| PSL%

ENS

Correctly rounded pow in double precision

Tom Hubrecht
June 8, 2022

CERN, INRIA

Floating point numbers (A quick reminder)
Formats

Rounding
The CORE-MATH project

pow in double precision
Correct rounding
Previous work
Current approach

Details on exp and log

Tom Hubrecht - June 8, 2022 1/25

Floating point numbers (A quick
reminder)

IEEE754 floating point numbers (in binary form)

S|gn exponent (8 blts) fraction (23 bits)

31 30 23 22

value = (—I)Sjgn X 2e><ponent—127 X 1.b22b21 R b()

!;||||||||I|o||||||||||H||||||||I|||||||||||||||||||||I|||I||||0||

value = (—1)%9" x 2exponent=1023 . 1 b by ... by

« Beware of subnormal numbers : (—1)%19" x 2¢min x 0.b

Tom Hubrecht - June 8, 2022 2/25

Rounding numbers

Only a small number of representable numbers.

Transcendental functions return real numbers (i.e. the return values are almost
never in the set of floating-point values), hence the need to approximate :

e~ 2.71828182845905 (0x1.5bf0a8b145769p+1)
log(2) ~ 0.693147180559945 (0x1.62e42fefa39%efp-1)

Tom Hubrecht - June 8, 2022 3/25

IEEE754 rounding modes

Several rounding modes :

« Round to nearest, ties to even
« Round towards 0

* Round towards +oo

* Round towards —oco

Correct rounding definition :

« An approximated value is correctly rounded if it is the result of the selected
rounding function applied to the infinitely precise value.

Tom Hubrecht - June 8, 2022 425

IEEE754 requirements

Several functions are required to be correctly rounded :

- add, subtract, multiply, divide, remainder
« sqrt, fma

But not others (sin, exp, and of course pow), which leads to :
e GLIBCVv2.27:

pow(0x1.8p-214, 0x1.4p+2)

« LibUltim :
pow(0x1.8p-214, 0x1.4p+2)

0%x0.0000000000079p-1022

0x0.000000000007ap-1022

GLIBC returns an incorrect result for half (8M) of the midpoint cases (where the
results fits on 54 bits but not 53).

Tom Hubrecht - June 8, 2022 5/25

Known errors for pow in double precision

Library GLIBC IML AMD Newlib CUDA
(Version) (235 (2021.2.0) (38) (4.2.0) (11.5.0)

Max known error (ulps) 0523 1.73 0.754 636 1.40

A "unit of least precision (ulp)” is the distance between two floating point numbers of the same binade.

- Vincenzo Innocente, Paul Zimmermann. Accuracy of Mathematical Functions in Single, Double, Extended
Double and Quadruple Precision. 2022.

Tom Hubrecht - June 8, 2022 6/25

https://hal.inria.fr/hal-03141101
https://hal.inria.fr/hal-03141101

The CORE-MATH project

Different versions

#include <stdio.h>
#include <math.h>
#include <gnu/libc-version.h>

int main() {
printf("GNU libc version: %s\n", gnu_get_libc_version ());
double x = -0x1.f8b791cafcdefp+4;
printf ("sin(x)=%la\n", sin (x));

I

$ gcc -fno-builtin sin.c -1m

+ GNU libc version 2.27: sin(x)=-0x1.073ca87470df9p-3
+ GNU libc version 2.33: sin(x)=-0x1.073ca87470dfap-3

Tom Hubrecht - June 8, 2022 7/25

Different hardware

#include <stdio.h>
#include <math.h>

int main() {

double x = 0x1.01825ca7da7e5p+0;

printf ("x=%la y=%la\n", x, acosh (x));
}

$ icc -fno-builtin test_acosh.c # icc version 19.1.3.304

+ Intel Xeon Gold 6142 :
x=0x1.01825ca7da7e5p+0 y=0x1.bc8c6186687chp-4

* AMD EPYC 7452 :
x=0x1.01825ca7da7e5p+0 y=0x1.bc8c6186687cap-4

Tom Hubrecht - June 8, 2022 8/25

« Two different libms produce different results
« Two different versions of the same library produce different results

 Two different processors produce different results

All due to incorrect rounding.

Thus, results are not reproducible, and are less accurate than ideally.

Tom Hubrecht - June 8, 2022 9/25

How to address this issue

Several options in theory :

* Try to change the IEEE754 standard to impose correct rounding
+ Create another math library

« Write fast (and correct) routines that can be included in all major math
libraries

Tom Hubrecht - June 8, 2022 10/25

The last option is the most viable and is the object of the CORE-MATH project.

https://core-math.gitlabpages.inria.fr/

Tom Hubrecht - June 8, 2022 11/25

https://core-math.gitlabpages.inria.fr/

pow in double precision

The Table Maker’s Dilemna

Rounding boundary Exact value 2

J|‘|| ‘
e

Approximation z Interval Z

(a) Easy to round case

Rounding boundary Exact value 2

nl|/ |
R R
| pl ~_ |

Approximation z Interval Z

(b) Hard to round case

« Example :

pow(0x8.5f83191fa0e78p-4,0x5p-4) ~ 0xd.119a338f53fh80000000000003a35p-4

Tom Hubrecht - June 8, 2022 12/25

How to round correctly ?

Let o be the rounding function.

The idea is to compute an approximation z with an error ¢, then if

o(z—¢) = o(z+¢), the approximation is correctly rounded and we can return it. If
not, we need to compute the result with more precision and try again. This is
called Ziv's algorithm.

But, for pow, there are cases where z is exact or a midpoint value and therefore
for any precision large enough, o(z — ¢) # o(z +), hence we need to treat them
specially.

Tom Hubrecht - June 8, 2022 13/25

Previous work

« IBM’s LibUltim (1991) : Correctly rounded implementation using Ziv's
algorithm

+ CRLibm (2007) : Theoretical results and start of the implementation but still
incomplete

Tom Hubrecht - June 8, 2022 14/25

Current approach

+ A "fast path” algorithm computes quickly an approximation with ~ 69 bits of
accuracy

- If the rounding test fails, we check for easy cases (y € {1,2,3,4,0.5,0} or
x=1)

« Then we compute another approximation with at least 120 bits of precision

« If the rounding test fails again, we deal with the exact and midpoint cases
(Based on the algorithm from [1])

« If we are not with a midpoint or exact case, then we compute an
approximation with at least 250 bits of accuracy and return its rounding.

Tom Hubrecht - June 8, 2022 15/25

Approximation algorithms

For all approximations, the broad algorithm is the same, we write
pow(x,y) =exp(y * log(x)), and compute the logarithm then the
exponential. The only difference is the data type used.

Tom Hubrecht - June 8, 2022 16/25

How to compute log(x)

« letx=2F xmwithme[1,2[and F € Z
Ifm>+v2thenletE=E +1andy= 2 else, E=E and y = m (Thisis to avoid

cancellation)

* letz =y xr—1 (Whererisan approximation ofi such that |z| < 279)

« Let 1= —log(r), then log(x) = E x log(2) + [+ log(1 + 2)

We get the values I'and r from a table, and approximate log(1 + z) with a
polynomial.

Tom Hubrecht - June 8, 2022 17/25

How to calculate exp(x)

-Letk:{ log(Z)Wandy—z k x 21(2)

Write k = M x 212 4 i, x 26 + iy, and let t, = 2%, t; = 231
« We then have : exp(x) = 2M x t; x ty x exp(y)
As y is very small, we approximate exp(y) with a polynomial and get the values for
t; and t, from a table.

Tom Hubrecht - June 8, 2022 18/25

Fast path

To represent the values, we use two doubles, i.e. b = by, + b;, the main issue is the
overlap between by, and b; as it decreases precision.

Tom Hubrecht - June 8, 2022 19/25

Second iteration

We use a representation of floating point numbers with 128 bits of mantissa (two
uint64_t) and implement base functions with a small error to improve
simplicity.

Tom Hubrecht - June 8, 2022 20/25

Exact and midpoint cases

Let D be the set of double precision floating-point numbers, all the exact and
midpoint cases lie in the set

S={(x,y) e D}ye N,2<y< 35}

U{(m,2fn) e D’F€Z,-5<F<0,ne€2N+1,3<n<35mec2N + 1}

As the worst case (not exact or midpoint) in § needs at most 117 bits of precision
[1], if the previous rounding test fails, either (x,y) € S, or it is an exact or
midpoint case. Therefore, we can filter the later cases and treat them specially.

Tom Hubrecht - June 8, 2022 21/25

Last iteration

The last iteration of rounding uses floating-point numbers with 256 bits of
mantissa (four uint64_t). No test is done after this iteration, so it is possible in
theory to have cases where the result returned by our function is incorrect, but to
the best of our knowledge, it is not the case and computing all the hard-to-round
cases is not currently feasible.

Tom Hubrecht - June 8, 2022 22/25

The implementation is finished, what is left to do is :

« Error analysis

Tom Hubrecht - June 8, 2022 23/25

Performance

On an Intel Core i7-9750H :

$ CORE_MATH_PERF_MODE=perf ./perf.sh pow
120.018
60.416

$ PERF_ARGS=--latency CORE_MATH_PERF_MODE=perf ./perf.sh pow

170.681
110.228

The number of CPU cycles according to perf, the first number is my implementation and the second the

GLIBC's implementation (not correctly rounded).

Tom Hubrecht - June 8, 2022 24/25

References

1 Christoph Lauter, Vincent Lefévre. An efficient rounding boundary test for pow(xy) in double precision.
2007.

2 Muller, J.M,, Brisebarre, N., de Dinechin, F, Jeannerod, C.P, Lefévre, V., Melquiond, G., Revol, N, Stehlé, D.,
Torres, S.: Handbook of Floating-Point Arithmetic. Birkhduser, Boston (2010)

3 Paul Zimmermann, CORE-MATH : quand pourra-t-on calculer correctement ? 2021.

Tom Hubrecht - June 8, 2022 25/25

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00169409
https://link.springer.com/book/10.1007/978-0-8176-4705-6
https://members.loria.fr/PZimmermann/talks/core-math-raim.pdf

	Floating point numbers (A quick reminder)
	Formats
	Rounding

	The CORE-MATH project
	pow in double precision
	Correct rounding
	Previous work
	Current approach
	Details on exp and log

