On Hadamard's Maximal Determinant Problem

Judy-anne Osborn MSI, ANU

April 2009

AUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

向下 イヨト イヨト

3

Judy-anne Osborn MSI, ANU On Hadamard's Maximal Determinant Problem

A Naive Computer Search

Order	max det	Time
1	1	fast
2	1	fast
3	2	fast
4	3	fast
5	5	fast
6	9	order of days
7	32	order of years
8	56	order of the age of the Universe

イロン イヨン イヨン イヨン

æ

白 と く ヨ と く ヨ と

回 と く ヨ と く ヨ と

But no further!

The problem turns out to be famous

Hadamard's Maximal Determinant Problem was posed in 1893

Jacques Hadamard

Judy-anne Osborn MSI, ANU On Hadamard's Maximal Determinant Problem

► A little selected history on this century-old question ...

・ 回 と く ヨ と く ヨ と

Observe:

(ロ) (四) (E) (E) (E)

Geometry: max |det| = max (hyper-)Volume

► 3D:

・ 同 ト ・ ヨ ト ・ ヨ ト

An equivalent problem: $\{+1, -1\}$ matrices

An equivalent problem: $\{+1, -1\}$ matrices

What is the upper bound?

(4) (3) (4) (3) (4)

What is the upper bound?

$$\left(\sqrt{(\pm 1)^2 + \dots + (\pm 1)^2}\right)^n = n^{n/2}$$

(4) (3) (4) (3) (4)

What is the upper bound?

$$\left(\sqrt{(\pm 1)^2 + \dots + (\pm 1)^2}\right)^n = n^{n/2}$$

Why?

Image: A Image: A

What is the upper bound?

$$\left(\sqrt{(\pm 1)^2 + \dots + (\pm 1)^2}\right)^n = n^{n/2}$$

Why? (Columns/rows orthogonal)

• Tight when $\{+1, -1\}$ square matrix H of order n satisfies

 $HH^T = nI$

(本間) (本語) (本語) (語)

▶ Tight when $\{+1, -1\}$ square matrix H of order n satisfies

$$HH^T = nI$$

► *H* is called a *Hadamard Matrix*.

回 と く ヨ と く ヨ と

• Tight when $\{+1, -1\}$ square matrix H of order n satisfies

$$HH^T = nI$$

- ► H is called a Hadamard Matrix.
- ► A *necessary condition* on existence of *H* is:

$$n = 1, 2$$
 or $n \equiv 0 \pmod{4}$

(日) (ヨ) (ヨ) (ヨ)

• Tight when $\{+1, -1\}$ square matrix H of order n satisfies

$$HH^T = nI$$

- ► H is called a Hadamard Matrix.
- ► A *necessary condition* on existence of *H* is:

$$n = 1, 2$$
 or $n \equiv 0 \pmod{4}$

► Hadamard Conjecture (Paley, 1933): this is also sufficient.

伺 ト イヨト イヨト

Evidence for Hadamard Conjecture

- Many constructions for infinite families, including
 - Sylvester, $\forall 2^r$
 - First Paley, using finite fields, $\forall p^r + 1, p$ prime
 - ▶ Second Paley, using finite fields, $\forall 2p^r + 2$, p prime

高 とう ヨン うまと

Evidence for Hadamard Conjecture

- Many constructions for infinite families, including
 - Sylvester, $\forall 2^r$
 - First Paley, using finite fields, $\forall p^r + 1, p$ prime
 - Second Paley, using finite fields, $\forall 2p^r + 2$, p prime
- Other 'constructions' and 'ad hoc' examples due to people including
 - Williamson
 - Jenny Seberry

通 とう ほう ううせい

Evidence for Hadamard Conjecture

- Many constructions for infinite families, including
 - Sylvester, $\forall 2^r$
 - First Paley, using finite fields, $\forall p^r + 1, p$ prime
 - Second Paley, using finite fields, $\forall 2p^r + 2$, p prime
- Other 'constructions' and 'ad hoc' examples due to people including
 - Williamson
 - Jenny Seberry
- Smallest $n \equiv 0 \pmod{4}$ currently undecided:

n = 668.

