
Refined Analysis of the Asymptotic Complexity of the Number Field Sieve

Aude Le Gluher, Pierre-Jean Spaenlehauer and Emmanuel Thomé
Université de Lorraine / INRIA Nancy – Grand Est / CNRS

CARAMBA team

March 2020



Motivations

The Number Field Sieve (NFS) is the most efficient method to factor integers or solve discrete
logarithm problems.

Question
Given some computational power C, what should be the key sizes that ensure the cost of NFS will
exceed C ?

1 / 23



Rely on the asymptotic complexity of NFS ?

NFS heuristical asymptotic complexity

Under various assumptions, the complexity of NFS to factor an integer N is

exp

(
3

√
64

9
(logN)1/3(log logN)2/3(1 + ξ(N))

)
where ξ(N) ∈ o(1) as N grows.

Classical use of this formula : assume ξ(N) = 0. Is it reasonable ?

Give insights on what ξ(N) hides.
Assess the relevance of the classical simplification ξ(N) = 0.

2 / 23



Rely on the asymptotic complexity of NFS ?

NFS heuristical asymptotic complexity

Under various assumptions, the complexity of NFS to factor an integer N is

exp

(
3

√
64

9
(logN)1/3(log logN)2/3(1 + ξ(N))

)
where ξ(N) ∈ o(1) as N grows.

Classical use of this formula : assume ξ(N) = 0. Is it reasonable ?

Give insights on what ξ(N) hides.
Assess the relevance of the classical simplification ξ(N) = 0.

2 / 23



Rely on the asymptotic complexity of NFS ?

NFS heuristical asymptotic complexity

Under various assumptions, the complexity of NFS to factor an integer N is

exp

(
3

√
64

9
(logN)1/3(log logN)2/3(1 + ξ(N))

)
where ξ(N) ∈ o(1) as N grows.

Classical use of this formula : assume ξ(N) = 0. Is it reasonable ?

Give insights on what ξ(N) hides.
Assess the relevance of the classical simplification ξ(N) = 0.

2 / 23



Main results

Method to compute an asymptotic expansion of ξ which is a bivariate series S evaluated at
(log log logN)/(log logN) and 1/(log logN). In particular,

ξ(N) ∼ 4 log log logN

3 log logN

Algorithm that implements this method and computes the coefficients of S.

Study of the convergence range of S. It is huge (around ee
25

), so using any approximation of ξ for
N sizes relevant in cryptography means replacing ξ by the first terms of a divergent series...

3 / 23



Plan

1 NFS complexity is the solution of an optimization problem

2 Smoothness formulas

3 Asymptotic expansion of ξ

4 / 23



NFS, briefly

polynomial
selection

relation
collection filter

linear
algebra

find
roots

To factor an integer N :

Build two number fields K0 = Q[X]/(f0) and K1 = Q[X]/(f1).
Given integers (u, v) in a search space, check if the norm of u− vX is smooth in K0 and in K1.
If so, store the factorizations in a matrix. Densify.
Compute the left kernel of the matrix : it gives x2 ≡ y2 mod N .
Find x and y. With good probability, gcd(N, x− y) is a non trivial factor of N .

5 / 23



NFS, briefly

polynomial
selection

relation
collection filter

linear
algebra

find
roots

To factor an integer N :

Build two number fields K0 = Q[X]/(f0) and K1 = Q[X]/(f1).

Given integers (u, v) in a search space, check if the norm of u− vX is smooth in K0 and in K1.
If so, store the factorizations in a matrix. Densify.
Compute the left kernel of the matrix : it gives x2 ≡ y2 mod N .
Find x and y. With good probability, gcd(N, x− y) is a non trivial factor of N .

5 / 23



NFS, briefly

polynomial
selection

relation
collection filter

linear
algebra

find
roots

To factor an integer N :

Build two number fields K0 = Q[X]/(f0) and K1 = Q[X]/(f1).
Given integers (u, v) in a search space, check if the norm of u− vX is smooth in K0 and in K1.

If so, store the factorizations in a matrix. Densify.
Compute the left kernel of the matrix : it gives x2 ≡ y2 mod N .
Find x and y. With good probability, gcd(N, x− y) is a non trivial factor of N .

