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A Naive Computer Search

Order | maxdet | Time

1 1 fast

2 1 fast

3 2 fast

4 3 fast

5 5 fast

6 9 order of days

7 order of years

8 order of the age of the Universe
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As well by hand? | found nested Max Dets ...
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As well by hand? | found nested Max Dets ...

Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem



As well by hand? | found nested Max Dets ...
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As well by hand? | found nested Max Dets ...

(1 01000 \
11010 0

01 1 0 1 O }9
001101 [
100110}1}2
\1 1 00 1 1)} )
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As well by hand? | found nested Max Dets ...

(1 01000 \
11010 0

01 1 0 1 O }9
001101 [
100110}1}2
\1 1 00 1 1)} )

» But no further!
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The problem turns out to be famous

» Hadamard’'s Maximal Determinant Problem was posed in 1893

Jacques Hadamard
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» A little selected history on this century-old question ...
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» 2D:

(o) )
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Geometry: max|det| = max (hyper-)Volume

» 3D:
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An equivalent problem: {41, —1} matrices

11 1 1 11 1 1
101 2 0 -2 0-2 0 -2 1-1 1-1
(1 1 o)%(-za o)% 0-2-2 0 |Mdvdly 4 3 1
01 1 0 -2 -2 0 0-2-2 1 1-1 -1

m X m matrix
column [ops
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An equivalent problem: {41, —1} matrices

11 11 11 1 1

1 01 -2 0 -2 0-2 0-2 1-11-1
( 110 ) x(—2) (_2 2 0 ) border 0-2-2 0 add row% 1-1-1 1
01 1 0 -2 -2 0 0-2-2 1 1-1 -1

m X m matrix
column [ops

® |detpew| = 2™|detoq] l
row|ops
1141 1
111 -1
I
111
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Volume interpretation = upper bound on |max det|

+1 - *1
max | : n
+1 - #1
—
n

» What is the upper bound?
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Volume interpretation = upper bound on |max det|

+1 - *1
max | : n
+1 - #1
—
n

» What is the upper bound?

<\/(j:1 4 (+1)2 ) — /2
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Volume interpretation = upper bound on |max det|

+1 - *1
max | : n
+1 - #1
—
n

» What is the upper bound?

<\/(j:1 4 (+1)2 ) — /2

» Why?
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Volume interpretation = upper bound on |max det|

+1 - *1
max | : n
+1 - #1
—
n

» What is the upper bound?

<\/(j:1 4 (+1)2 ) — /2

» Why? (Columns/rows orthogonal)
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When is the bound tight?

» Tight when {+1, —1} square matrix H of order n satisfies

HHT = nl
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When is the bound tight?

» Tight when {+1, —1} square matrix H of order n satisfies
HHT = nl

» H is called a Hadamard Matrix.
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When is the bound tight?

» Tight when {+1, —1} square matrix H of order n satisfies
HHT = nl

» H is called a Hadamard Matrix.

> A necessary condition on existence of H is:

n=1,2 or n=0 (mod 4)
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When is the bound tight?

» Tight when {+1, —1} square matrix H of order n satisfies
HHT = nl
» H is called a Hadamard Matrix.
> A necessary condition on existence of H is:
n=1,2 or n=0 (mod 4)

» Hadamard Conjecture (Paley, 1933): this is also sufficient.
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Evidence for Hadamard Conjecture

» Many constructions for infinite families, including
» Sylvester, V 2"
» First Paley, using finite fields, V p" + 1, p prime
» Second Paley, using finite fields, ¥V 2p” 4+ 2, p prime
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Evidence for Hadamard Conjecture

» Many constructions for infinite families, including
» Sylvester, V 2"
» First Paley, using finite fields, V p" + 1, p prime
» Second Paley, using finite fields, ¥V 2p” 4+ 2, p prime

» Other ‘constructions’ and ‘ad hoc’ examples due to people
including

» Williamson
» Jenny Seberry
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Evidence for Hadamard Conjecture

» Many constructions for infinite families, including

» Sylvester, V 2"
» First Paley, using finite fields, V p" 4+ 1, p prime
» Second Paley, using finite fields, ¥V 2p” 4+ 2, p prime

» Other ‘constructions’ and ‘ad hoc’ examples due to people
including

» Williamson
» Jenny Seberry

» Smallest n =0 (mod 4) currently undecided:

n = 668.
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More evidence

Order | Number of inequivalent Hadamard matrices
— see Sloan’s sequence A007299

1 1

2 1

4 1

8 1

12 1

16 5

20 3

24 60

28 487

32 > 3578006

36 > 18292717
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Max Dets for non-Hadamard orders?
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Max Dets for non-Hadamard orders?

oLn=L 1T 5 9 13 17 21 25
max el 1 3x1" [7x2% [15x3° [20x47 [ 29 x 57 | 42 x 61

The smallest unknown order is n=29.
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Max Dets for non-Hadamard orders?

oLn=1 1T 5 9 13 17 21 25
max el 1 3x1" [7x2% [15x3° [20x47 [ 29 x 57 | 42 x 61

The smallest unknown order is n=29.

n=2 2 6 10 14 18
® [max det] 1 3 5 7
e || 1] 5x1 18 x 2 39x3° | 68 x4

The smallest unknown order is n=22.
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Max Dets for non-Hadamard orders?

G =1 1] 5 9 13 7 21 2
Il 3% 10 | 7x2° | 15x3° | 20 x 47 | 20 x5° | 42 x 61

The smallest unknown order is n=29.

olL7=2 [2 6 10 14 18
I detT 77 5 < 11 | 18 x 2° | 39 x 35 | 68 x 47
The smallest unknown order is n=22.
o L= 3 3 7 11 15
I deT 7 9 x 11 | 40 x 2° | 105 x 3°

The smallest unknown order is n=19.
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Tighter upper bounds?

» The Hadamard bound of n"/? holds for all orders but is never
tight for n 2 0 (mod 4) when n > 2.
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Tighter upper bounds?

» The Hadamard bound of n"/? holds for all orders but is never
tight for n 2 0 (mod 4) when n > 2.

» Better upper bounds for non-Hadamard orders were proved by

Barba in 1933

Ehlich in 1962, 64

Wojtas in 1964

Cohn (proved a new bound tightness result) in 2000

v vy VvYy
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The best known upper bounds are:

» The Barba-Ehlich bound holds for n =1 (mod 4):

V2n—1(n—1)(""1/2
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The best known upper bounds are:

» The Barba-Ehlich bound holds for n =1 (mod 4):

V2n—1(n—1)(""1/2

» The Ehlich-Wojtas bound holds for n =2 (mod 4):

(2n —2)(n — 2)(n/2)-1
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The best known upper bounds are:

» The Ehlich bound holds for n = 3 (mod 4):

ur v(r+1)
n—34+4r n+1+4r

(n—3)'725(n—3—|—4r);(n—|—1+4r);\/1 —~

where s =3 forn=3,s=5forn=7,s=5o0r6 for n =11,
s =6 for n=15,19,...,59, and s =7 for n > 63, r = [ 7],
n=rs+vand u=s-—v.
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» www.indiana.edu/~maxdet

Table of maximal determinants, orders 0 - 39

Det should be multiplied by 2N-!. Refer to key for more information.
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Percentages of bounds met: summary from Will Orrick’s:




The idea behind the bounds

» Let R be a maximal determinant square -1 matrix of order n.
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The idea behind the bounds

» Let R be a maximal determinant square -1 matrix of order n.

» Consider ‘gram matrix’

G := RRT
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The idea behind the bounds

» Let R be a maximal determinant square -1 matrix of order n.
» Consider ‘gram matrix’

G := RRT

1. G has all n's on the diagonal
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The idea behind the bounds

» Let R be a maximal determinant square -1 matrix of order n.

» Consider ‘gram matrix’
G :=RR"

1. G has all n's on the diagonal

2. G is positive definite = off-diagonal entries have size < n
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The idea behind the bounds

» Let R be a maximal determinant square -1 matrix of order n.

» Consider ‘gram matrix’
G :=RR"

1. G has all n's on the diagonal
2. G is positive definite = off-diagonal entries have size < n

3. G has all off-diagonal entries = n (mod 2)
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The idea behind the bounds

» Let R be a maximal determinant square -1 matrix of order n.

» Consider ‘gram matrix’
G :=RR"

. G has all n's on the diagonal
. G is positive definite = off-diagonal entries have size < n

. G has all off-diagonal entries = n (mod 2)

A W N =

. G has all off-diagonal entries = n (mod 4) with R normalized
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The idea behind the bounds

» Let R be a maximal determinant square -1 matrix of order n.

» Consider ‘gram matrix’
G :=RR"

1. G has all n's on the diagonal

2. G is positive definite = off-diagonal entries have size < n

3. G has all off-diagonal entries = n (mod 2)

4. G has all off-diagonal entries = n (mod 4) with R normalized

5. G is symmetric
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The idea behind the bounds

» Let R be a maximal determinant square -1 matrix of order n.

» Consider ‘gram matrix’
G :=RR"

1. G has all n's on the diagonal

2. G is positive definite = off-diagonal entries have size < n

3. G has all off-diagonal entries = n (mod 2)

4. G has all off-diagonal entries = n (mod 4) with R normalized

5. G is symmetric

» Let G, be the set of all gram matrices, G, of order n
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The idea behind the bounds, continued

> Let G, be the set of matrices for which properties 1 — 5 hold.
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The idea behind the bounds, continued

> Let G, be the set of matrices for which properties 1 — 5 hold.

» Then
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The idea behind the bounds, continued

> Let G, be the set of matrices for which properties 1 — 5 hold.

» Then
Gn 2 Gn

» Hence
max det (?,,)| > |max det (G,)|
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Case: n=1 (mod 4)

» The matrix which was proven by Barba and Ehlich to have
largest determinant in G, is

n 1
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» The matrix which was proven by Ehlich and Wojtas to have
largest determinant in G, is

F 0
(0 F)’ where F =

n 2

2 n
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Case: n=3 (mod 4)

> We expect a matrix with largest determinant in G, to be:

n -1
-1 n
» In general, this is wrong

» Ehlich proved: the correct best determinant matrix in G, is a
block form with off-diagonal entries from the set {—1,43}.
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Structure in the n =1 (mod 4) case

» What is a necessary condition for tightness of: Barba-Ehlich:

V2n—1(n—1)(""1/27
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Structure in the n =1 (mod 4) case

» What is a necessary condition for tightness of: Barba-Ehlich:

V2n—1(n—1)(""1/27

» Lemma: The number 2n — 1 is a perfect square iff 3g € N
such that
n=q"+(q+1)
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In the literature, a conjecture on tightness:

» Conjecture: The Barba-Ehlich bound is tight whenever n is
a sum of two consecutive squares:

n=q>+(q+1)
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In the literature, a conjecture on tightness:

» Conjecture: The Barba-Ehlich bound is tight whenever n is
a sum of two consecutive squares:

n=q>+(q+1)

» Evidence: True for
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In the literature, a conjecture on tightness:

» Conjecture: The Barba-Ehlich bound is tight whenever n is
a sum of two consecutive squares:

n=q>+(q+1)

» Evidence: True for
qg=2,4

and when
qg=p"

for p an odd prime — proved by Brouwer's Construction.
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What chance an exact maxdet formula V.n =1 (mod 4)?

n=1 [[1] 5 9 13 17 21 25 29

maxdel T 1 [3x1' [7x28 [15x35 [ 20x47 [ 29 x 57 | 42 x 6" | 48 x 73
NN N N AN AN

+4 +8 +5 +9 +13 +6 Guess
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What chance an exact maxdet formula V.n =1 (mod 4)?

n=1 [[1] 5 9 13 17 21 25 29

maxdel T 1 [3x1' [7x28 [15x35 [ 20x47 [ 29 x 57 | 42 x 6" | 48 x 73
NN N N AN AN

+4 +8 +5 +9 +13 +6 Guess

[max det|

Sn—1 for

» A guess/conjecture due to Will Orrick is that
n =4k + 1 is always divisible by

2%k—1
k=,
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What chance an exact maxdet formula V.n =1 (mod 4)?

n=1 [[1] 5 9 13 17 21 25 29
maxdel T 1 [3x1' [7x28 [15x35 [ 20x47 [ 29 x 57 | 42 x 6" | 48 x 73
NN N N AN AN
+4 +8 +5 +9 +13 +6 Guess

> A guess/conjecture due to Will Orrick is that “‘"gffifjft‘ for
n =4k + 1 is always divisible by

2%k—1
k=,

with coefficients growing quadratically between n's for which
n=q"+(q+1)>
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What can we hope to compute?

» The ideas of Ehlich and Wojtas were reused by Chadjipantelis,
Kounias and Moissiadis in the 1980’'s to find max det matrices
for n =17 and n = 21.
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What can we hope to compute?

» The ideas of Ehlich and Wojtas were reused by Chadjipantelis,
Kounias and Moissiadis in the 1980’'s to find max det matrices
for n =17 and n = 21.

» Will Orrick used similar ideas in the 2000’s to prove maximal

an n = 15 matrix that had previously been found by Cohn; as
well as filling in some gaps in CKM's published proofs.
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What can we hope to compute?

» The ideas of Ehlich and Wojtas were reused by Chadjipantelis,
Kounias and Moissiadis in the 1980’'s to find max det matrices
for n =17 and n = 21.

» Will Orrick used similar ideas in the 2000’s to prove maximal
an n = 15 matrix that had previously been found by Cohn; as
well as filling in some gaps in CKM's published proofs.

» Are we within reach of n = 297
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Two steps:

1. Find candidate gram matrices in Gh.

2. Check if candidates decompose in the form

RRT.
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Essentials of Step 1.

» There exist theorems which bound the determinants of
candidate gram matrices in terms of their sub-matrices.

» So we can set a target determinant and build candidates:

]

n

n

pruning too-small sub-matrices as we go.
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Computational considerations for Step 1.

» We must have efficient ways to calculate determinants!
» ‘Rank-One Update’ Theorems:
O(size®) — O(size?),

at the expense of some book-keeping.
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Computational considerations for Step 1.

» Need to prune equivalent gram matrices:

eg. (7 3 -1 -1 -1 -1 -1 7-1-1 3 -1 -1 -1
3 7-1 -1 -1 -1 -1 -1 7 3-1 -1 -1 -1

-1 -1 7 3 -1 -1 - -1 3 7-1 -1 -1 -

-1 -1 3 7-1-1-1] VY 3-1-1 7-1-1-+-1

-1 -1-1-1 7 3 -1 -1 -1-1-1 7 3 -1

-1 -1 -1 -1 3 7 -1 -1 -1-1-1 3 7+

-1 -1 -1-1-1 -1 7 -1 -1-1-1-1-1 7

under simultaneous row and column permutation
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Computational considerations for Step 1.

» So need a (partial ordering) which

> prunes heavily enough, and
> is practical to compute on-the-fly
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Computational considerations for Step 1.

» So need a (partial ordering) which

> prunes heavily enough, and
> is practical to compute on-the-fly

» Make sure we don’t miss any valid candidates!
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Essentials of Step 2.

» Consider gram candidates A and B whose determinants agree.
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Essentials of Step 2.

» Consider gram candidates A and B whose determinants agree.

» These are candidates for

RR” and RTR
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Essentials of Step 2.

» Consider gram candidates A and B whose determinants agree.

» These are candidates for

RR” and RTR

» Implement two kinds of constraints:

» Linear,

» Quadratic — which use A and B simultaneously
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Essentials of Step 2. — the linear constraints

> Let A= (aj) and B = (b).
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Essentials of Step 2. — the linear constraints

> Let A= (aj) and B = (b).

» Assume
Yo

R=| i |=(e -~ o)

Fn—1
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Essentials of Step 2. — the linear constraints

> Let A= (aj) and B = (b).

» Assume

» Then
aj = r.r; and b,j =C;.C
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Essentials of Step 2. — the linear constraints

> Let A= (aj) and B = (b).

» Assume

» Then
aj = r.r; and b,j =C;.C

» We need to implement an ordering to prune duplicates
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Considerations for the linear constraints of Step 2.

If we have already built

ro=(1, -, -, 1,1, -, —, — — —, 1,1,1, 1,1,1,1) and
rr=(——-1 -- - - 11,1, -, — —, 1,1,1,1)
then ro breaks into blocks:

ro = (a; b; ¢; dye; f,g; hi,j; k1,m; n,o,p,q)
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Considerations for the linear constraints of Step 2.

If we have already built

ro=(1, -, -, 1,1, -, —, — — —, 1,1,1, 1,1,1,1) and
rr=(——-1 -- - - 11,1, -, — —, 1,1,1,1)
then ro breaks into blocks:

ro = (a; b; ¢; dye; f,g; hi,j; k1,m; n,o,p,q)

» Adding more rows is a process of successive block refinement
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Considerations for the linear constraints of Step 2.

» Because we work with both rows and columns, we need a way
of refining row-blocks and column blocks simultaneously!

1——[1 1]——

|
|
—_

= =]
[ = =] |
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Essentials of Step 2. — the quadratic constraints

» To derive the quadratic constraints, write key ingredients in
block form:

(1 oy (1 XT _(n a' _(n bT
R_<X Rl)vR _<y R/T 7A_ a A/ aB_ b Bl
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Essentials of Step 2. — the quadratic constraints

» To derive the quadratic constraints, write key ingredients in
block form:

(1 oy (1 XT _(n a' _(n bT
R_<X Rl)vR _<y R/T 7A_ a A/ aB_ b Bl

» This allow several quadratic constraints to be found, eg.

det(A — xxT) = a perfect square = det(B’ — ny)
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Computational Considerations for Step 2.

» We need to decide in which order to implement the various
quadratic and linear constraints.
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Computational Considerations for Step 2.

» We need to decide in which order to implement the various
quadratic and linear constraints.

» How to decide?

Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem



THE END

mard’s Maximal Deter