向下 イヨト イヨト

Order	Number of inequivalent Hadamard matrices
	– see Sloan's sequence A007299
1	1
2	1
4	1
8	1
12	1
16	5
20	3
24	60
28	487
32	\geq 3 578 006
36	≥ 18292717

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

三 のへで

Max Dets for non-Hadamard orders?

	$n \equiv 1$	1	5	9	13	17	21	25
•	$\frac{ \max \det }{2^{n-1}}$	1	3×1^1	7×2^3	15×3^5	20×4^7	29×5^9	42×6^{11}

The smallest unknown order is n=29.

・ロン ・回 と ・ヨン ・ヨン

	$n \equiv 1$	1	5	9	13	17	21	25
• [$\frac{ \max \det }{2^{n-1}}$	1	3×1^1	7×2^3	15×3^5	20×4^7	29×5^9	42×6^{11}

The smallest unknown order is n=29.

$n \equiv 2$	2	6	10	14	18
$\frac{ \max \det }{2^{n-1}}$	1	$5 imes 1^1$	18×2^3	39×3^5	68×4^7

The smallest unknown order is n=22.

・ロト ・回ト ・ヨト ・ヨト

	$n \equiv 1$	1	5	9	13	17	21	25
• [$\frac{ \max \det }{2^{n-1}}$	1	3×1^1	7×2^3	$15 imes 3^5$	20×4^7	29×5^9	42×6^{11}

The smallest unknown order is n=29.

$n \equiv 2$	2	6	10	14	18
$\frac{ \max \det }{2^{n-1}}$	1	5×1^1	18×2^3	$39 imes 3^5$	68×4^7

The smallest unknown order is n=22.

	$n \equiv 3$	3	7	11	15
•	$\frac{ \max \det }{2^{n-1}}$	1	9×1^1	40×2^3	$105 imes 3^5$

The smallest unknown order is n=19.

・ロト ・回ト ・ヨト ・ヨト

▶ The *Hadamard bound* of $n^{n/2}$ holds for all orders but is never tight for $n \neq 0 \pmod{4}$ when n > 2.

- ▶ The *Hadamard bound* of $n^{n/2}$ holds for all orders but is never tight for $n \neq 0 \pmod{4}$ when n > 2.
- Better upper bounds for non-Hadamard orders were proved by
 - ► Barba in 1933
 - Ehlich in 1962, 64
 - Wojtas in 1964
 - Cohn (proved a new bound tightness result) in 2000

• The Barba-Ehlich bound holds for $n \equiv 1 \pmod{4}$:

 $\sqrt{2n-1}(n-1)^{(n-1)/2}$

(4回) (日) (日) (日) (日)

• The Barba-Ehlich bound holds for $n \equiv 1 \pmod{4}$:

$$\sqrt{2n-1}(n-1)^{(n-1)/2}$$

▶ The *Ehlich-Wojtas bound* holds for $n \equiv 2 \pmod{4}$:

 $(2n-2)(n-2)^{(n/2)-1}$

・ 同 ト ・ ヨ ト ・ ヨ ト

• The *Ehlich bound* holds for $n \equiv 3 \pmod{4}$:

$$(n-3)^{\frac{n-s}{2}}(n-3+4r)^{\frac{u}{2}}(n+1+4r)^{\frac{v}{2}}\sqrt{1-\frac{ur}{n-3+4r}-\frac{v(r+1)}{n+1+4r}}$$

where s = 3 for n = 3, s = 5 for n = 7, s = 5 or 6 for n = 11, s = 6 for n = 15, 19, ..., 59, and s = 7 for $n \ge 63$, $r = \lfloor \frac{n}{s} \rfloor$, n = rs + v and u = s - v.

マロト イヨト イヨト 三日

Percentages of bounds met: summary from Will Orrick's:

