0.00031 0.00031
sqrt 0.032 0.0018 0.00114 0.00056 0.00049
1000
mult 0.0200 0.007 0.0040 0.0036 0.0030
sqr 0.0029 0.0024 0.0018
div 0.0200 0.015 0.0070 0.0041 0.0048
sqrt 0.160 0.011 0.0061 0.0050 0.0047

10000
mult 0.80 0.28 0.113 0.107 0.095
sqr 0.086 0.076 0.064
div 0.80 0.56 0.267 0.198 0.183
sqrt 3.70 0.36 0.183 0.178 0.176

Paul Zimmermann - Short Division of Long Integers October 6, 2011- 29

Conclusion
Our contributions:

I two variants of Mulders’ short product and short division for
integers, with detailed description and rigorous error analysis

I a detailed description and rigorous error analysis of the `-fold
division for integers

I we get a 10% speedup, and more speedup can be obtained for
FoldDiv, by using a Toom-3 middle product, a faster
(approximate) inverse based on the same ideas, ...

Benchmarks are a good way to improve software tools!

Still to do: design an approximate inverse using the `-fold
algorithm

Adapt the FoldDiv algorithm for an approximate inverse and
update the error analysis

Paul Zimmermann - Short Division of Long Integers October 6, 2011- 30

