Constructing Efficient \& STNFS-Secure Pairings

Georgios Fotiadis

Applied Security \& Information Assurance (APSIA) Group APSIA Quantum Lab
https://wwwen.uni.lu/snt/people/georgios_fotiadis georgios.fotiadis@uni.lu,gfotiadis.crypto@gmail.com

Caramba Research Seminar
February 16, 2021

History

[2001-2015] Golden age:

- 2000: Joux one round tripartite key-exchange [Jou00].
- 2001: Boneh-Franklin ID-based encryption [BF01].
- 2001: Boneh-Lynn-Shacham short BLS signatures [BLS01].
- Building block for privacy-related protocols (ZKPs).
- ...

In market:

- Trusted Platform Module (TPM)
- Blockchain (ZCash, Ethereum, ...)

Clouds on the horizon:

1. Large-scale quantum computer (nothing we can do).
2. Improved DLP attacks on extension fields $\mathbb{F}_{p^{a b}}[K B 16]$ (can tackle this).

...but what is a pairing?

A bilinear map:

$$
e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{\mathrm{T}} \quad \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{\mathrm{T}}: \text { cyclic groups of order } r
$$

s.t. $\quad e\left(g^{a}, h^{b}\right)=e(g, h)^{a b}=e\left(g^{b}, h^{a}\right)$
(bilinearity property)

Basic requirements:

- Security: $\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{\mathrm{T}}$ have a hard DLP (roughly of same complexity).
- Formula: Miller's algorithm for efficient computation of e.

In practice:

- $\mathbb{G}_{1}, \mathbb{G}_{2}$: subgroups of elliptic curves $E\left(\mathbb{F}_{p^{k}}\right)$.
- $\mathbb{G}_{1}, \mathbb{G}_{2}$: subgroups of Jacobians of genus 2 curves $J\left(\mathbb{F}_{p^{k}}\right)$.
$-\mathbb{G}_{\mathrm{T}}$: subgroup of $\mathbb{F}_{p^{k}} \Rightarrow k$ is called the embedding degree.

Pairings in Cryptography

Efficiency:

- efficient finite field operations: squaring \& multiplication.
- efficient elliptic curve operations: point doubling \& addition.
- efficient 2-dimensional Jacobian operations: doubling \& addition (headache)

Pairing types:

- Type I (symmetric): $\mathbb{G}_{1} \times \mathbb{G}_{1} \rightarrow \mathbb{G}_{\mathrm{T}}$ (Weil, ...).
- Type II (asymmetric): $\mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{\mathrm{T}}$ (Tate, twisted ate, ...).
- Type III (asymmetric): $\mathbb{G}_{2} \times \mathbb{G}_{1} \rightarrow \mathbb{G}_{\mathrm{T}}$ (ate, optimal ate, ...).

Elliptic curves

For a prime p an elliptic curve E over \mathbb{F}_{p} is defined as:

$$
E / \mathbb{F}_{p}: y^{2}=x^{3}+a x+b \quad a, b \in \mathbb{F}_{p}
$$

\mathbb{F}_{p}-rational points $E\left(\mathbb{F}_{p}\right)$:

- Order: $\# E\left(\mathbb{F}_{p}\right)=p+1-t \quad(t$: trace of Frobenius)
- Prime r divides $\# E\left(\mathbb{F}_{p}\right) \Longrightarrow \# E\left(\mathbb{F}_{p}\right)=h r \quad$ (h : cofactor)
- CM-discriminant: square-free $D>0$ s.t.

$$
\left.4 p-t^{2}=D y^{2} \quad \text { (CM-equation }\right)
$$

Pairing-friendly elliptic curves

Embedding degree:

- Smallest $k>0$ s.t.

$$
r \mid\left(p^{k}-1\right) \Leftrightarrow \Phi_{k}(t-1) \equiv 0 \bmod r
$$

- Large k s.t. DLP is hard in $\mathbb{F}_{p^{k}}$.
- Small k for efficient squaring/multiplication in $\mathbb{F}_{p^{k}}$.

Pairing-friendly elliptic curve:

- Has small k (e.g. $k \leq 30$).
- Has $\rho=\log p / \log r$ (approximately) equal to 1 .
- They are very rare! (usually $\log k \approx \log r$).
- Specialized algorithms needed for their construction.

Pairing-friendly elliptic curve constructions

Two main constructions:

1. $(p, t, r) \leftarrow \operatorname{COCKsPINCH}(k, D, \lambda)$
2. $(p(x), t(x), r(x)) \leftarrow \operatorname{BREZINGWENG}(k, D, \lambda)$

Brezing-Weng is most common:

- $(p(x), t(x), r(x))$: complete family of pairing-friendly elliptic curves.
- Extract a member from family $(p, r, t)=(p(u), r(u), t(u))$, for some $u \in \mathbb{Z}$.
- Such p is called special (derived from evaluation of polynomial).
- Two well-known families for $k=12$ and $D=3$: Barreto-Naehrig (BN12), Barreto-Lynn-Scott (BLS12).
- Additional families for $k=16, D=1$ and $k=18, D=3$: Kachisa-Schaefer-Scott (KSS16), Kachisa-Schaefer-Scott (KSS18).

Popular examples (better suited for 128-bit security)

Barreto-Naehrig (BN12) family: $k=12, D=3, \rho=1$

$$
\begin{aligned}
& r(x)=36 x^{4}+36 x^{3}+18 x^{2}+6 x+1 \\
& t(x)=6 x^{2}+1 \\
& p(x)=36 x^{4}+36 x^{3}+24 x^{2}+6 x+1
\end{aligned}
$$

Barreto-Lynn-Scott (BLS12) family: $k=12, D=3, \rho=1.5$

$$
\begin{aligned}
r(x) & =\Phi_{12}(x)=x^{4}-x^{2}+1 \\
t(x) & =x \\
p(x) & =(x-1)^{2}\left(x^{4}-x^{2}+1\right) / 3+x
\end{aligned}
$$

Currently used in practice:

- BN12-254: $(\log p=\log r=254)$ in TPM2.0, Ethereum.
- BLS12-381: $(\log p=381, \log r=254)$ in ZCash.

Popular examples (better suited for 192-bit security)

Kachisa-Schaefer-Scott (KSS16) family: $k=16, D=1, \rho=1.25$

$$
\begin{aligned}
r(x) & =x^{8}+48 x^{4}+625 \\
t(x) & =\left(2 x^{5}+41 x+35\right) / 35 \\
p(x) & =\left(x^{10}+2 x^{9}+5 x^{8}+48 x^{6}+152 x^{5}+240 x^{4}+625 x^{2}+2398 x+3125\right) / 980
\end{aligned}
$$

Kachisa-Schaefer-Scott (KSS18) family: $k=18, D=3, \rho=1.333$

$$
\begin{aligned}
r(x) & =\left(x^{6}+37 x^{3}+343\right) / 343 \\
t(x) & =\left(x^{4}+16 x+7\right) / 7 \\
p(x) & =\left(x^{8}+5 x^{7}+7 x^{6}+37 x^{5}+188 x^{4}+259 x^{3}+1763 x+2401\right) / 21
\end{aligned}
$$

Many alternative Brezing-Weng families by Freeman-Scott-Teske [FST10].

Security

$$
\mathbb{G}_{1} \subset E\left(\mathbb{F}_{p}\right)[r], \quad \mathbb{G}_{2} \subset E\left(\mathbb{F}_{p^{k}}\right)[r], \quad \mathbb{G}_{\mathrm{T}} \subset \mathbb{F}_{p^{k}} \quad\left(\# \mathbb{G}_{1}=\# \mathbb{G}_{2}=\# \mathbb{G}_{\mathrm{T}}=r\right)
$$

Security in $\mathbb{G}_{1}, \mathbb{G}_{2}$ (Pollard- ρ): $O(\sqrt{r})$.

- r large prime factor of $\# E\left(\mathbb{F}_{p}\right)$ and $\# E\left(\mathbb{F}_{p^{k}}\right)$.

Security in \mathbb{G}_{T} (NFS variants): harder to give estimates.

Security in target group

Asymptotic complexity of DLP in $\mathbb{F}_{p^{k}}$:

$$
L_{p^{k}}[c]=\exp \left[(c+o(1))\left(\ln p^{k}\right)^{1 / 3}\left(\ln \ln p^{k}\right)^{2 / 3}\right]
$$

For special primes p (e.g. Brezing-Weng curves):

- prime k : $c=1.923$.
- composite $k: c=1.526$, Kim-Barbulescu STNFS [KB16] (dropped from 1.923).
- BN12-254 security in $\mathbb{F}_{p^{12}}: 110$-bits, BLS12-381 security in $\mathbb{F}_{p^{12}}: 130$-bits.
- ...but asymptotic complexity is not accurate!

Better estimates for STNFS complexity:

1. $\operatorname{SecLev}\left(\mathbb{F}_{p^{k}}\right) \leftarrow \operatorname{SimULATORBD}(k, u, p(x))$
in [BD19] (SageMath)
2. $\operatorname{SecLev}\left(\mathbb{F}_{p^{k}}\right) \leftarrow \operatorname{SimULATORGMT}(k, u, p(x))$ in [GMT20] (SageMath) ${ }^{1}$ \Rightarrow sec. lev. BN12-254: 103-bits, sec. lev. BLS12-381: 126-bits.
[^0]
STNFS-Secure Curves

We need to update key sizes:

1. Barbulescu-Duquesne:

- Increase BN12 and BLS12 parameters [BD19] until they are secure.
- Barbulescu-El Mrabet-Ghammam: New key sizes for older curves [BEMG19]. Freeman-Scott-Teske (FST) curves [FST10].

2. Guillevic-Masson-Thomé:

- Use Cocks-Pinch curves [GMT20] (examples for $k=5,6,7,8$).
- STNFS does not apply to non-special primes p.
- Less efficient examples.
- Best example GMT8-544 curve for 128-bits security.

3. Fotiadis-Konstantinou:

- New Brezing-Weng families using $L_{p^{k}}[c]$ [FK18, FK19].
- Fotiadis-Martindale:

Optimal members of Fotiadis-Konstantinou families [FM19].
Use SimulatorBD to estimate security level in $\mathbb{F}_{p^{k}}$.

New Brezing-Weng curves

Construction of Fotiadis-Konstantinou (FK12) family for $k=12, D=3, \rho=1.5$:

$$
\begin{aligned}
r(x) & =36 x^{4}+36 x^{3}+18 x^{2}+6 x+1 \quad(\text { BN12 polynomial }) \\
t(x) & =-6 x^{2}+1 \\
p(x) & =1728 x^{6}+2160 x^{5}+1548 x^{4}+756 x^{3}+240 x^{2}+54 x+7
\end{aligned}
$$

Two optimal Fotiadis-Martindale examples:

Curve	seed u	$\log r$	$\log p$	$k \log p$	sec. in $\mathbb{F}_{p^{12}}{ }^{2}$	ρ
FM12-398	$-2^{64}-2^{63}-2^{11}-2^{10}$	264	398	4776	127	1.5
FM12-446	$-2^{22}-2^{71}-2^{36}$	296	446	5352	133	1.5

[^1]
New Brezing-Weng curves

Fotiadis-Martindale curves at 128-bit security [FM19]

Label	k	D	$\operatorname{deg}(r)$	$\operatorname{deg}(p)$	$\log (p)$	$k \log (p)$	ρ
1	8	1	4	8	760	6080	2
2	8	1	4	8	760	6080	2
3	8	2	4	8	768	6144	2
4	8	3	8	16	512	4906	2
5	8	1	4	8	752	6016	2
6	8	1	4	8	704	5632	2
7	8	1	4	8	752	6016	2
8	8	1	4	8	752	6016	2
9	8	1	8	16	512	4096	2
10	9	3	6	12	624	5616	2
11	9	3	6	12	516	4644	2
12	9	3	6	12	512	4608	2
13	10	1	8	14	448	4480	1.75
14	10	5	8	14	448	4480	1.75
15	10	15	8	14	448	4480	1.75
16	10	1	8	14	448	4480	1.75
17	12	3	4	6	384	4608	1.5
18	12	2	8	14	448	5376	1.75
19	12	3	4	6	444	5328	1.5
20	12	3	4	6	480	5760	1.5

Pairing computation: Tate pairing

```
Algorithm 1: TATEPAIRING \(\left(P \in E\left(\mathbb{F}_{p}\right)[r], Q \in E\left(\mathbb{F}_{p^{k}}\right)[r], r=\left(1, r_{n-1}, \ldots, r_{1}, r_{0}\right)_{2}\right)\)
    \(1: f \leftarrow 1 ; \quad R \leftarrow P\)
                                    //Miller loop: steps 2-5
2: for \(i=\left\lfloor\log _{2}(r)\right\rfloor-1, \ldots, 0\) do
3: \(\quad(R, f) \leftarrow \operatorname{DBLstep}(R, P, Q, f)\)
4: if \(r_{i}=1\) then
5: \(\quad(R, f) \leftarrow \operatorname{ADDstEp}(R, P, Q, f)\)
6: \(f \leftarrow \operatorname{FinALEXP}(f)\)
\(/ / f\) to exponent \(\left(p^{k}-1\right) / r\)
7: return \(f\)
```

$\operatorname{DBLstep}(R, P, Q, f)$
1: $R \leftarrow[2] R$
2: $h_{R, R}(Q)=l_{R, R}(Q) / v_{R}(Q)$
3: $f \leftarrow f^{2} \cdot h_{R, R}(Q)$

$\operatorname{ADDstep}(R, P, Q, f)$

1: $R \leftarrow R+P$
2: $h_{R, P}(Q)=l_{R, P}(Q) / v_{R}(Q)$
3: $f \leftarrow f \cdot h_{R, P}(Q)$

$$
\mathbf{C}_{\text {Tate }}=\underbrace{\left(\log _{2}(r)-1\right) \mathbf{C}_{\text {DBLSTEP }}+\left(h_{\mathrm{wt}}(r)-1\right) \mathbf{C}_{\mathrm{ADDSTEP}}}_{\text {Miller loop }}+\mathbf{C}_{\mathrm{FINALEXPO}}
$$

Pairing computation: Improving efficiency

Reduce iterations in Miller's loop:

- Optimal ate pairing [Ver09]: $\log _{2}(r) / \varphi(k)$ iterations instead of $\log _{2}(r)$.
- Vercauteren: $\log _{2}(r) / \varphi(k)$ the shortest loop we can have (conjecture).

Optimal ate is a type III pairing: $\mathbb{G}_{2} \times \mathbb{G}_{1} \rightarrow \mathbb{G}_{\mathrm{T}}$

- High degree twists to reduce complexity in DBLstep \& ADDstep.
- Most operations in $\mathbb{F}_{p^{k} / \delta}$, where $\delta \mid k$ s.t. E^{t} degree δ twist of E.
- Point in Jacobian coordinates as in [GMT20]:

$$
\begin{aligned}
\text { Jacobian coordinates } & \rightarrow \text { affine coordinates } \\
\left(X, Y, Z, Z^{2}\right) & \rightarrow\left(X / Z^{2}, Y / Z^{3}\right)
\end{aligned}
$$

- Most efficient examples today use the optimal ate pairing.

Pairing computation: Improving efficiency

Improve the final exponentiation:

- Split exponent $\left(p^{k}-1\right) / r$ into "easy part" and "hard part".

$$
\left(p^{k}-1\right) / r=\underbrace{\left(p^{k}-1\right) / \Phi_{k}(p)}_{\text {"easy part" }} \times \underbrace{\Phi_{k}(p) / r}_{\text {"hard part" }}
$$

- See e.g. Aranha et al. [AFCK ${ }^{+}$12] for details, or Scott et al. [SBC ${ }^{+}$09].
- In the case of Brezing-Weng curves:

Hard part: $\operatorname{deg}(p)-1$ exponentiations of size $\approx\left(\log _{2}(r) / \varphi(k)\right)$.

- Larger k implies larger $\operatorname{deg}(p)$, hence more expensive final exponentiation.

Optimal ate pairings in practice

For seed u s.t. $(p, t, r)=(p(u), t(u), r(u))$ and $\log _{2}(u) \approx \log _{2}(r) / \varphi(k)$:

- BLS12 curves:

$$
\mathbf{C}_{\mathrm{OptAte}}=\underbrace{\left(\log _{2}(u)-1\right) \mathbf{C}_{\mathrm{DBLSTEP}}+\left(h_{\mathrm{wt}}(u)-1\right) \mathbf{C}_{\mathrm{ADDSTEP}}}_{\text {Miller loop }}+\mathbf{C}_{\mathrm{FINALEXPO}}
$$

Require minimum $\log _{2}(u)$ and $h_{\mathrm{wt}}(u)$.

- FM12 curves for $T=6 u+2$:

$$
\begin{aligned}
\mathbf{C}_{\text {OptAte }} & =\underbrace{\left(\log _{2}(T)-1\right) \mathbf{C}_{\text {DBLSTEP }}+\left(h_{\mathrm{wt}}(T)-1\right) \mathbf{C}_{\mathrm{ADDSTEP}}}_{\text {Miller loop }}+\mathbf{C}_{\text {EXTRAMULT }} \\
& +\mathbf{C}_{\text {FINALEXPO }}
\end{aligned}
$$

Require minimum $\log _{2}(T), h_{\mathrm{wt}}(T)$ and minimum $\log _{2}(u), h_{\mathrm{wt}}(u)$.