www.indiana.edu/~maxdet

Det should be multiplied by 2^{N-1} . Refer to key for more information.												
Det	R	Ν	Det	R	N	Det	R	N	Det	R		
		1	<u>1</u>	1	2	<u>1</u>	1	3	1	1		
<u>2 × 1</u> ¹	1	5	<u>3 × 1</u> ¹	1	6	<u>5 × 1</u> ¹	1	7	<u>9 × 1¹</u>	<i>.</i> 98		
<u>4 × 2³</u>	1	9	<u>7 × 2³</u>	.85	10	<u>18 × 2³</u>	1	11	<u>40 × 2³</u>	.94		
<u>6 × 3⁵</u>	1	13	<u>15 × 3⁵</u>	1	14	<u>39 × 3⁵</u>	1	15	<u>105 × 3⁵</u>	9 7		
<u>8 × 4</u> 7	1	17	<u>20 × 4</u> ⁷	.87	18	<u>68 × 4</u> 7	1	19	<u>833 × 4</u> ⁶ ??	.98		
<u>10 × 5</u> 9	1	21	<u>29 × 5</u> 9	.91	22	<u>100 × 5</u> ⁹ ??	.95	23	<u>42411 × 5⁶ ??</u>	.93		
<u>12 × 6¹¹</u>	1	25	<u>42 × 6¹¹</u>	1	26	<u>150 × 6¹¹</u>	1	27	<u>546 × 6¹¹ ??</u>	.9 7		
<u>14 × 7¹³</u>	1	29	320×7^{12} ??	.87	30	<u>203 x 7¹³</u>	1	31	<u>784 × 7¹³ ??</u>	.96		
<u>16 × 8¹⁵</u>	1	33	<u>441 × 8¹⁴ ??</u>	.85	34	256×8^{15} ??	.97	35	3.427709339E16 ??	.86		
<u>18 × 9¹⁷</u>	1	37	<u>72 × 9¹⁷ ??</u>	.94	38	<u>333 × 9¹⁷</u>	1	39	2.299923890E19 ??	.91		
	Det 2×1^{1} 4×2^{3} 6×3^{5} 8×4^{7} 10×5^{9} 12×6^{11} 14×7^{13} 16×8^{15} 18×9^{17}	Det R 2×1^1 1 4×2^3 1 6×3^5 1 8×4^7 1 10×5^9 1 12×6^{11} 1 14×7^{13} 1 16×8^{15} 1 18×9^{17} 1	Det R N 2 × 1 ¹ 1 5 4 × 2 ³ 1 9 6 × 3 ⁵ 1 13 8 × 4 ⁷ 1 17 10 × 5 ⁹ 1 21 12 × 6 ¹¹ 1 25 14 × 7 ¹³ 1 29 16 × 8 ¹⁵ 1 33 18 × 9 ¹⁷ 1 37	Det R N Det 1 1 1 2×1 ¹ 1 5 3×1 ¹ 4×2 ³ 1 9 7×2 ³ 6×3 ⁵ 1 13 15×3 ⁵ 8×4 ⁷ 1 17 20×4 ⁷ 10×5 ⁹ 1 21 29×5 ⁹ 12×6 ¹¹ 1 25 42×6 ¹¹ 14×7 ¹³ 1 29 320×7 ¹² ?? 16×8 ¹⁵ 1 33 441×8 ¹⁴ ?? 18×9 ¹⁷ 1 37 72×9 ¹⁷ ??	Det R N Det R 1 1 1 1 1 2 × 1 ¹ 1 5 3 × 1 ¹ 1 2 × 1 ¹ 1 5 3 × 1 ¹ 1 4 × 2 ³ 1 9 7 × 2 ³ 85 6 × 3 ⁵ 1 13 15 × 3 ⁵ 1 8 × 4 ⁷ 1 17 20 × 4 ⁷ 87 10 × 5 ⁹ 1 21 29 × 5 ⁹ 91 12 × 6 ¹¹ 1 25 42 × 6 ¹¹¹ 1 14 × 7 ¹³ 1 29 320 × 7 ¹² ?? 87 16 × 8 ¹⁵ 1 33 441 × 8 ¹⁴ ?? 85 18 × 9 ¹⁷ 1 37 72 × 9 ¹⁷ ?? 94	Det R N Det R N 1 1 1 1 2 2 × 1 ¹ 1 5 3 × 1 ¹ 1 2 2 × 1 ¹ 1 5 3 × 1 ¹ 1 6 4 × 2 ³ 1 9 7 × 2 ³ 85 10 6 × 3 ⁵ 1 13 15 × 3 ⁵ 1 14 8 × 4 ⁷ 1 17 20 × 4 ⁷ 87 18 10 × 5 ⁹ 1 21 29 × 5 ⁹ 91 22 12 × 6 ¹¹ 1 25 42 × 6 ¹¹ 1 26 14 × 7 ¹³ 1 29 320 × 7 ¹² ?? 37 30 16 × 8 ¹⁵ 1 33 441 × 8 ¹⁴ ?? 35 34 18 × 9 ¹⁷ 1 37 72 × 9 ¹⁷ ?? 34 38	Det should be multiplied by 2^{N-1} . Refer to key i Det R N Det R N Det 1 1 1 1 2 1 2×1^1 1 5 3×1^1 1 6 5×1^1 4×2^3 1 9 7×2^3 85 10 18×2^3 6×3^5 1 13 15×3^5 1 14 39×3^5 8×4^7 1 17 20×4^7 87 18 68×4^7 10×5^9 1 21 29×5^9 91 22 100×5^9 7^1 12×6^{11} 1 25 42×6^{11} 1 26 150×6^{11} 14×7^{13} 1 29 320×7^{12} 37 30 203×7^{13} 16×8^{15} 1 33 441×8^{14} ?? 