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A Naive Computer Search

Order max det Time

1 1 fast

2 1 fast

3 2 fast

4 3 fast

5 5 fast

6 9 order of days

7 32 order of years

8 56 order of the age of the Universe
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As well by hand? I found nested Max Dets ...





1 0 1 0 0 0
1 1 0 1 0 0
0 1 1 0 1 0
0 0 1 1 0 1
1 0 0 1 1 0
1 1 0 0 1 1




}1

1} }2}3}5}9
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I But no further!
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The problem turns out to be famous

I Hadamard’s Maximal Determinant Problem was posed in 1893

Jacques Hadamard
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I A little selected history on this century-old question ...
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Observe:

I 2D:

(
1
0

)

(
0
1

)

(
1
0

)

or
(

1
1

)

(
0 1
1 0

) (
1 1
1 0

)

Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem



Geometry: max |det| = max (hyper-)Volume

I 3D:




1 0 1
1 1 0
0 1 1
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An equivalent problem: {+1,−1} matrices

1 0 1
1 1 0
0 1 1

( ( 2 0 2
2 2 0
0 2 2

− −− −− −( (
1 1 1 1
0 2 0 2
0 2 2 0
0 0 2 2

− −− −− − (( 1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

− −− −− − ((
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

− −−
−−

− ((
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

− −−
−−

− ((− −

×(−2) border add row 1

column ops

row ops

m×m matrix
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Volume interpretation ⇒ upper bound on |max det|

max

∣∣∣∣∣∣∣

±1 · · · ±1
...

. . .
...

±1 · · · ±1

∣∣∣∣∣∣∣ }} n

n

I What is the upper bound?

(√
(±1)2 + · · ·+ (±1)2

)n

= nn/2

I Why? (Columns/rows orthogonal)
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When is the bound tight?

I Tight when {+1,−1} square matrix H of order n satisfies

HHT = nI

I H is called a Hadamard Matrix.

I A necessary condition on existence of H is:

n = 1, 2 or n ≡ 0 (mod 4)

I Hadamard Conjecture (Paley, 1933): this is also sufficient.
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Evidence for Hadamard Conjecture

I Many constructions for infinite families, including
I Sylvester, ∀ 2r

I First Paley, using finite fields, ∀ pr + 1, p prime
I Second Paley, using finite fields, ∀ 2pr + 2, p prime

I Other ‘constructions’ and ‘ad hoc’ examples due to people
including

I Williamson
I Jenny Seberry

I Smallest n ≡ 0 (mod 4) currently undecided:

n = 668.

Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem



Evidence for Hadamard Conjecture

I Many constructions for infinite families, including
I Sylvester, ∀ 2r

I First Paley, using finite fields, ∀ pr + 1, p prime
I Second Paley, using finite fields, ∀ 2pr + 2, p prime

I Other ‘constructions’ and ‘ad hoc’ examples due to people
including

I Williamson
I Jenny Seberry

I Smallest n ≡ 0 (mod 4) currently undecided:

n = 668.

Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem



Evidence for Hadamard Conjecture

I Many constructions for infinite families, including
I Sylvester, ∀ 2r

I First Paley, using finite fields, ∀ pr + 1, p prime
I Second Paley, using finite fields, ∀ 2pr + 2, p prime

I Other ‘constructions’ and ‘ad hoc’ examples due to people
including

I Williamson
I Jenny Seberry

I Smallest n ≡ 0 (mod 4) currently undecided:

n = 668.

Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem



More evidence

Order Number of inequivalent Hadamard matrices
– see Sloan’s sequence A007299

1 1
2 1
4 1
8 1
12 1
16 5
20 3
24 60
28 487
32 ≥ 3 578 006
36 ≥ 18 292 717
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Max Dets for non-Hadamard orders?

n ≡ 1 1 5 9 13 17 21 25
|max det|

2n−1 1 3× 11 7× 23 15× 35 20× 47 29× 59 42× 611

n ≡ 2 2 6 10 14 18
|max det|

2n−1 1 5× 11 18× 23 39× 35 68× 47

n ≡ 3 3 7 11 15
|max det|

2n−1 1 9× 11 40× 23 105× 35
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Tighter upper bounds?