STNFS-Secure pairings at 128-bit security [Gui20, PKC'2020]

Curve	$\log p$	$\log r$	$\log p^{k}$	sec. $\mathbb{F}_{p^{k}}$	ρ	Miller loop	Final exp.	time $(\mathrm{ms})^{3}$
GMT6	672	256	4028	128	2.625	$4601 \mathbf{m}$	$3871 \mathbf{m}$	1.53
GMT8	544	256	4349	131	2.125	$4502 \mathbf{m}$	$7056 \mathbf{m}$	1.49
BN12	446	446	5376	132	1	$11620 \mathbf{m}$	$5349 \mathbf{m}$	1.44
BLS12	446	299	5376	132	1.5	$7805 \mathbf{m}$	$7723 \mathbf{m}$	1.32
FM12	446	296	5352	136	1.5	$7853 \mathbf{m}$	$8002 \mathbf{m}$	1.35
KSS16	339	256	5424	140	1.32	$7691 \mathbf{m}$	$18235 \mathbf{m}$	1.69
BN12	254	254	3048	103	1	$6820 \mathbf{m}$	$3585 \mathbf{m}$	0.33

A. Guillevic (https:/ /members.loria.fr/AGuillevic/pairing-friendly-curves/):
"For efficient non-conservative pairings, choose BLS12-381 (or any other BLS12 curve or Fotiadis-Martindale curve of roughly 384 bits), for conservative but still efficient, choose a BLS12 or a Fotiadis-Martindale curve of 440 to 448 bits."

[^2]
STNFS-Secure pairings at 128-bit security (Non-Conservative)

Curve	seed u	$\log p$	$\log r$	$\log p^{k}$	ρ	$\begin{array}{r} \text { Miller } \\ \text { loop } \\ \hline \end{array}$	Final exp.	$\begin{aligned} & \text { time } \\ & (\mathrm{ms}) \\ & \hline \end{aligned}$
BN12	$-2^{62}-2^{55}-1$	254	254	3048	1	6820 m	3585m	0.33
BLS12	$-2^{63}-2^{62}-2^{60}-2^{57}-2^{48}-2^{16}$	381	254	4572	1.5	6625 m	6673m	0.86
FM12	$-2^{61}-2^{60}-2^{28}-1$	381	252	4572	1.5	6863m	7732 m	0.95
FM12	$-2^{62}+2^{56}+2^{2}+1$	383	254	4596	1.5	6962m	7732m	0.96
FM12	$-2^{63}-2^{14}-2^{12}$	389	258	4668	1.5	7061m	7462m	1.23
FM12	$-2^{64}-2^{63}-2^{11}-2^{10}$	398	265	4776	1.5	7061m	7912m	1.27

Discussion:

- BLS12-381 and FM12-381 seem to be acceptable options.
- Moving to BLS12-446 or FM12-446 implies less efficient protocols.
- Security levels in $\mathbb{F}_{p^{k}}$ depend on further improvements of (S)TNFS variants.
- FM12 curves need more study.

Pairings at 192-bit security

Two main approaches:

1. Use BN12 or BLS12 with adjusted parameters. Guillevic-Singh [GS19]:

Curve	$\log _{2}(p)$	$\log _{2}\left(p^{k}\right)$
BN12	1022	12264
BLS12	1150	13800
FM12	1150	13800

2. Increase the embedding degree k.

Known examples: KSS16-766, KSS18-638, BLS24-512
New families reported in [FK19] and new curves in [FM19]:

Label	k	D	$\operatorname{deg}(r)$	$\operatorname{deg}(p)$	$\log (p)$	$k \log (p)$	ρ
21	15	3	8	16	784	11760	2
22	15	3	8	16	768	11520	2
23	16	1	8	16	768	12288	2
24	16	1	8	16	768	12288	2
25	18	3	6	12	792	14256	2
26	18	3	6	12	768	13824	2
27	20	1	8	12	648	12960	1.5