85 34 256×8^{15} ?? 18×9^{17} 1 37 72×9^{17} ?? 34 33×9^{17}	Det should be multiplied by 2^{N-1} . Refer to key for m Det R N Det R N Det R 1 1 1 1 2 1 1 1 2 2 $\times 1^1$ 1 5 3×1^1 1 6 5×1^1 1 4 $\times 2^3$ 1 9 7×2^3 .85 10 18×2^3 1 6 $\times 3^5$ 1 13 15×3^5 1 14 39×3^5 1 8×4^7 1 17 20×4^7 .87 18 68×4^7 1 10×5^2 1 21 29×5^2 .91 22 100×5^2 ? .95 12×6^{11} 1 25 42×6^{11} 1 26 150×6^{11} 1 14×7^{13} 1 29 320×7^{12} ? .87 30 203×7^{13} 1 16×8^{15} 1 33 41×8^{14} ?? .85 34 266×8^{15} ?? .97 18×9^{17} 1 37 <td< th=""><th>Det should be multiplied by 2^{N-1}. Refer to key for more in Det R N Det R N Det R N 1 1 1 1 2 1 1 3 2×11 1 5 3×11 1 6 5×11 1 7 4×2³ 1 9 7×2³ 85 10 18×2³ 1 11 6×3⁵ 1 13 15×3⁵ 1 14 39×3⁵ 1 15 8×4⁷ 1 17 20×4⁷ 87 18 68×4⁷ 1 19 10×5² 1 21 29×5⁹ 91 22 100×5⁹?? 95 23 12×6¹¹ 1 25 42×6¹¹ 1 26 150×6¹¹ 1 27 14×7¹³ 1 29 320×7¹²?? 37 30 203×7¹³ 1 31 16×8¹⁵ 1 33 441×8¹⁴?? 85 34 256×8¹⁵?? 97 35 18×9¹⁷</th><th>Det should be multiplied by 2^{N-1}. Refer to key for more information. Det R N Det R N Det R N Det 1 1 1 1 2 1 1 3 1 2 × 1¹ 1 5 3 × 1¹ 1 6 5 × 1¹ 1 7 9 × 1¹ 4 × 2³ 1 9 7 × 2³ 85 10 18 × 2³ 1 11 40 × 2³ 6 × 3⁵ 1 13 15 × 3⁵ 1 14 39 × 3⁵ 1 15 105 × 3⁵ 8 × 4⁷ 1 17 20 × 4⁷ 87 18 68 × 4⁷ 1 19 83 × 4⁶ ?? 10 × 5² 1 21 29 × 5⁹ 91 22 100 × 5⁹ ?? 35 3 42111 × 5⁶ ?? 12 × 6¹¹ 1 25 42 × 6¹¹ 1 26 150 × 6¹¹ 1 27 546 × 6¹¹ ?? 14 × 7¹³ 1 23 242 × 6¹¹ 1 26 150 × 6¹¹ 1 31 7</th></td<>	Det should be multiplied by 2 ^{N-1} . Refer to key for more in Det R N Det R N Det R N 1 1 1 1 2 1 1 3 2×11 1 5 3×11 1 6 5×11 1 7 4×2 ³ 1 9 7×2 ³ 85 10 18×2 ³ 1 11 6×3 ⁵ 1 13 15×3 ⁵ 1 14 39×3 ⁵ 1 15 8×4 ⁷ 1 17 20×4 ⁷ 87 18 68×4 ⁷ 1 19 10×5 ² 1 21 29×5 ⁹ 91 22 100×5 ⁹ ?? 95 23 12×6 ¹¹ 1 25 42×6 ¹¹ 1 26 150×6 ¹¹ 1 27 14×7 ¹³ 1 29 320×7 ¹² ?? 37 30 203×7 ¹³ 1 31 16×8 ¹⁵ 1 33 441×8 ¹⁴ ?? 85 34 256×8 ¹⁵ ?? 97 35 18×9 ¹⁷	Det should be multiplied by 2 ^{N-1} . Refer to key for more information. Det R N Det R N Det R N Det 1 1 1 1 2 1 1 3 1 2 × 1 ¹ 1 5 3 × 1 ¹ 1 6 5 × 1 ¹ 1 7 9 × 1 ¹ 4 × 2 ³ 1 9 7 × 2 ³ 85 10 18 × 2 ³ 1 11 40 × 2 ³ 6 × 3 ⁵ 1 13 15 × 3 ⁵ 1 14 39 × 3 ⁵ 1 15 105 × 3 ⁵ 8 × 4 ⁷ 1 17 20 × 4 ⁷ 87 18 68 × 4 ⁷ 1 19 83 × 4 ⁶ ?? 10 × 5 ² 1 21 29 × 5 ⁹ 91 22 100 × 5 ⁹ ?? 35 3 42111 × 5 ⁶ ?? 12 × 6 ¹¹ 1 25 42 × 6 ¹¹ 1 26 150 × 6 ¹¹ 1 27 546 × 6 ¹¹ ?? 14 × 7 ¹³ 1 23 242 × 6 ¹¹ 1 26 150 × 6 ¹¹ 1 31 7		

