Can AI Beat Cryptographers

David Gerault

University of Surrey

dagerault@gmail.com

Introduction: Recent Feats of AI

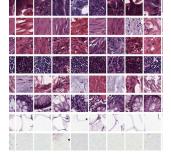
Go: Alphago vs Lee Sedol, 2016

Poker: Libratus vs 4 pros, 2017

Chess: Deepblue vs Kasparov, 1997, AlphaZero (2017)

Starcraft 2: Alphastar grandmaster, 2019

Introduction: More Feats



Lipnet: 93% vs 52%

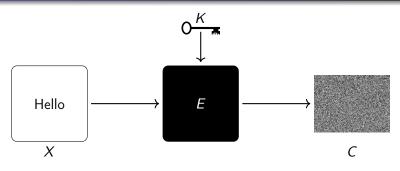
Cancer detection: Accuracy comparable to human specialists

Can AI Beat Cryptographers?

- What does beating cryptographers even mean?
 - Creating ciphers?
 - Analysing ciphers?
- Assisting rather than beating?
 - Applying known attack strategies
 - Finding new attack strategies -> Interpretability

But before... Some preliminaries!

What do I Mean by... Cryptography? (1)



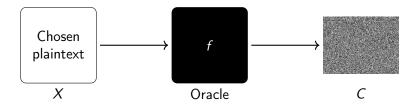
Keyed permutation $E: \{0,1\}^{\mathcal{K}} \times \{0,1\}^{\mathcal{P}} \rightarrow \{0,1\}^{\mathcal{P}}$. Generally simple function iterated *n* times.

Expected Property

Indistinguishable from a random permutation if K is unknown

David Gerault AI VS Cryptanalysts

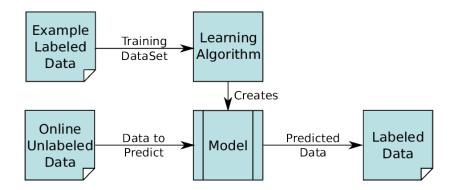
What do I Mean by... Cryptography? (2)



$$f \stackrel{?}{=} E_{\mathcal{K}}$$
 or random permutation π ?

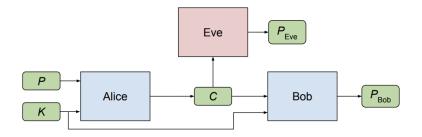
Distinguishing from $\pi \equiv$ recovering K

What do I Mean by... Al

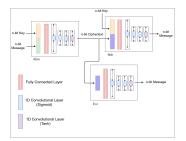


Adversarial Neural Cryptography (ANC)

Learning to Protect Communications with Adversarial Neural Cryptography M. Abadi, D. Andersen, 2016.



ANC: Training Pipeline



- For $i \in [1, nsteps]$:
 - Alice and Bob train for X iterations;
 - Eve trains for $2 \cdot X$ iterations;
- Sanity check: retrain Eve from scratch 5 times
- Success if decryption works, and Alice's advantage is no more than 2 bits.

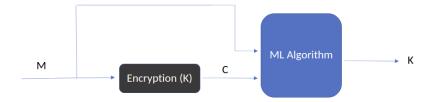
Limitations of ANC

- Adversary [1]
- Infinite key material
- No simple expression
- Non-zero decryption error

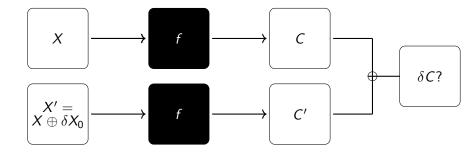
[1] Learning Perfectly Secure Cryptography to Protect Communications with Adversarial Neural Cryptography, M. Coutinho, R. Albuquerque, F. Borges, L. Villalba, T. Kim, SENSORS 2018

Cryptographers beat AI (so far...)

AI Learning Cryptanalysis: How?



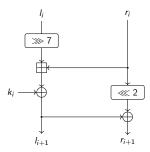
A Word on Differential Cryptanalysis



Distribution of δC for a chosen δX_0 ...

If $f = \pi$? Uniform If $f = E_K$? Not uniform!