Two Fotiadis-Konstantinou families

Fotiadis-Konstantinou (FK16) family for $k=16, D=1, \rho=2$:

$$
\begin{aligned}
r(x) & =\Phi_{16}(x)=x^{8}+1 \\
t(x) & =x^{8}+x+2 \\
p(x) & =\left(x^{16}+x^{10}+5 x^{8}+x^{2}+4 x+4\right) / 4
\end{aligned}
$$

Fotiadis-Konstantinou (FK18) family for $k=18, D=3, \rho=2$:

$$
\begin{aligned}
& r(x)=\Phi_{18}(x)=x^{6}-x^{3}+1 \\
& t(x)=x^{6}-x^{4}-x^{3}+2 \\
& p(x)=\left(3 x^{12}-3 x^{9}+x^{8}-2 x^{7}+7 x^{6}-x^{5}-x^{4}-4 x^{3}+x^{2}-2 x+4\right) / 3
\end{aligned}
$$

Fotiadis-Martindale: Two curve examples [FM19]

- FM16-766 with seed $u=2^{48}+2^{28}+2^{26}$.
- FM18-768 with seed $u=-2^{64}-2^{35}+2^{11}-1$.

Pairings at 192-bit security

Curve	$\log p$	$\log r$	$\log p^{k}$	ρ	Miller loop	Final exp.	Total
BN12	1022	1022	12264	1.000	$25760 \mathbf{m}$	$10533 \mathbf{m}$	$36293 \mathbf{m}$
BLS12	1150	768	13800	1.497	$19425 \mathbf{m}$	$14353 \mathbf{m}$	$33778 \mathbf{m}$
KSS16	766	605	12255	1.266	$16944 \mathbf{m}$	$32896 \mathbf{m}$	$49840 \mathbf{m}$
FM16	766	384	12255	1.995	$10331 \mathbf{m}$	$28981 \mathbf{m}$	$39312 \mathbf{m}$
KSS18	638	474	11477	1.346	16408 m	$25816 \mathbf{m}$	$42224 \mathbf{m}$
FM18	768	384	13824	2.000	$13412 \mathbf{m}$	$24896 \mathbf{m}$	$38308 \mathbf{m}$

For larger k :

- More expensive final exponentiation.
- Shorter Miller loops + smaller prime p.
- FM16-766 \& FM18-768 faster than KSS16-766.
- The best example for 192-bit security seems to be KSS18-638 (smaller p).
- Is there a family with $k=18$ and $\rho=1.667$?
- Interested to see how BLS24-512 compares to the above.

Measuring Optimal Curves

Condition $\rho=1$ may not be sufficient for security \& efficiency:

- Sometimes it is necessary to increase p without affecting r. \Rightarrow hence larger ρ might be better for specific k.
- e.g. $k=12$: BLS12-446 and FM12-446 more efficient than BN12-446.
- e.g. $k=16$: FM16-766 more efficient than KSS16-766.

Additionally define the τ-value: $\tau=\log (\sqrt{r}) / n$:
$\checkmark n$: the estimated security level in $\mathbb{F}_{p^{k}}(n=\operatorname{SimULATORGMT}(k, u, p(x)))$.

- $\tau=1 \Rightarrow$ the security level in $\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{\mathrm{T}}$ is the same.

Curve	BN12-446	BLS12-446	FM12-446
τ-value	1.7	1.1	1.1

Conclusion \& Future Work

Pairing-friendly curves with prime embedding degree:

- e.g. [GMT20] for $k=5,7$: best example GMT7-512 ($\approx 3 \times$ BLS12 -446).
- Most speedups used for composite k do not apply.

Pairing implementation:

- Optimization of finite field multiplication for specific primes.
- Parallel/side-channel resistant implementations.

Explore further FM12, FM16, FM18 curves.

- e.g. hashing in \mathbb{G}_{1} or \mathbb{G}_{2} in BLS signatures with FM12 curves.

Pairings on genus 2 hyperelliptic curves (work under review):

- Best case scenario: examples close to elliptic curves, but slightly worse. e.g. for 192-bit security: Ihsii16-671 with 52778m [Ish18].
- Need further improvement for doubling \& addition in Jacobian.
- Doubling \& addition using Fan et al. coordinate system [FGJ08].

Thank you!