Table of maximal determinants, orders 0 - 39

Judy-anne Osborn MSI, ANU On Hadamard's Maximal Determinant Problem

물 제 문 제 문 제
• Let R be a maximal determinant square ± 1 matrix of order n.

・回 ・ ・ ヨ ・ ・ ヨ ・

- Let R be a maximal determinant square ± 1 matrix of order n.
- Consider 'gram matrix'

$$G := RR^T$$

個 と く ヨ と く ヨ と …

- Let R be a maximal determinant square ± 1 matrix of order n.
- Consider 'gram matrix'

$$G := RR^T$$

1. G has all n's on the diagonal

高 とう ヨン うまと

- Let R be a maximal determinant square ± 1 matrix of order n.
- Consider 'gram matrix'

$$G := RR^T$$

- 1. G has all n's on the diagonal
- 2. G is positive definite \Rightarrow off-diagonal entries have size < n

コン・ヘリン・ヘリン

- Let R be a maximal determinant square ± 1 matrix of order n.
- Consider 'gram matrix'

$$G := RR^T$$

- 1. G has all n's on the diagonal
- 2. G is positive definite \Rightarrow off-diagonal entries have size < n
- 3. G has all off-diagonal entries $\equiv n \pmod{2}$

向下 イヨト イヨト

- Let R be a maximal determinant square ± 1 matrix of order n.
- Consider 'gram matrix'

$$G := RR^T$$

- 1. G has all n's on the diagonal
- 2. G is positive definite \Rightarrow off-diagonal entries have size < n
- 3. G has all off-diagonal entries $\equiv n \pmod{2}$
- 4. G has all off-diagonal entries $\equiv n \pmod{4}$ with R normalized

通 とう ほう ううせい

- Let R be a maximal determinant square ± 1 matrix of order n.
- Consider 'gram matrix'

$$G := RR^T$$

- 1. G has all n's on the diagonal
- 2. G is positive definite \Rightarrow off-diagonal entries have size < n
- 3. G has all off-diagonal entries $\equiv n \pmod{2}$
- 4. G has all off-diagonal entries $\equiv n \pmod{4}$ with R normalized
- 5. G is symmetric

通 とう ほう ううせい

- Let R be a maximal determinant square ± 1 matrix of order n.
- Consider 'gram matrix'

$$G := RR^T$$

- 1. G has all n's on the diagonal
- 2. G is positive definite \Rightarrow off-diagonal entries have size < n
- 3. G has all off-diagonal entries $\equiv n \pmod{2}$
- 4. G has all off-diagonal entries $\equiv n \pmod{4}$ with R normalized
- 5. G is symmetric
- Let \mathcal{G}_n be the set of all gram matrices, G, of order n

通 とう ほう ううせい

• Let $\overline{\mathcal{G}}_n$ be the set of matrices for which properties 1-5 hold.