5 / 23



NFS, briefly

polynomial
selection

relation
collection filter

linear
algebra

find
roots

To factor an integer N :

Build two number fields K0 = Q[X]/(f0) and K1 = Q[X]/(f1).
Given integers (u, v) in a search space, check if the norm of u− vX is smooth in K0 and in K1.
If so, store the factorizations in a matrix. Densify.

Compute the left kernel of the matrix : it gives x2 ≡ y2 mod N .
Find x and y. With good probability, gcd(N, x− y) is a non trivial factor of N .

5 / 23



NFS, briefly

polynomial
selection

relation
collection filter

linear
algebra

find
roots

To factor an integer N :

Build two number fields K0 = Q[X]/(f0) and K1 = Q[X]/(f1).
Given integers (u, v) in a search space, check if the norm of u− vX is smooth in K0 and in K1.
If so, store the factorizations in a matrix. Densify.
Compute the left kernel of the matrix : it gives x2 ≡ y2 mod N .

Find x and y. With good probability, gcd(N, x− y) is a non trivial factor of N .

5 / 23



NFS, briefly

polynomial
selection

relation
collection filter

linear
algebra

find
roots

To factor an integer N :

Build two number fields K0 = Q[X]/(f0) and K1 = Q[X]/(f1).
Given integers (u, v) in a search space, check if the norm of u− vX is smooth in K0 and in K1.
If so, store the factorizations in a matrix. Densify.
Compute the left kernel of the matrix : it gives x2 ≡ y2 mod N .
Find x and y. With good probability, gcd(N, x− y) is a non trivial factor of N .

5 / 23



NFS, briefly

polynomial
selection

relation
collection filter

linear
algebra

find
roots

To factor an integer N :

Build two number fields K0 = Q[X]/(f0) and K1 = Q[X]/(f1).
Given integers (u, v) in a search space, check il the norm of u− vX is smooth in K0 and in K1.
If so, store the factorizations in a matrix. Densify said matrix.
Compute the left kernel of the matrix : it gives x2 ≡ y2 mod N .
Find x and y. With good probability, gcd(N, x+ y) is a non trivial factor of N .

6 / 23



NFS, briefly

polynomial
selection

relation
collection filter

linear
algebra

find
roots

Parameters
Degree of the polynomial : d.
Size of the search space : a.
Size of the smoothness bound : b.

Remark
The more costly steps are relation collection and linear algebra.

7 / 23



Optimization problem

Goal : find a, b, d such that they
Minimize the cost of (relation collection + linear algebra).
Satisfy a constraint that ensures that the matrix in the linear algebra step has a non trivial
left-kernel ie (size of the search space) × (probability of smoothness in K0) × (probability of
smoothness in K1) ≥ (number of primes below smoothness bound)

Simplified optimization problem

Find three functions of ν = logN , a, b, d that minimize max(a, b) under the constraint :

p(a+ ν/d, b) + p(da+ ν/d, b) + 2a− b = 0

8 / 23



Plan

1 NFS complexity is the solution of an optimization problem

2 Smoothness formulas

3 Asymptotic expansion of ξ

9 / 23



Smoothness notations

Definition : smoothness
An integer is y-smooth if all its prime factors are below y.

Notations

We let Ψ(x, y) = Card({integers in [1, x] that are y-smooth}). The probability for a random
integer in [1, x] to be y-smooth is Ψ(x, y)/x.
We note p(u, v) = log(Ψ(eu, ev)/eu).

10 / 23



A suitable formula for smoothness probabilities

Classical analysis of the asymptotic complexity of NFS relies on a first order estimation of smoothness
probabilities by Canfield Erdős and Pomerance (1983).

Hildebrand (1986) formula for smoothness probabilities

For x, y under circumstances satisfied in the NFS context, we have :

Ψ(x, y)

x
= ρ(u)

(
1 +O

(
log(u+ 1)

log y

))
where ρ is the Dickman function and u = log x/ log y.

11 / 23



Main steps to expand smoothness probabilities

De Bruijn (1951) formula for ρ

We have : ρ(u) =
eγ√
2πu

exp

(
−
∫ u

1

sdη

)
when u→ +∞ and where s = log(1 + sη).

expand s

expand
∫
sdη expand ρ

expand probabilities
of smoothness

expand the
constraint

expand NFS
complexity

DB

H

Profit ?