Georgios Fotiadis

Applied Security \& Information Assurance (APSIA) Group APSIA Quantum Lab
https://wwwen.uni.lu/snt/people/georgios_fotiadis georgios.fotiadis@uni.lu,gfotiadis.crypto@gmail.com
@ @giofotiadis

References I

Diego F Aranha, Laura Fuentes-Castaneda, Edward Knapp, Alfred Menezes, and Francisco Rodríguez-Henríquez.
Implementing pairings at the 192-bit security level.
In PAIRING'2012, pages 177-195. Springer, 2012.
Razvan Barbulescu and Sylvain Duquesne.
Updating key size estimations for pairings.
Journal of Cryptology, 32(4):1298-1336, 2019.
Razvan Barbulescu, Nadia El Mrabet, and Loubna Ghammam.
A Taxonomy of Pairings, their Security, their Complexity.
Cryptology ePrint Archive, Report 2019/485, 2019.
Dan Boneh and Matt Franklin.
Identity-based encryption from the Weil pairing.
In CRYPTO'2001, pages 213-229. Springer, 2001.

References II

Dan Boneh, Ben Lynn, and Hovav Shacham.
Short signatures from the Weil pairing.
In ASIACRYPT'2001, pages 514-532. Springer, 2001.
围 Friederike Brezing and Annegret Weng.
Elliptic Curves Suitable for Pairing Based Cryptography.
Designs, Codes and Cryptography, 37(1):133-141, 2005.
目 Xinxin Fan, Guang Gong, and David Jao.
Efficient Pairing Computation on Genus 2 Curves in Projective Coordinates.
In SAC'2008, pages 18-34. Springer, 2008.
E- Georgios Fotiadis and Elisavet Konstantinou.
Generating Pairing-Friendly Elliptic Curve Parameters using Sparse Families. Journal of Mathematical Cryptology, 12(2):83-99, 2018.

References III

Georgios Fotiadis and Elisavet Konstantinou.
TNFS Resistant Families of Pairing-Friendly Elliptic Curves.
Journal of Theoretical Computer Science, 800:73-89, 2019.
囯 Georgios Fotiadis and Chloe Martindale.
Optimal TNFS-secure Pairings on Elliptic Curves with Composite Embedding Degree.
Cryptology ePrint Archive, Report 2019/555, 2019.
围 David Freeman, Michael Scott, and Edlyn Teske.
A Taxonomy of Pairing-Friendly Elliptic Curves.
Journal of Cryptology, 23(2):224-280, 2010.
Aurore Guillevic, Simon Masson, and Emmanuel Thomé.
Cocks-Pinch curves of embedding degrees five to eight and optimal ate pairing computation. Designs, Codes and Cryptography, pages 1-35, 2020.

References IV

Aurore Guillevic and Shashank Singh．
On the alpha value of polynomials in the tower number field sieve algorithm．
Cryptology ePrint Archive，Report 2019／885， 2019.
國 Aurore Guillevic．
A Short－List of Pairing－Friendly Curves Resistant to Special TNFS at the 128－bit Security Level．
In $P K C^{\prime} 2020$ ，pages 535－564．Springer， 2020.
國 Masahiro Ishii．
Pairings on Hyperelliptic Curves with Considering Recent Progress on the NFS Algorithms．
In Mathematical Modelling for Next－Generation Cryptography，pages 81－96．Springer， 2018.
國 Antoine Joux．
A one round protocol for tripartite Diffie－Hellman．
In ANTS＇2000，pages 385－393．Springer， 2000.

References V

Taechan Kim and Razvan Barbulescu.
Extended tower number field sieve: A new complexity for the medium prime case. In CRYPTO'2016, pages 543-571. Springer, 2016.
國 Michael Scott, Naomi Benger, Manuel Charlemagne, Luis J Dominguez Perez, and Ezekiel J Kachisa.
On the final exponentiation for calculating pairings on ordinary elliptic curves. In PAIRING'2009, pages 78-88. Springer, 2009.
Finederik Vercauteren.
Optimal pairings.
IEEE Transactions on Information Theory, 56(1):455-461, 2009.

[^0]: ${ }^{1}$ Available at: https:/ / gitlab.inria.fr/tnfs-alpha/alpha/tree/master/sage

[^1]: ${ }^{2}$ Security in $\mathbb{F}_{p^{12}}$ using SimuLatorBD (better estimates with SimulatorGMT).

[^2]: ${ }^{3}$ Aranha's Relic library: time for one \mathbb{F}_{p}-mult. (m) based on number of 64 -bit words of p (https:/ / github.com/relic-toolkit/relic).