The SPECK Block Cipher



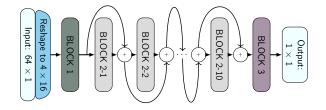
$$l_{i+1} = ((l_i \gg 7) \boxplus r_i) \oplus k_i$$

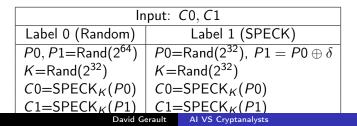
$$r_{i+1} = (r_i \ll 2) \oplus l_{i+1}$$

In this talk...

DeepSPECK

Improving Attacks on Round-Reduced Speck32/64 using Deep Learning, A. Gohr, CRYPTO 2019





The Real Vs. Masked Experiment

Input: C0, C1							
Label 0 (SPECK Masked)	Label 1 (SPECK)						
	$P0=Rand(2^{32}),\ P1=P0\oplus\delta$						
$K = \text{Rand}(2^{32})$	$K = \text{Rand}(2^{32})$						
$M = \text{Rand}(2^{32})$	$C0=SPECK_{\kappa}(P0)$						
$C0=SPECK_{\kappa}(P0)\oplus M$	$C1=SPECK_{\kappa}(P1)$						
$C1=SPECK_{\mathcal{K}}(P1)\oplus M$							

$(C0 \oplus M \oplus C1 \oplus M = C0 \oplus C1)$

The NN learns something more than differences?

Gohr's Results

	Norr	nal Cas	Random Vs Masked	
Nr	Accuracy	ccuracy TPR TNR		Accuracy
5	0.911	0.877	0.947	0.707
6	0.788	0.724	0.853	0.606
7	0.616	0.533	0.699	0.551
8	0.514	0.519	0.508	0.507

Remember that classification is performed with a single pair!

(Normal with only the differences as input: 0.9, 0.75, 0.58)

(+ improvement of the best 12 rounds key recovery on SPECK32, $2^{38} \mbox{ vs. } 2^{46})$

Gohr's Key Recovery (Basic version)

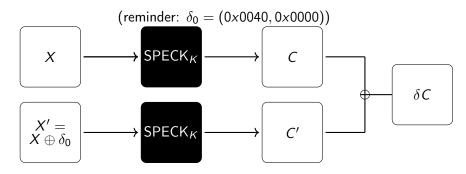
- For $k \in [0, 2^{16} 1]$:
 - $X_0 = \operatorname{decOneRound}(C_0, k)$
 - $X_1 = \operatorname{decOneRound}(C_1, k)$
 - Scores[k] = N(C₀, C₁)
- Return indexOf(MAX(Scores))

Our paper

A Deeper Look at Machine Learning-Based Cryptanalysis, A. Benamira, D. Gerault, Q. Tan, T. Peyrin, Eurocrypt 2021

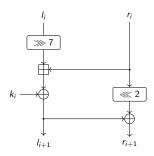
- Q1: Can we do better by hand?
- Q2: What does the NN learn? (Cryptanalysis aspect)
- Q3: What does the NN learn? (Interpretability)
- Extentions: SPN vs ARX
- Improving the accuracy

Empirical Experiments



- No more than $n = 10^7$ pairs
- Prediction on a single pair
- DDT[δC] = $\frac{\#\{C \oplus C' = \delta C\}}{n}$
- BADI: 0.73 accuracy for 5 rounds (Vs. 0.92)

Refining the Experiments



- $\delta V_i = \delta L_i \oplus \delta R_i$: 0.85 for 5 rounds (Vs. 0.92)
- Individual difference bit biases: Still not 0.92
- Masking:

• Let
$$M = M_L, M_R$$
 a fixed mask
• aDDT $[\delta C \land M] = \frac{\#\{(C \oplus C') \land M = \delta C \land M\}}{n}$

The Average Key Rank Distinguisher

Compute aDDT

• For $k \in [0, 2^{16} - 1]$: //(Approximation)

- $X_0 = \operatorname{decOneRound}(C_0, k)$
- $X_1 = \operatorname{decOneRound}(C_1, k)$
- Scores[k] =aDDT[$(C \oplus C') \land M$]
- Return Avg(Scores) $\geq 2^{-|M|}$