• Let $\overline{\mathcal{G}}_n$ be the set of matrices for which properties 1-5 hold.

► Then

$$\overline{\mathcal{G}}_n \supseteq \mathcal{G}_n$$

同下 イヨト イヨト

• Let $\overline{\mathcal{G}}_n$ be the set of matrices for which properties 1-5 hold.

Then

$$\overline{\mathcal{G}}_n \supseteq \mathcal{G}_n$$

Hence

$$\left|\max \det\left(\overline{\mathcal{G}}_{n}\right)\right| \geq \left|\max \det\left(\mathcal{G}_{n}\right)\right|$$

► The matrix which was proven by Barba and Ehlich to have largest determinant in G_n is

$$\begin{pmatrix} n & 1 \\ & \ddots & \\ 1 & & n \end{pmatrix}$$

・回・ ・ヨ・ ・ヨ・

► The matrix which was proven by Ehlich and Wojtas to have largest determinant in G_n is

$$\begin{pmatrix} F & 0 \\ 0 & F \end{pmatrix}, \text{ where } F = \begin{pmatrix} n & 2 \\ & \ddots & \\ 2 & & n \end{pmatrix}$$

(本部) (注) (注) (注)

• We expect a matrix with largest determinant in $\overline{\mathcal{G}}_n$ to be:

$$egin{pmatrix} n & -1 \ & \ddots & \ -1 & n \end{pmatrix}$$

- In general, this is wrong
- ► Ehlich proved: the correct best determinant matrix in G
 n is a block form with off-diagonal entries from the set {-1, +3}.

向下 イヨト イヨト

What is a necessary condition for tightness of: Barba-Ehlich:

 $\sqrt{2n-1}(n-1)^{(n-1)/2}$?

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q @

What is a necessary condition for tightness of: Barba-Ehlich:

 $\sqrt{2n-1}(n-1)^{(n-1)/2}$?

▶ Lemma: The number 2n-1 is a perfect square iff $\exists q \in \mathbb{N}$ such that

 $n = q^2 + (q+1)^2$

Conjecture: The Barba-Ehlich bound is tight whenever n is a sum of two consecutive squares:

$$n = q^2 + (q+1)^2$$

回 と く ヨ と く ヨ と

Conjecture: The Barba-Ehlich bound is tight whenever n is a sum of two consecutive squares:

$$n=q^2+(q+1)^2$$

q = 2, 4

伺 ト イヨト イヨト

Conjecture: The Barba-Ehlich bound is tight whenever n is a sum of two consecutive squares:

$$n=q^2+(q+1)^2$$

Evidence: True for

$$q = 2, 4$$

and when

 $q = p^r$

for p an odd prime – proved by Brouwer's Construction.

伺 ト イヨト イヨト

What chance an exact maxdet formula $\forall n \equiv 1 \pmod{4}$?

・ 同・ ・ ヨ・

• 3 >

What chance an exact maxdet formula $\forall n \equiv 1 \pmod{4}$?

A guess/conjecture due to Will Orrick is that ^{|max det|}/_{2ⁿ⁻¹} for n = 4k + 1 is always divisible by

$$k^{2k-1}$$
,

A guess/conjecture due to Will Orrick is that ^{|max det|}/_{2ⁿ⁻¹} for n = 4k + 1 is always divisible by

$$k^{2k-1}$$
,

with coefficients growing quadratically between *n*'s for which $n = q^2 + (q + 1)^2$.

通 とう ほうとう ほうど

► The ideas of Ehlich and Wojtas were reused by Chadjipantelis, Kounias and Moissiadis in the 1980's to find max det matrices for n = 17 and n = 21.