I The Hadamard bound of nn/2 holds for all orders but is never
tight for n 6≡ 0 (mod 4) when n > 2.

I Better upper bounds for non-Hadamard orders were proved by

I Barba in 1933
I Ehlich in 1962, 64
I Wojtas in 1964
I Cohn (proved a new bound tightness result) in 2000
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The best known upper bounds are:

I The Barba-Ehlich bound holds for n ≡ 1 (mod 4):

√
2n − 1(n − 1)(n−1)/2

I The Ehlich-Wojtas bound holds for n ≡ 2 (mod 4):

(2n − 2)(n − 2)(n/2)−1
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The best known upper bounds are:

I The Ehlich bound holds for n ≡ 3 (mod 4):

(n−3)
n−s

2 (n−3+4r)
u
2 (n+1+4r)

v
2

√
1− ur

n − 3 + 4r
− v(r + 1)

n + 1 + 4r

where s = 3 for n = 3, s = 5 for n = 7, s = 5 or 6 for n = 11,
s = 6 for n = 15, 19, ..., 59, and s = 7 for n ≥ 63, r = bn

s c,
n = rs + v and u = s − v .
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Percentages of bounds met: summary from Will Orrick’s:

I www.indiana.edu/∼maxdet
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The idea behind the bounds

I Let R be a maximal determinant square ±1 matrix of order n.

I Consider ‘gram matrix’

G := RRT

1. G has all n’s on the diagonal

2. G is positive definite ⇒ off-diagonal entries have size < n

3. G has all off-diagonal entries ≡ n (mod 2)

4. G has all off-diagonal entries ≡ n (mod 4) with R normalized

5. G is symmetric

I Let Gn be the set of all gram matrices, G , of order n
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The idea behind the bounds, continued

I Let Gn be the set of matrices for which properties 1 – 5 hold.

I Then
Gn ⊇ Gn

I Hence ∣∣max det
(
Gn

)∣∣ ≥ |max det (Gn)|

Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem



The idea behind the bounds, continued

I Let Gn be the set of matrices for which properties 1 – 5 hold.

I Then
Gn ⊇ Gn

I Hence ∣∣max det
(
Gn

)∣∣ ≥ |max det (Gn)|

Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem



The idea behind the bounds, continued

I Let Gn be the set of matrices for which properties 1 – 5 hold.

I Then
Gn ⊇ Gn

I Hence ∣∣max det
(
Gn

)∣∣ ≥ |max det (Gn)|

Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem



Case: n ≡ 1 (mod 4)

I The matrix which was proven by Barba and Ehlich to have
largest determinant in Gn isn 1

. . .

1 n
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Case: n ≡ 2 (mod 4)

I The matrix which was proven by Ehlich and Wojtas to have
largest determinant in Gn is

(
F 0
0 F

)
, where F =

n 2
. . .

2 n
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Case: n ≡ 3 (mod 4)

I We expect a matrix with largest determinant in Gn to be: n −1
. . .

−1 n


I In general, this is wrong

I Ehlich proved: the correct best determinant matrix in Gn is a
block form with off-diagonal entries from the set {−1,+3}.
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Structure in the n ≡ 1 (mod 4) case

I What is a necessary condition for tightness of: Barba-Ehlich:

√
2n − 1(n − 1)(n−1)/2?

I Lemma: The number 2n − 1 is a perfect square iff ∃q ∈ N
such that

n = q2 + (q + 1)2
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In the literature, a conjecture on tightness:

I Conjecture: The Barba-Ehlich bound is tight whenever n is
a sum of two consecutive squares:

n = q2 + (q + 1)2

I Evidence: True for
q = 2, 4

and when
q = pr

for p an odd prime – proved by Brouwer’s Construction.
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What chance an exact maxdet formula ∀ n ≡ 1 (mod 4)?

n ≡ 1 1 5 9 13 17 21 25 29
|max det|

2n−1 1 3× 11 7× 23 15× 35 20× 47 29× 59 42× 611 48× 713

+4 +8 +5 +9 +13 +6 Guess

I A guess/conjecture due to Will Orrick is that |max det|
2n−1 for

n = 4k + 1 is always divisible by

k2k−1,

with coefficients growing quadratically between n’s for which
n = q2 + (q + 1)2.
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What can we hope to compute?

I The ideas of Ehlich and Wojtas were reused by Chadjipantelis,
Kounias and Moissiadis in the 1980’s to find max det matrices
for n = 17 and n = 21.

I Will Orrick used similar ideas in the 2000’s to prove maximal
an n = 15 matrix that had previously been found by Cohn; as
well as filling in some gaps in CKM’s published proofs.

I Are we within reach of n = 29?
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Basic Idea

Two steps:

1. Find candidate gram matrices in Gn.

2. Check if candidates decompose in the form

RRT .
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Essentials of Step 1.

I There exist theorems which bound the determinants of
candidate gram matrices in terms of their sub-matrices.

I So we can set a target determinant and build candidates:

n
n

n
n

n

pruning too-small sub-matrices as we go.
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Computational considerations for Step 1.

I We must have efficient ways to calculate determinants!

I ‘Rank-One Update’ Theorems:

O(size3) → O(size2),

at the expense of some book-keeping.
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Computational considerations for Step 1.

I Need to prune equivalent gram matrices:

7 1 1 3 1 1 1
1 7 3 1 1 1 1
1 3 7 1 1 1 1
3 1 1 7 1 1 1
1 1 1 1 7 3 1
1 1 1 1 3 7 1
1 1 1 1 1 1 7

−− − − −− − − − −− − − − −−− − − −− −− − −− −− − −− − − −− −( (
7 3 1 1 1 1 1
3 7 1 1 1 1 1
1 1 7 3 1 1 1
1 1 3 7 1 1 1
1 1 1 1 7 3 1
1 1 1 1 3 7 1
1 1 1 1 1 1 7

− − − − −− − − − −− − − − −− − − − −− −− − −− −− − −− − − −− −( (∼
eg.

under simultaneous row and column permutation
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Computational considerations for Step 1.

I So need a (partial ordering) which

I prunes heavily enough, and
I is practical to compute on-the-fly

?

I Make sure we don’t miss any valid candidates!
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Essentials of Step 2.

I Consider gram candidates A and B whose determinants agree.

I These are candidates for

RRT and RTR

I Implement two kinds of constraints:

I Linear,

I Quadratic – which use A and B simultaneously
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Essentials of Step 2. – the linear constraints

I Let A = (aij) and B = (bij).

I Assume

R =

 r0
...

rn−1

 =
(
c0 · · · cn−1

)

I Then
aij = ri .rj and bij = ci .cj

I We need to implement an ordering to prune duplicates
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Considerations for the linear constraints of Step 2.

I

A =





17 −3 1 · · ·
−3 17 1 · · ·
1 1 17 · · ·
...

...
...

. . .





eg.

If we have already built

r0 = (1, −, −, 1, 1, −,−, −,−,−, 1, 1, 1, 1, 1, 1, 1)
r1 = (−, −, 1, −,−, −,−, 1, 1, 1, −,−,−, 1, 1, 1, 1)

and

then r2 breaks into blocks:
r2 = (a; b; c; d, e; f, g; h, i, j; k, l, m; n, o, p, q)

I Adding more rows is a process of successive block refinement
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Considerations for the linear constraints of Step 2.

I Because we work with both rows and columns, we need a way
of refining row-blocks and column blocks simultaneously!

1 −− 1 1 −−
−− 1 −− −−
−
1
1
1

−

−

1
1

?
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Essentials of Step 2. – the quadratic constraints

I To derive the quadratic constraints, write key ingredients in
block form:

R =

(
1 yT

x R ′

)
,RT =

(
1 xT

y R ′T

)
,A =

(
n aT

a A′

)
,B =

(
n bT

b B ′

)

I This allow several quadratic constraints to be found, eg.

det(A′ − xxT ) = a perfect square = det(B ′ − yyT )
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Computational Considerations for Step 2.

I We need to decide in which order to implement the various
quadratic and linear constraints.

I How to decide?
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THE END
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