12 / 23



Main steps to expand smoothness probabilities

De Bruijn (1951) formula for ρ

We have : ρ(u) =
eγ√
2πu

exp

(
−
∫ u

1

sdη

)
when u→ +∞ and where s = log(1 + sη).

expand s

expand
∫
sdη expand ρ

expand probabilities
of smoothness

expand the
constraint

expand NFS
complexity

DB

H

Profit ?

12 / 23



Main steps to expand smoothness probabilities

De Bruijn (1951) formula for ρ

We have : ρ(u) =
eγ√
2πu

exp

(
−
∫ u

1

sdη

)
when u→ +∞ and where s = log(1 + sη).

expand s

expand
∫
sdη

expand ρ

expand probabilities
of smoothness

expand the
constraint

expand NFS
complexity

DB

H

Profit ?

12 / 23



Main steps to expand smoothness probabilities

De Bruijn (1951) formula for ρ

We have : ρ(u) =
eγ√
2πu

exp

(
−
∫ u

1

sdη

)
when u→ +∞ and where s = log(1 + sη).

expand s

expand
∫
sdη expand ρ

expand probabilities
of smoothness

expand the
constraint

expand NFS
complexity

DB

H

Profit ?

12 / 23



Main steps to expand smoothness probabilities

De Bruijn (1951) formula for ρ

We have : ρ(u) =
eγ√
2πu

exp

(
−
∫ u

1

sdη

)
when u→ +∞ and where s = log(1 + sη).

expand s

expand
∫
sdη expand ρ

expand probabilities
of smoothness

expand the
constraint

expand NFS
complexity

DB

H

Profit ?

12 / 23



Main steps to expand smoothness probabilities

De Bruijn (1951) formula for ρ

We have : ρ(u) =
eγ√
2πu

exp

(
−
∫ u

1

sdη

)
when u→ +∞ and where s = log(1 + sη).

expand s

expand
∫
sdη expand ρ

expand probabilities
of smoothness

expand the
constraint

expand NFS
complexity

DB

H

Profit ?

12 / 23



Main steps to expand smoothness probabilities

De Bruijn (1951) formula for ρ

We have : ρ(u) =
eγ√
2πu

exp

(
−
∫ u

1

sdη

)
when u→ +∞ and where s = log(1 + sη).

expand s

expand
∫
sdη expand ρ

expand probabilities
of smoothness

expand the
constraint

expand NFS
complexity

DB

H

Profit ?

12 / 23



Main steps to expand smoothness probabilities

De Bruijn (1951) formula for ρ

We have : ρ(u) =
eγ√
2πu

exp

(
−
∫ u

1

sdη

)
when u→ +∞ and where s = log(1 + sη).

expand s

expand
∫
sdη expand ρ

expand probabilities
of smoothness

expand the
constraint

expand NFS
complexity

DB

H

Profit ?

12 / 23



Asymptotic expansion of ρ

De Bruijn (1951) formula for ρ

We have : ρ(u) =
eγ√
2πu

exp

(
−
∫ u

1

sdη

)
when u→ +∞ and where s = log(1 + sη).

Method to obtain an asymptotic development of ρ

Recursively expand s using the expansion of x 7→ log(1 + x) around 0.
Proves that η 7→ s(η)/(log η) can be expanded as a bivariate series evaluated in (log log η)/(log η)
and 1/ log η.
Replace s by any of its expansions in the integral. Repeatedly integrate by parts.

13 / 23



Asymptotic expansion for smoothness probabilities

Shape of the asymptotic expansion of ρ

For all n ∈ Z≥0, as N → +∞ and in the optimal parameter range of NFS, the smoothness probabilities
involved in the constraint are :

Ψ(x, y)

x
= exp

(
−u log u

(
Q(n)

(
log log u

log u
,

1

log u

)
+ o

(
1

(log u)n

)))
where Q(n) is the truncation up to total degree n of the bivariate series Q and u = log x/ log y.

The bivariate series Q already appears in the development of ρ.
The bivariate series Q can be explicitly computed and has coefficients in Q.
Residual factors in the formulas of Hildebrand and De Bruijn are swallowed in the o(1/(log u)n).

14 / 23



Plan

1 NFS complexity is the solution of an optimization problem

2 Smoothness formulas

3 Asymptotic expansion of ξ

15 / 23



Goal

We already know from the classical analysis of NFS complexity that the functions of ν = logN , a, b and
d satisfy :
a(ν) = (8/9)1/3ν1/3(log ν)2/3(1 + o(1))

b(ν) = (8/9)1/3ν1/3(log ν)2/3(1 + o(1))

d(ν) = (3ν/ log ν)1/3(1 + o(1))

Reminder
New terms in the expansions of a, b, d immediately yield new terms in the expansion of NFS complexity.

16 / 23



Step 1 : Find candidate expansions

Main ideas

Assume more precision : the o(1) are O(log log ν/ log ν).
Replace a, b, d by their values in the equation of the constraint.
Solve the linear / quadratic constraint on the constants associated to the big O’s.

This yields candidates to the optimization problem, denoted a0, b0, d0.

Requirements

Expansion of smoothness probabilities.
Taylor series expansions of usual functions at infinity.
Bivariate series computations at finite precision.

17 / 23



Step 2 : existence proof

Main idea
Prove the existence of functions satisfying the constraint and having the same development as a0, b0, d0.

This yields a baseline result : any solution of the optimization problem must be smaller than a0, b0, d0.

Requirements

Same as step 1.

18 / 23



Step 3 : minimality proof

Main ideas

Prove that the o(1) involved in the expansions of a, b, d known so far can actually be written
(C + o(1))(log log ν/ log ν)λ × (1/ log ν)µ.
Prove that the constants C are the same than the ones in the expansions of the candidates
a0, b0, d0.

This proves a new term in the expansions of a, b, d.

Requirements

Step 1 requirements.
A baseline result (given by step 2).
Proper patterns in the equations encountered during the proof.

19 / 23



Final shape of NFS complexity

Expansion of the heuristic complexity of NFS C(N)

For all n ∈ Z≥0, C(N) is :

exp

 3

√
64

9
(logN)

1/3
(log logN)

2/3

1 + A
(n)

(
log log logN

log logN
,

1

log logN

)
+ o

(
1

(log logN)n

)
︸ ︷︷ ︸

=ξ(N)




where A(n) is the truncation up to total degree n of the bivariate series A.

The coefficients of A are in Q[log(2), log(3)] and can be algorithmically computed.

20 / 23



A problem of convergence

ee5 ee6 ee7 ee8 ee9 ee10 ee11
1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

degree
0
1
2
3
4
5

ee21 ee22 ee23 ee24 ee25 ee26 ee27
0.038

0.040

0.042

0.044

0.046

0.048

degree
1
2
3
4
5

Truncations of ξ up to total degree 5 for crypto-
graphically relevant values of N . Converging behaviour of the trucations of ξ.

Take home message

Replacing ξ by any truncated asymptotic expansion = replace a series by its first terms in a range where the
series diverges !

21 / 23



The danger of replacing ξ by a truncation

Compare :

Function g g(23072)/g(2829)

g0 : N 7→ exp

(
3

√
64

9
(logN)1/3(log logN)2/3

)
∼ 259

g1 : N 7→ exp

(
3

√
64

9

(logN)1/3(log logN)2/3

1 + 20/ log logN

)
∼ 219

Don’t do o(1) = 0 carelessely...

The function g1 is in exp

(
3

√
64

9
(logN)1/3(log logN)2/3(1 + o(1))

)
but replacing the o(1) by 0 (i.e.

g1 by g0) for N ≤ ee
20

leads to drastically different results.

22 / 23



Sum up

Expansion of the function hidden in the o(1) in NFS complexity. See
https://arxiv.org/abs/2007.02730 for more details.
Algorithm to compute this expansion. Available at :
https://gitlab.inria.fr/NFS_asymptotic_complexity/simulations

Be very careful when using truncated versions of the asymptotic complexity.
Maybe use numerical estimates for ρ or simulations ?

Thank you for your attention !

23 / 23

https://arxiv.org/abs/2007.02730
https://gitlab.inria.fr/NFS_asymptotic_complexity/simulations


Sum up

Expansion of the function hidden in the o(1) in NFS complexity. See
https://arxiv.org/abs/2007.02730 for more details.
Algorithm to compute this expansion. Available at :
https://gitlab.inria.fr/NFS_asymptotic_complexity/simulations

Be very careful when using truncated versions of the asymptotic complexity.
Maybe use numerical estimates for ρ or simulations ?

Thank you for your attention !

23 / 23

https://arxiv.org/abs/2007.02730
https://gitlab.inria.fr/NFS_asymptotic_complexity/simulations

	NFS complexity is the solution of an optimization problem
	Smoothness formulas
	Asymptotic expansion of 