伺 ト イヨト イヨト

- ► The ideas of Ehlich and Wojtas were reused by Chadjipantelis, Kounias and Moissiadis in the 1980's to find max det matrices for n = 17 and n = 21.
- Will Orrick used similar ideas in the 2000's to prove maximal an n = 15 matrix that had previously been found by Cohn; as well as filling in some gaps in CKM's published proofs.

ヨト イヨト イヨト

- ► The ideas of Ehlich and Wojtas were reused by Chadjipantelis, Kounias and Moissiadis in the 1980's to find max det matrices for n = 17 and n = 21.
- Will Orrick used similar ideas in the 2000's to prove maximal an n = 15 matrix that had previously been found by Cohn; as well as filling in some gaps in CKM's published proofs.
- Are we within reach of n = 29?

Two steps:

- 1. Find candidate gram matrices in $\overline{\mathcal{G}}_n$.
- 2. Check if candidates decompose in the form

 RR^T .

マロト マヨト マヨト

- There exist theorems which bound the determinants of candidate gram matrices in terms of their sub-matrices.
- So we can set a target determinant and build candidates:

pruning too-small sub-matrices as we go.

- We must have efficient ways to calculate determinants!
- 'Rank-One Update' Theorems:

 $O(size^3) \rightarrow O(size^2),$

at the expense of some book-keeping.

ヨト イヨト イヨト

Need to prune equivalent gram matrices:

eg.	7	3	-1	-1	-1	-1	-1		17	-1	-1	3	-1	-1	-1 \
	3	7	-1	-1	-1	-1	-1		-1	7	3	-1	-1	-1	-1
	-1	-1	$\overline{7}$	3	-1	-1	-1		-1	3	7	-1	-1	-1	-1
	-1	-1	3	7	-1	-1	-1	\sim	3	-1	-1	7	-1	-1	-1
	-1	-1	-1	-1	7	3	-1		-1	-1	-1	-1	7	3	-1
	-1	-1	-1	-1	3	7	-1		-1	-1	-1	-1	3	7	-1
	\-1	-1	-1	-1	-1	-1	7/		\-1	-1	-1	-1	-1	-1	7/

under simultaneous row and column permutation

Computational considerations for Step 1.

- So need a (partial ordering) which
 - prunes heavily enough, and
 - is practical to compute on-the-fly

Computational considerations for Step 1.

- So need a (partial ordering) which
 - prunes heavily enough, and
 - is practical to compute on-the-fly

Make sure we don't miss any valid candidates!

► Consider gram candidates A and B whose determinants agree.

同 ト イヨ ト イヨト

- Consider gram candidates A and B whose determinants agree.
- These are candidates for

 RR^T and R^TR

伺 とう きょう とう とう

- ► Consider gram candidates A and B whose determinants agree.
- These are candidates for

 RR^T and R^TR

- Implement two kinds of constraints:
 - Linear,
 - Quadratic which use A and B simultaneously

向下 イヨト イヨト

• Let
$$A = (a_{ij})$$
 and $B = (b_{ij})$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへで

Essentials of Step 2. - the linear constraints

• Let
$$A = (a_{ij})$$
 and $B = (b_{ij})$.

Assume

$$R = \begin{pmatrix} \mathbf{r}_0 \\ \vdots \\ \mathbf{r}_{n-1} \end{pmatrix} = \begin{pmatrix} \mathbf{c}_0 & \cdots & \mathbf{c}_{n-1} \end{pmatrix}$$

(1日) (日) (日)
Essentials of Step 2. - the linear constraints

• Let
$$A = (a_{ij})$$
 and $B = (b_{ij})$.

Assume

$$R = \begin{pmatrix} \mathbf{r}_0 \\ \vdots \\ \mathbf{r}_{n-1} \end{pmatrix} = \begin{pmatrix} \mathbf{c}_0 & \cdots & \mathbf{c}_{n-1} \end{pmatrix}$$

Then

$$a_{ij} = \mathbf{r}_i \cdot \mathbf{r}_j$$
 and $b_{ij} = \mathbf{c}_i \cdot \mathbf{c}_j$

・ロン ・回 ・ ・ ヨン ・ ヨン

Essentials of Step 2. – the linear constraints

• Let
$$A = (a_{ij})$$
 and $B = (b_{ij})$.

$$R = \begin{pmatrix} \mathbf{r}_0 \\ \vdots \\ \mathbf{r}_{n-1} \end{pmatrix} = \begin{pmatrix} \mathbf{c}_0 & \cdots & \mathbf{c}_{n-1} \end{pmatrix}$$

Then

$$a_{ij} = \mathbf{r}_i . \mathbf{r}_j$$
 and $b_{ij} = \mathbf{c}_i . \mathbf{c}_j$

We need to implement an ordering to prune duplicates

・ 同 ト ・ ヨ ト ・ ヨ ト

Considerations for the linear constraints of Step 2.

