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Elliptic curve cryptography

• F finite field of characteristic > 3 (for simplicity’s sake).

• Recall that an elliptic curve over F is the set of points (x , y) ∈ F 2

such that:
y2 = x3 + ax + b

(with a, b ∈ F fixed parameters), together with a point at infinity.

• This set of points forms an abelian group where the Discrete
Logarithm Problem and Diffie-Hellman-type problems are believed to
be hard (no attack better than the generic ones).

• Interesting for cryptography: for k bits of security, one can use
elliptic curve groups of order ≈ 22k , keys of length ≈ 2k. Also come
with rich structures such as pairings.
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Hashing to elliptic curves is a problem

• Many cryptographic protocols (schemes for encryption, signature,
PAKE, IBE, etc.) involve representing a certain numeric value, often
a hash value, as an element of the group G where the computations
occur.

• For G = Z∗n, simply taking the numeric value itself modn is usually
appropriate.

• However, if G is an elliptic curve group, this technique has no
obvious counterpart; e.g. one cannot put the value in the
x-coordinate of a curve point, because only about 1/2 of possible
x-values correspond to actual points.

• Elliptic curve-specific protocols have been developed to circumvent
this problem (ECDSA for signature, Menezes-Vanstone for
encryption, ECMQV for key agreement, etc.), but doing so with all
imaginable protocols is unrealistic.
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The traditional solution

• For k bits of security:

1. concatenate the hash value with a counter from 0 to k − 1;
2. initialize the counter as 0;
3. if the concatenated value is a valid x-coordinate on the curve, i.e.

x3 + ax + b is a square in F , return one of the two corresponding
points; otherwise increment the counter and try again.

• Heuristically, the probability of a concatenated value being valid is
1/2, so k iterations ensure k bits of security.
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Problems with this solution

• A natural implementation does not run in constant time: possible
timing attacks (especially for PAKE).

• A constant time implementation (always do k steps, compute the
Legendre symbol in constant time) is very inefficient, O(n4).

• Security is difficult to analyze.

Remark: hashing as H(m) = h(m)G where G is a generator of the
elliptic curve group is not a good idea.
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Supersingular curves

An elliptic curve shape of particular interest is:

y2 = x3 + b

over a field with q elements, with q ≡ 2 (mod 3).
Admits the following deterministic encoding:

f : u 7→
(
(u2 − b)1/3, u

)
Such a curve is supersingular. Convenient for pairings, but much less
secure than ordinary curves for the same key size (because of the MOV
attack).
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Shallue-Woestijne-Ulas

First deterministic point construction algorithm on ordinary elliptic curves
due to Shallue and Woestijne (ANTS 2006). Later generalized and
simplified by Ulas (2007).

Based on Ska lba’s identity: if g(x) = x3 + ax + b, there are rational
functions Xi (t) such that

g(X1(t)) · g(X2(t)) · g(X3(t)) = X4(t)2

Hence, on a finite field, at least one of g(X1(t)), g(X2(t)), g(X3(t)) is a
square.

Gives a deterministic point construction algorithm, which is efficient if
q ≡ 3 (mod 4). Considered for implementation in European e-passports.
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Icart

Particularly simple deterministic encoding on ordinary elliptic curves when
q ≡ 2 (mod 3), presented by Icart at CRYPTO last year. Generalization
of the supersingular case.

Defined as f : u 7→ (x , y) with

x =

(
v2 − b − u6

27

)1/3

+
u2

3
y = ux + v v =

3a− u4

6u

This simple idea sparked new research into the subject of deterministic
hashing into elliptic curves.
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Questions we solved

The previous constructions do not completely address the problem of
constructing “good hash functions” to elliptic curves, and open up a
series of related questions.

We solved some of them.

• Icart’s conjecture: Icart observed that his function did not map to
the whole elliptic curve, and conjectured that the image comprised
only about 5/8 of all points. Is this true? What about the SWU
function?

• In particular if f is Icart’s function and h is a random oracle into the
base field, m 7→ f (h(m)) is easily distinguished from a random
oracle. Can f still be used to construct a random oracle to the
curve?

• Extension to hyperelliptic curves: can we construct good hash
functions? Note that we should map to the Jacobian variety, not the
curve itself!
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Statement

E elliptic curve over Fq, with q ≡ 2 (mod 3), and f : Fq → E (Fq) Icart’s
deterministic encoding.

Conjecture (Icart)
There exists a universal constant C such that:∣∣#f (Fq)− 5

8
#E (Fq)

∣∣ ≤ C
√
q

Icart’s paper presented a heuristic argument to justify the constant 5/8.
The conjecture was proved independently by Farahashi, Shparlinski and
Voloch, and by Fouque and T.

A consequence of this conjecture is that f is neither injective nor
surjective. However, (u, v) 7→ f (u) + f (v) is a surjective encoding
function for q large enough.
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Proof idea I

• A key fact is that u maps to (x , y) under f if and only if:

u4 − 6xu2 + 6yu − 3a = 0

• Hence, the problem is to count the points (x , y) on the curve such
that the polynomial P(u) = u4 − 6xu2 + 6yu − 3a has at least one
root in Fq.

• P can be seen as a polynomial over the function field Fq(x , y) of E ,
and the problem is to count places of degree 1 in this function field
where the reduction of P has a root.

• Mathematicians have a powerful tool to tackle this kind of problems:
the Chebotarev density theorem, which says that the “density” of
places at which P reduces into a product of factors of given degrees
is determined by the number of permutations with the corresponding
cycle decomposition in the Galois group of P.
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Proof idea II

At this point, completing the proof is a technical exercise:

• Show that P is an irreducible polynomial with Galois group S4 (hard
part).

• Count the number of permutations in S4 with a fixed point (there
are 1 + 6 + 8 = 15 of them).

• Deduce that the density of places in Fq(x , y) at which P has a root
is 15/24 = 5/8.

• Apply an effective version of Chebotarev’s density theorem to get
the same result with a O(

√
q) error term for places of degree 1 (this

gives Icart’s conjecture).

In the paper with Fouque, we also show how the technique generalizes to
other encoding functions with different Galois groups such as a simplified
version of SWU (Galois group D8, constant 3/8).
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Statement

Since Icart’s function f (or SWU, etc.) only covers a limited fraction of
points on the curve, m 7→ f (h(m)) is not a well-behaved hash function:
easy to distinguish from a random oracle.

While some schemes may not require randomness or collision resistance,
it is desirable in general to have a construction indistinguishable from a
random oracle, in the ROM for some Fq-valued hash function h.

Coron and Icart showed it suffices to have an encoding function
F : S → E (Fq) from some set S , such that F−1 is efficiently computable,
and that if s is uniformly distributed in S , the distribution of F (s) is
statistically indistinguishable from uniform in E (Fq).
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Admissible encodings

• An encoding verifying the statistical indistinguishability property is
called admissible by Coron and Icart (generalization of a previous
definition by Boneh-Franklin).

• Using Maurer’s indifferentiability framework, they show that if F is
admissible, then m 7→ F (h(m)) can be used as a random oracle in
the ROM for h.

• An example of such an admissible encoding is F (u, v) = f (u) + v ·G
with G a generator of the elliptic curve group. The addition of vG
acts as a “one-time pad” to mask the irregularities of f , and ensure
statistical indistinguishability. Hence

H(m) = f (h1(m)) + h2(m) · G

is a “good” hash function. Also works with SWU, with characteristic
2 counterparts, etc. However, the multiplication makes it slow.
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Efficient indifferentiable hashing with Icart
• Since the “easy” admissible encoding is slow, we proposed the

following much more efficient solution:

F (u, v) = f (u) + f (v)

• We know as a corollary of Icart’s conjecture that this is surjective,
but we can also prove statistical indistinguishability with some
algebraic geometry machinery.

• Basic idea: for some given point $ on E , the set of (u, v) in the
affine plane such that F (u, v) = $ forms an algebraic curve of
bounded genus, that will usually be irreducible.

• In that case, the Hasse-Weil bound ensures that:

F−1($) = q + O(
√
q)

giving admissibility.
• Making the idea work involves beautiful algebraic geometry (such as

intersection theory on the surface C × C , where C is the quartic
covering of E defined by the polynomial P from the previous
section).
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Efficient indifferentiable hashing, general case
• Previous geometric method: works well for Icart’s function, but

difficult to generalize (for SWU, multiple components with
complicated interplay; in higher genus, simply horrible).

• We recently proposed a much simpler technique based on character
sums. We call an encoding f : Fq → E (Fq) well-distributed when for
any nontrivial character χ of E (Fq):∣∣∣∣∣∑

u∈Fq

χ
(
f (u)

)∣∣∣∣∣ ≤ B
√
q

• Completely formal to show that if f is well-distributed,
(u, v) 7→ f (u) + f (v) is admissible: write down the statistical
distance.

• Relatively easy to show that a given deterministic encoding is
well-distributed: the character sum can be interpreted as an Artin
character sum on the covering curve C , which is bounded by
(2gC + 2)

√
q according to a theorem by Weil (corollary of the

Riemann hypothesis for curves).
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A simple encoding to hyperelliptic curves

• The first deterministic point-encoding function to hyperelliptic
curves of a very special shape, y2 = x2g+1 + ax + b was proposed by
Ulas, as a generalization of the Shallue-van de Woestijne technique.

• More recently, Kammerer, Lercier and Renault proposed several
Icart-like encoding functions to hyperelliptic curves of somewhat
complicated but more general shape.

• We proposed a much simpler encoding function to the family of odd
hyperelliptic curves H : y2 = g(x) where g is an odd polynomial,
over Fq, q ≡ 3 (mod 4). This encoding has many nice properties.

• Easy to describe: for any t ∈ Fq, one of g(t) or g(−t) is a square;
define the point f (t) as y2 = g(±t) accordingly, and set x such that
f (−t) = −f (t).

• This encoding is very simple to compute, and is (almost) a bijection
f : Fq → H(Fq). In particular, it is admissible.
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Encoding and hashing to the Jacobian
• The group used in hyperelliptic curve cryptography is the Jacobian J

of the curve: it is this group that we should seek to encode or hash
to.

• Hashing at least is easy. All previously mentioned encodings to
hyperelliptic curves H are also well-distributed, in the sense that for
all nontrivial characters χ of J(Fq):∣∣∣∣∣∑

u∈Fq

χ
(
f (u)

)∣∣∣∣∣ ≤ B
√
q

• Admissibility of (u1, . . . , us) 7→ f (u1) + · · ·+ f (us) again follows
formally, as soon as s is greater that the genus g of H.

• Our encoding to odd hyperelliptic curves allows a different
construction: an injective encoding to the Jacobian. Take
(u1, . . . , ug ) 7→ f (u1) + · · ·+ f (ug ), from the set of tuples such that
u1 < · · · < ug and ui + uj 6= 0. This is injective and reaches a
fraction of aboug 1/g ! points of J(Fq). Necessary for e.g. El Gamal
encryption.
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Some open problems

• Encoding to some missing types of curves: Baretto-Naehrig elliptic
curves, more hyperelliptic curves...

• Bounded leakage. It is easy to distinguish the output of the whole
Icart’s function from a uniform distribution. And the same is true
with just the x-coordinate. However, if one only has the top half bits
of x , the output is uniform. At which point between these two
extremes can a distinguisher still work?

• Injective deterministic encodings: they are probably even more useful
than hash functions, but have only been constructed on a few
curves. Extend this to at least ordinary elliptic curves. A proper
formalization of desired properties would be desirable.

• Impossibility results in generic groups.
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Summary

• Hashing and encoding to (hyper)elliptic curves are problems worth
looking into.

• Some good candidates are known, but there is still a lot of work to
do.

• Plenty of nice problems, from pure mathematics to applied crypto.
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Thank you!
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