With $M = (0 \times ff \otimes f, 0 \times ff \otimes f) \dots$

		Gohr		aDDT			
Nr	Accuracy	TPR	TNR	Accuracy	TPR	TNR	
5	0.911	0.877	0.947	0.929	0.907	0.952	
6	0.788	0.724	0.853	0.788	0.725	0.85	
7	0.616	0.533	0.699	0.603	0.553	0.652	
8	0.514	0.519	0.508	N/A	N/A	N/A	

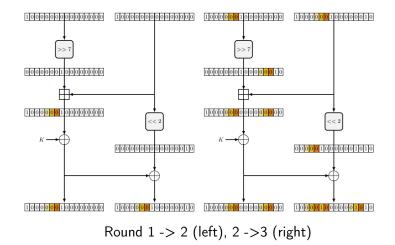
Back to Gohr: Comparing Good and Bad Pairs

- Good pairs (G): NN score greater than 0.9
- Bad pairs (B): NN score lower than 0.1
- We are looking at round Nr-2 (3 or 4, for Nr = 5, 6)

bit position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
G B	0.476 -0.002	<u>-0.454</u> 0.018	-0.355 0.008	-0.135 -0.011	0.045 0.044	0.084 0.002		<u>0.487</u> -0.022		-0.426 -0.002		-0.050 -0.004	0.006 0.006	0.019 -0.005	<u>0.500</u> 0.103	<u>-0.500</u> 0.072
bit position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
bit position G	15 0.476	14 -0.454			11 0.025	10 0.084		8 0.487	7 -0.473	6 -0.426	-	4 0.094	3 -0.006	2 0.019	1 -0.500	0 -0.500

Good pairs tend to follow this pattern!

Propagation of the Initial Difference



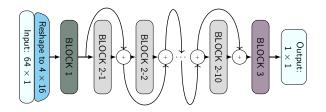
Multiple Linear Approximations?

Round	Trunc. Diff.	Dataset size	Acc.	Proport.
3	TD3	87741	0.992	87.11%
4	TD4	50063	0.999	50.06%

Differential-Linear Cryptanalysis with multiple linear approximations?

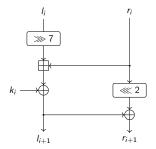
(But we still don't know what combinations of bits to look at)

Dissecting the Neural Network



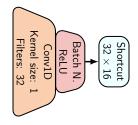
- Tweaking the inputs
- Deriving the features learnt

Tweaking the Inputs



Hypothesis: $(\delta L, \delta R, V0, V1)$ works -> Confirmed!

Interpreting the Outputs of Block 1



- Replace relu activation by heavyside to force binary output
- Train with inputs $\delta L, \delta R, V0, V1$
- Observe outputs of block 1
- δL , $\neg V 0 \land V 1$, $\neg \delta L$, $\neg V 0 \land \neg V 1$, $\delta L \land \delta V$, $\neg \delta L \land \neg \delta V$

Extracting Relevant Masks Automatically

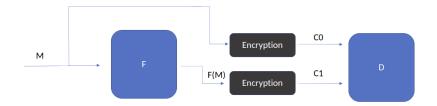
- Divide data into catgories (G/B)
- Derive important bit for each categories (Captum)
- Combine these bits into masks on $X = (\delta L, \delta R, V0, V1)$
- Derive M-ODT(X, M) = $Pr[X \land M|SPECK]$
- Replace the output of block 1 with M-ODT(X, M_i)

With 150 masks, and LGBM as a classifier, we almost reach Gohr's accuracy (-1%) Cryptographers + AI FTW!

Limits of this Approach

- Restricted to practical attacks
- Complexity analysis
- The NN is still guided
- (Maybe) not as efficient on SPN ciphers
- Still a lot to uncover!

The Future of ML for Cryptanalysis?



Conclusion: Can Al Beat Cryptographers?

- Cipher design: No
- Cipher analysis: Yes
- Through interpretability, AI may assist cryptographers

Questions?