• eg.
$$A = \begin{pmatrix} 17 & -3 & 1 & \cdots \\ -3 & 17 & 1 & \cdots \\ 1 & 1 & 17 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

If we have already built

$$\mathbf{r}_0 = (1, \ -, \ -, \ 1, 1, \ -, -, \ -, -, \ 1, 1, 1, \ 1, 1, 1, 1) \quad \text{and} \\ \mathbf{r}_1 = (-, \ -, \ 1, \ -, -, \ -, \ 1, 1, 1, \ -, -, -, \ 1, 1, 1, 1)$$

then \mathbf{r}_2 breaks into blocks:

$$\mathbf{r}_2 = (a; b; c; d, e; f, g; h, i, j; k, l, m; n, o, p, q)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● ● ●

Considerations for the linear constraints of Step 2.

• eg.
$$A = \begin{pmatrix} 17 & -3 & 1 & \cdots \\ -3 & 17 & 1 & \cdots \\ 1 & 1 & 17 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

If we have already built

$$\mathbf{r}_0 = (1, -, -, 1, 1, -, -, -, -, -, 1, 1, 1, 1, 1, 1, 1) \text{ and } \mathbf{r}_1 = (-, -, 1, -, -, -, -, 1, 1, 1, 1, -, -, -, 1, 1, 1, 1)$$

then \mathbf{r}_2 breaks into blocks:

 $\mathbf{r}_2 = (a; \ b; \ c; \ d, e; \ f, g; \ h, i, j; \ k, l, m; \ n, o, p, q)$

Adding more rows is a process of successive block refinement

▲ □ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q @

Considerations for the linear constraints of Step 2.

Because we work with both rows and columns, we need a way of refining row-blocks and column blocks simultaneously!

To derive the quadratic constraints, write key ingredients in block form:

$$R = \begin{pmatrix} 1 & \mathbf{y}^{\mathsf{T}} \\ \mathbf{x} & R' \end{pmatrix}, R^{\mathsf{T}} = \begin{pmatrix} 1 & \mathbf{x}^{\mathsf{T}} \\ \mathbf{y} & R'^{\mathsf{T}} \end{pmatrix}, A = \begin{pmatrix} n & \mathbf{a}^{\mathsf{T}} \\ \mathbf{a} & A' \end{pmatrix}, B = \begin{pmatrix} n & \mathbf{b}^{\mathsf{T}} \\ \mathbf{b} & B' \end{pmatrix}$$

伺 と く き と く き と

-2

To derive the quadratic constraints, write key ingredients in block form:

$$R = \begin{pmatrix} 1 & \mathbf{y}^{\mathsf{T}} \\ \mathbf{x} & R' \end{pmatrix}, R^{\mathsf{T}} = \begin{pmatrix} 1 & \mathbf{x}^{\mathsf{T}} \\ \mathbf{y} & R'^{\mathsf{T}} \end{pmatrix}, A = \begin{pmatrix} n & \mathbf{a}^{\mathsf{T}} \\ \mathbf{a} & A' \end{pmatrix}, B = \begin{pmatrix} n & \mathbf{b}^{\mathsf{T}} \\ \mathbf{b} & B' \end{pmatrix}$$

This allow several quadratic constraints to be found, eg.

$$det(A' - \mathbf{x}\mathbf{x}^{T}) = a \text{ perfect square } = det(B' - \mathbf{y}\mathbf{y}^{T})$$

高 とう ヨン うまと

We need to decide in which order to implement the various quadratic and linear constraints.

高 とう ヨン うまと

-2

- We need to decide in which order to implement the various quadratic and linear constraints.
- How to decide?

通 とう ほう うちょう

THE END

Judy-anne Osborn MSI, ANU On Hadamard's Maximal Determinant Problem

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで