Making (near) Optimal Choices for the Design of Block Ciphers

Baptiste Lambin

Horst Görtz Institute for IT Security, Ruhr University Bochum
27/01/2020

hgi
 Horst Görtz Institut ■
 für IT-Sicherheit \quad
 RUHR UNIVERSITÄT BOCHUM

(1) Introduction

(2) Efficient Search for Optimal Diffusion Layers of GFNs

(3) Variants of the AES Key-Schedule for Better Truncated Differential Bounds
(4) Perspectives

(2) Efficient Search for Optimal Diffusion Layers of GFNs

(3) Variants of the AES Key-Schedule for Better Truncated Differential Bounds

4 Perspectives

Cryptography and Encryption

Symmetric Encryption

Symmetric Encryption

Block and Stream Ciphers

Two main ways to build symmetric encryption :

- Stream Ciphers :

- Block ciphers :

$E_{\text {key }}$ is a permutation of fixed size (n bits)

Distinguishers

\Rightarrow Behavior of the block cipher that a random function does not have.

true with probability $2^{-(n-1)}$

true with probability p
$p \gg 2^{-(n-1)} \Rightarrow$ we have a distinguisher

Substitution-Permutation Networks

Feistel Networks

Finding Optimal Components

Naïve algorithm : exhaustive search

Finding Optimal Components

Naïve algorithm : exhaustive search Pros:

- (Relatively) easy to implement
- Optimality is easy to prove

Finding Optimal Components

Naïve algorithm : exhaustive search
Pros:

- (Relatively) easy to implement
- Optimality is easy to prove

Cons (non-exclusive) :

- The search space can be very large e.g. From 2^{52} up to 2^{75} in the first part of this presentation
- Testing one candidate can be expensive e.g. In the second part of this presentation, "only" 2^{44} candidates but testing each of them is expensive

Tools for Optimization

- (Mixed) Integer Linear Programming (and some other variants)
- Constraint Programming
- Metaheuristics (near optimality)
- SAT (somewhat)
- Dedicated algorithms

Tools for Optimization

- (Mixed) Integer Linear Programming (and some other variants)
- Constraint Programming
- Metaheuristics (near optimality)
- SAT (somewhat)
- Dedicated algorithms

In this talk :

- Part 1 : Dedicated algorithm (~ Branch-and-Bound) + efficient testing for the small cases
- Part 2 : Metaheuristics + Constraint Programming
(2) Efficient Search for Optimal Diffusion Layers of GFNs

(3) Variants of the AES Key-Schedule for Better Truncated Differential Bounds

Generalized Feistel Network

- State composed of $2 k$ blocks
- k Feistels in parallel followed by a permutation π
- Easier to design but slower diffusion

Generalized Feistel Network

- State composed of $2 k$ blocks
- k Feistels in parallel followed by a permutation π
- Easier to design but slower diffusion
- In this work, the key and the definition of the F-functions don't matter

Diffusion Round

Diffusion Round

- Depends only on π
- Tied to impossible differential and integral attacks
- For encryption...

Diffusion Round

- Depends only on π
- Tied to impossible differential and integral attacks
- For encryption and decryption

Diffusion Round

- Depends only on π
- Tied to impossible differential and integral attacks
- For encryption and decryption
- $\operatorname{DR}(\pi)=6$ here

Previous Work

- Suzaki and Minematsu at FSE'10
- Lower bound on $\operatorname{DR}(\pi)$ depending only on k
- Exhaustive search for $2 k \leq 16$
- Observed that all optimal permutations in these cases are even-odd
- Generic construction with $\operatorname{DR}(\pi)=2 \log _{2} k$ (not optimal in general)

Previous Work

- Suzaki and Minematsu at FSE'10
- Lower bound on $\operatorname{DR}(\pi)$ depending only on k
- Exhaustive search for $2 k \leq 16$
- Observed that all optimal permutations in these cases are even-odd
- Generic construction with $\operatorname{DR}(\pi)=2 \log _{2} k$ (not optimal in general)
- Cauchois et al. at FSE'19
- Equivalence relation for even-odd permutations
- Optimal even-odd permutations for $18 \leq 2 k \leq 26$
- Good candidate for $2 k=32$ (already known from FSE'10) and $2 k=64,128$

Previous Work

- Suzaki and Minematsu at FSE'10
- Lower bound on $\operatorname{DR}(\pi)$ depending only on k
- Exhaustive search for $2 k \leq 16$
- Observed that all optimal permutations in these cases are even-odd
- Generic construction with $\operatorname{DR}(\pi)=2 \log _{2} k$ (not optimal in general)
- Cauchois et al. at FSE'19
- Equivalence relation for even-odd permutations
- Optimal even-odd permutations for $18 \leq 2 k \leq 26$
- Good candidate for $2 k=32$ (already known from FSE'10) and $2 k=64,128$

Open problem : is the permutation on 32 blocks optimal ?
Diffusion round of 10 but lower bound at 9 rounds.

- We solve this 10 -year-old problem
- New characterization for the diffusion round
\Rightarrow Efficient algorithm to search for an optimal permutation
- Results for $28 \leq 2 k \leq 42$
- Security evaluation for all permutations found

Even-odd Permutations

Even-odd Permutations

$$
\begin{gathered}
\pi=(3,0,5,6,1,2,7,4) \\
p=(1,2,0,3) \quad \pi(2 i)=2 p(i)+1
\end{gathered}
$$

Even-odd Permutations

$$
\begin{gathered}
\pi=(3,0,5,6,1,2,7,4) \\
p=(1,2,0,3) \quad \pi(2 i)=2 p(i)+1 \\
q=(0,3,1,2) \quad \pi(2 i+1)=2 q(i)
\end{gathered}
$$

Ideal Diffusion

Ideal Diffusion

Ideal Diffusion

Ideal Diffusion

$$
\begin{aligned}
& j_{0}^{5}=p \circ p \circ p \circ p(j) \quad 2 j \\
& 2 j_{0}^{1} \\
& p \mid \\
& \begin{array}{cc}
2 j_{0}^{2} & 2 j_{0}^{2}+1 \\
\left.2\right|_{0} ^{3}+1 & \left.q\right|_{2} \\
2 j_{1}^{3}
\end{array} \\
& 2 j_{0}^{4}-2 j_{0}^{4}+1 \\
& 2 j_{0}^{5}-2 j_{0}^{5}+1 \quad 2 j_{1}^{5}
\end{aligned}
$$

Ideal Diffusion

$$
\begin{aligned}
& j_{0}^{5}=p \circ p \circ p \circ p(j) \quad 2 j \\
& j_{1}^{5}=q \circ p \circ p \circ p(j)
\end{aligned}
$$

Ideal Diffusion

$$
\begin{aligned}
& \underset{\mathbb{J}_{j}^{5}}{ }\left\{\begin{array}{l}
j_{0}^{5}=p \circ p \circ p \circ p(j) \\
j_{1}^{5}=q \circ p \circ p \circ p(j) \\
j_{2}^{5}=p \circ q \circ p \circ p(j) \\
j_{3}^{5}=p \circ p \circ q \circ p(j) \\
j_{4}^{5}=q \circ p \circ q \circ p(j)
\end{array}\right. \\
& 2 j \\
& 1 \\
& 2 j_{0}^{1} \\
& \text { p| } \\
& 2 j_{0}^{2} \longrightarrow 2 j_{0}^{2}+1 \\
& p \mid \\
& q \mid \\
& 2 j_{0}^{3}-2 j_{0}^{3}+1 \\
& 2 j_{1}^{3} \\
& p \\
& q \mid \\
& p \mid \\
& 2 j_{0}^{4}-2 j_{0}^{4}+1 \\
& \begin{array}{c}
2 j_{1}^{4} \\
p \mid
\end{array} \\
& 2 j_{2}^{4}-2 j_{2}^{4}+1 \\
& p|\quad q| \\
& 2 j_{0}^{5}-2 j_{0}^{5}+1 \quad 2 j_{1}^{5} \\
& 2 j_{2}^{5}-2 j_{2}^{5}+1 \\
& 2 j_{3}^{5}-2 j_{3}^{5}+1 \\
& 2 j_{4}^{5}
\end{aligned}
$$

A Visualization of This Characterization

$\mathbb{J}_{j}^{7}\left\{\begin{array}{|c||c|c|c|c|c|c|c|c|}\hline x & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline \hline p^{5} & 3 & 4 & 5 & 6 & 7 & 0 & 1 & 2 \\ \hline p^{4} q & 4 & 5 & 6 & 7 & 0 & 1 & 2 & 3 \\ \hline p^{3} q p & 4 & 5 & 6 & 7 & 0 & 1 & 2 & 3 \\ \hline p^{2} q p^{2} & 4 & 5 & 6 & 7 & 0 & 1 & 2 & 3 \\ \hline p q p^{3} & 4 & 5 & 6 & 7 & 0 & 1 & 2 & 3 \\ \hline q p^{4} & 4 & 5 & 6 & 7 & 0 & 1 & 2 & 3 \\ \hline p^{2} q p q & 5 & 6 & 7 & 0 & 1 & 2 & 3 & 4 \\ \hline p q p^{2} q & 5 & 6 & 7 & 0 & 1 & 2 & 3 & 4 \\ \hline q p^{3} q & 5 & 6 & 7 & 0 & 1 & 2 & 3 & 4 \\ \hline p q p q p & 5 & 6 & 7 & 0 & 1 & 2 & 3 & 4 \\ \hline q p^{2} q p & 5 & 6 & 7 & 0 & 1 & 2 & 3 & 4 \\ \hline q p q p^{2} & 5 & 6 & 7 & 0 & 1 & 2 & 3 & 4 \\ \hline q p q p q=(7,0,1,2,3,4,5,6) \\ p & 6 & 7 & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline \hline \hline \operatorname{diff} & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\ \hline\end{array}\right.$

A Visualization of This Characterization

A Visualization of This Characterization

A Visualization of This Characterization

$\mathbb{J}_{j}^{7}\left\{\begin{array}{|c||c|c|c|c|c|c|c|c|}\hline x & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline \hline p^{5} & 4 & 3 & 5 & 1 & 6 & 7 & 0 & 2 \\ \hline p^{4} q & 3 & 2 & 1 & 4 & 0 & 6 & 7 & 5 \\ \hline p^{3} q p & 2 & 6 & 7 & 5 & 1 & 3 & 4 & 0 \\ \hline p^{2} q p^{2} & 6 & 7 & 4 & 0 & 5 & 2 & 3 & 1 \\ \hline p q p^{3} & 1 & 4 & 3 & 2 & 0 & 6 & 7 & 5 \\ \hline q p^{4} & 2 & 5 & 7 & 6 & 3 & 1 & 4 & 0 \\ \hline p^{2} q p q & 7 & 1 & 0 & 6 & 3 & 5 & 2 & 4 \\ \hline p q p^{2} q & 4 & 5 & 2 & 1 & 7 & 0 & 6 & 3 \\ \hline q p^{3} q & 5 & 0 & 6 & 2 & 4 & 3 & 1 & 7 \\ \hline p q p q p & 5 & 0 & 6 & 3 & 2 & 4 & 1 & 7 \\ \hline q p^{2} q p & 0 & 3 & 1 & 7 & 6 & 5 & 2 & 4 \\ \hline q p q p^{2} & 3 & 1 & 2 & 4 & 7 & 0 & 5 & 6 \\ \hline q p q p q & 1 & 6 & 4 & 3 & 5 & 7 & 0 & 2 \\ \hline \hline \text { diff } & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \\ \hline\end{array}\right.$

A Visualization of This Characterization

Searching for an optimal permutation

- $(k!)^{2}$ even-odd permutations, reduced to $\mathcal{N}_{k} \cdot k$! with an equivalence relation.
\mathcal{N}_{k} := number of partitions of the integer k.
\Rightarrow For $2 k=32, \sim 2^{52}$ permutations instead of $(16!)^{2} \simeq 2^{88}$.
- Main idea : partially compute some $\mathbb{J}_{j}^{r}+$ Branch-and-Bound

Searching for Optimal Permutations : Observations 1

- Can be efficiently implemented with table lookups \Rightarrow Very efficient exhaustive search for $2 k \leq 26$ (but already known)
- Focus on $28 \leq 2 k \leq 42$, lower bound for full diffusion at 9 rounds

Searching for Optimal Permutations: Observations 1

- Can be efficiently implemented with table lookups \Rightarrow Very efficient exhaustive search for $2 k \leq 26$ (but already known)
- Focus on $28 \leq 2 k \leq 42$, lower bound for full diffusion at 9 rounds
- Main idea : fix p with a given cycle structure and search q
- Need to consider \mathbb{J}_{j}^{8}, but computing \mathbb{J}_{j}^{8} requires to known (most of) q

Searching for Optimal Permutations: Observations 1

- Can be efficiently implemented with table lookups
\Rightarrow Very efficient exhaustive search for $2 k \leq 26$ (but already known)
- Focus on $28 \leq 2 k \leq 42$, lower bound for full diffusion at 9 rounds
- Main idea : fix p with a given cycle structure and search q
- Need to consider \mathbb{J}_{j}^{8}, but computing \mathbb{J}_{j}^{8} requires to known (most of) q
- But!
- Computing \mathbb{J}_{j}^{i} requires to compute $\mathbb{J}_{j}^{i^{\prime}}$ for $i^{\prime}<i$
- Some computations for \mathbb{J}_{j}^{i} and $\mathbb{J}_{j^{\prime}}^{i}, j \neq j^{\prime}$, can be the same

Searching for Optimal Permutations: Observations 2

- Knowing p, computing \mathbb{J}_{j}^{6} requires to make 7 guesses on q
- Computing $\mathbb{J}_{p(j)}^{6}$ requires (at most) only 3 additional guesses on q

Searching for Optimal Permutations: Observations 2

- Knowing p, computing \mathbb{J}_{j}^{6} requires to make 7 guesses on q
- Computing $\mathbb{J}_{p(j)}^{6}$ requires (at most) only 3 additional guesses on q
- \mathbb{J}_{j}^{6} can be written as $\mathbb{J}_{j}^{6}=\mathbb{X}_{j}^{6} \cup \mathbb{Y}_{j}^{6}$ with $\mathbb{X}_{j}^{6} \cap \mathbb{Y}_{j}^{6}=\emptyset$ such that

$$
\mathbb{J}_{j}^{8}=p^{2}\left(\mathbb{X}_{j}^{6} \cup \mathbb{Y}_{j}^{6}\right) \cup(p q)\left(\mathbb{X}_{j}^{6}\right) \cup(q p)\left(\mathbb{X}_{j}^{6} \cup \mathbb{Y}_{j}^{6}\right)
$$

Make the 7 seven guesses on q to compute $\mathbb{J}_{j}^{6}=\mathbb{X}_{j}^{6} \cup \mathbb{Y}_{j}^{6}$ so that

$$
\mathbb{J}_{j}^{8}=p^{2}\left(\mathbb{X}_{j}^{6} \cup \mathbb{Y}_{j}^{6}\right) \quad \cup \quad(p q)\left(\mathbb{X}_{j}^{6}\right) \quad \cup \quad(q p)\left(\mathbb{X}_{j}^{6} \cup \mathbb{Y}_{j}^{6}\right)
$$

Make the 7 seven guesses on q to compute $\mathbb{J}_{j}^{6}=\mathbb{X}_{j}^{6} \cup \mathbb{Y}_{j}^{6}$ so that

$$
\mathbb{J}_{j}^{8}=p^{2}\left(\mathbb{X}_{j}^{6} \cup \mathbb{Y}_{j}^{6}\right) \quad \cup \quad(p q)\left(\mathbb{X}_{j}^{6}\right) \quad \cup \quad(q p)\left(\mathbb{X}_{j}^{6} \cup \mathbb{Y}_{j}^{6}\right)
$$

Make the 7 seven guesses on q to compute $\mathbb{J}_{j}^{6}=\mathbb{X}_{j}^{6} \cup \mathbb{Y}_{j}^{6}$ so that

$$
\mathbb{J}_{j}^{8}=p^{2}\left(\mathbb{X}_{j}^{6} \cup \mathbb{Y}_{j}^{6}\right) \quad \cup \quad(p q)\left(\mathbb{X}_{j}^{6}\right) \quad \cup \quad(q p)\left(\mathbb{X}_{j}^{6} \cup \mathbb{Y}_{j}^{6}\right)
$$

Make the 7 seven guesses on q to compute $\mathbb{J}_{j}^{6}=\mathbb{X}_{j}^{6} \cup \mathbb{Y}_{j}^{6}$ so that

$$
\begin{array}{rlllll}
\mathbb{J}_{j}^{8} & = & p^{2}\left(\mathbb{X}_{j}^{6} \cup \mathbb{Y}_{j}^{6}\right) \quad \cup & (p q)\left(\mathbb{X}_{j}^{6}\right) & \cup & (q p)\left(\mathbb{X}_{j}^{6} \cup \mathbb{Y}_{j}^{6}\right)
\end{array}
$$

- $\widetilde{\mathbb{X}}_{j}^{6} \subset \mathbb{X}_{j}^{6}$ s.t. $\forall x \in \widetilde{\mathbb{X}}_{j}^{6} \quad q(x)$ is unknown

Make the 7 seven guesses on q to compute $\mathbb{J}_{j}^{6}=\mathbb{X}_{j}^{6} \cup \mathbb{Y}_{j}^{6}$ so that

$$
\begin{array}{rllllll}
\mathbb{J}_{j}^{8} & = & p^{2}\left(\mathbb{X}_{j}^{6} \cup \mathbb{Y}_{j}^{6}\right) & \cup & (p q)\left(\mathbb{X}_{j}^{6}\right) & \cup & (q p)\left(\mathbb{X}_{j}^{6} \cup \mathbb{Y}_{j}^{6}\right)
\end{array}
$$

- $\widetilde{\mathbb{X}}_{j}^{6} \subset \mathbb{X}_{j}^{6}$ s.t. $\forall x \in \widetilde{\mathbb{X}}_{j}^{6} \quad q(x)$ is unknown
- $\widetilde{\mathbb{Y}}_{j}^{6} \subset p\left(\mathbb{X}_{j}^{6} \cup \mathbb{Y}_{j}^{6}\right)$, s.t. $\forall x \in \widetilde{\mathbb{Y}}_{j}^{6} \quad q(x)$ is unknown

Make the 7 guesses on q to compute \mathbb{J}_{j}^{6}, thus

$$
\mathbb{J}_{j}^{8}=\mathbb{K}_{j} \cup q\left(\widetilde{\mathbb{Y}}_{j}^{6}\right) \cup(p q)\left(\widetilde{\mathbb{X}}_{j}^{6}\right)
$$

Make the 7 guesses on q to compute \mathbb{J}_{j}^{6}, thus

$$
\mathbb{J}_{j}^{8}=\mathbb{K}_{j} \cup q\left(\widetilde{\mathbb{Y}}_{j}^{6}\right) \cup(p q)\left(\widetilde{\mathbb{X}}_{j}^{6}\right)
$$

Full diffusion for j means that we have the constraint

$$
C_{j}:\left|\mathbb{K}_{j} \cup q\left(\widetilde{\mathbb{Y}}_{j}^{6}\right) \cup(p q)\left(\widetilde{\mathbb{X}}_{j}^{6}\right)\right| \geq k
$$

Make the 7 guesses on q to compute \mathbb{J}_{j}^{6}, thus

$$
\mathbb{J}_{j}^{8}=\mathbb{K}_{j} \cup q\left(\widetilde{\mathbb{Y}}_{j}^{6}\right) \cup(p q)\left(\widetilde{\mathbb{X}}_{j}^{6}\right)
$$

Full diffusion for j means that we have the constraint

$$
C_{j}:\left|\mathbb{K}_{j} \cup q\left(\widetilde{\mathbb{Y}}_{j}^{6}\right) \cup(p q)\left(\widetilde{\mathbb{X}}_{j}^{6}\right)\right| \geq k
$$

Make 3 additional guesses on q, update and $\operatorname{check}^{1} C_{j}$, and then we get

$$
C_{j^{\prime}}:\left|\mathbb{K}_{j^{\prime}} \cup q\left(\widetilde{\mathbb{Y}}_{j^{\prime}}^{6}\right) \cup(p q)\left(\widetilde{\mathbb{X}}_{j^{\prime}}^{6}\right)\right| \geq k, \quad j^{\prime}=p(j)
$$

${ }^{1}$ Use voodoo magic to check if a constraint C_{j} can be satisfied, see paper

Make the 7 guesses on q to compute \mathbb{J}_{j}^{6}, thus

$$
\mathbb{J}_{j}^{8}=\mathbb{K}_{j} \cup q\left(\widetilde{\mathbb{Y}}_{j}^{6}\right) \cup(p q)\left(\widetilde{\mathbb{X}}_{j}^{6}\right)
$$

Full diffusion for j means that we have the constraint

$$
C_{j}:\left|\mathbb{K}_{j} \cup q\left(\widetilde{\mathbb{Y}}_{j}^{6}\right) \cup(p q)\left(\widetilde{\mathbb{X}}_{j}^{6}\right)\right| \geq k
$$

Make 3 additional guesses on q, update and check $^{1} C_{j}$, and then we get

$$
C_{j^{\prime}}:\left|\mathbb{K}_{j^{\prime}} \cup q\left(\widetilde{\mathbb{Y}}_{j^{\prime}}^{6}\right) \cup(p q)\left(\widetilde{\mathbb{X}}_{j^{\prime}}^{6}\right)\right| \geq k, \quad j^{\prime}=p(j)
$$

Keep going until q is fully defined (or constraints can never be all satisfied)
${ }^{1}$ Use voodoo magic to check if a constraint C_{j} can be satisfied, see paper

Results and Summary

- New characterization for the diffusion round in a GFN
- Very efficient search algorithm, highly parallelizable ($<1 h$ for each case with 72 threads)

Results and Summary

- New characterization for the diffusion round in a GFN
- Very efficient search algorithm, highly parallelizable ($<1 h$ for each case with 72 threads)
- For $2 k=28,30,32$ and 36 , the optimal number of rounds for full diffusion is 9 .

Results and Summary

- New characterization for the diffusion round in a GFN
- Very efficient search algorithm, highly parallelizable ($<1 h$ for each case with 72 threads)
- For $2 k=28,30,32$ and 36 , the optimal number of rounds for full diffusion is 9 .
- For $2 k=34$, the optimal number of rounds for full diffusion is 10 .

Results and Summary

- New characterization for the diffusion round in a GFN
- Very efficient search algorithm, highly parallelizable ($<1 h$ for each case with 72 threads)
- For $2 k=28,30,32$ and 36 , the optimal number of rounds for full diffusion is 9 .
- For $2 k=34$, the optimal number of rounds for full diffusion is 10 .
- For $2 k=38,40$ and 42 , the optimal number of rounds for full diffusion is at least 10 and at most 11 .
(2) Efficient Search for Optimal Diffusion Layers of GFNs
(3) Variants of the AES Key-Schedule for Better Truncated Differential Bounds

Security model

Standard model
Can only ask the encryption of some plaintexts p.

Related-key model
Can ask the encryption of some plaintexts p with a modified key.

(Related-key) Differentials attacks

Given an n-bit block cipher E, can we find a tuple $\left(\Delta_{\text {in }}, \Delta_{\text {out }}, \Delta_{k}\right) \in \mathbb{F}_{2}^{3 n}$ such that for any message p,

$$
E\left(p \oplus \Delta_{i n}, k \oplus \Delta_{k}\right)=E(p, k) \oplus \Delta_{\text {out }}
$$

holds independently from the value of the key with high probability ?

- 128-bit block cipher, $\{128,192,256\}$-bit key
- Round function :
- SubBytes (SB,non-linear)
- $\mathrm{L}=$ MixColumns \circ ShiftRows (linear)
- AddRoundKey (\oplus)
- Round keys are derived from the master key using a key schedule KS (non-linear)

Truncated differential characteristic

Only consider whether a difference is zero or not (active byte).
\Rightarrow Easier to search than regular differentials
\Rightarrow Can still give some security results for differential attacks

Truncated differential characteristic

Only consider whether a difference is zero or not (active byte).
\Rightarrow Easier to search than regular differentials
\Rightarrow Can still give some security results for differential attacks
May be impossible to instantiate with regular differentials
\Rightarrow We can consider some additional information to avoid this ! (Induced equations!)

Equations induced by MixColumns (MDS property)

Let $z=M C(y)$ with $y, z \in\left(\mathbb{F}_{2}^{8}\right)^{4}$. Then there is a linear equation between any 5 bytes in y and z.

$$
\text { 5. } y_{0} \oplus 7 . y_{1} \oplus y_{3}=2 . z_{0} \oplus z_{2}
$$

But y_{0}, y_{1} and y_{3} are zero differences, and $\left(z_{0}, z_{2}\right)$ is cancelled by $\left(k_{0}, k_{2}\right)$. Hence $2 . k_{0} \oplus k_{2}=0$.

Active S-Boxes

Number of active S-boxes \Rightarrow maximal probability of the (truncated) differential characteristic.

Active S-Boxes

Number of active S-boxes \Rightarrow maximal probability of the (truncated) differential characteristic.

The higher the minimal number of active S-boxes is, the better.

Active S-Boxes

Number of active S -boxes \Rightarrow maximal probability of the (truncated) differential characteristic.

The higher the minimal number of active S-boxes is, the better.
How to choose the key schedule to maximize the minimal number of active S-Boxes ?

Active S-Boxes

Number of active S -boxes \Rightarrow maximal probability of the (truncated) differential characteristic.

The higher the minimal number of active S-boxes is, the better.
How to choose the key schedule to maximize the minimal number of active S-Boxes ?
\Rightarrow What if we use a byte-permutation instead of the original KS ?

Changing the key schedule for a permutation

Using a permutation as key schedule :

- Efficient in both hardware and software
- Easier to analyze
- Better security with simpler design ?
- Khoo et al. ${ }^{2}$ gave an example of a permutation for AES-128 reaching 22 S-boxes in 7 rounds at FSE'18

[^0]
About Khoo et al. 's permutation

- Built according to some results in their paper and two criteria :
- Only having one cycle (of length 16)
- Minimizing the "overlap" between the Key Schedule and the round function

About Khoo et al. 's permutation

- Built according to some results in their paper and two criteria :
- Only having one cycle (of length 16)
- Minimizing the "overlap" between the Key Schedule and the round function
- Reach 14, 18 and 21 active S-boxes over respectively 5, 6 and 7 rounds

About Khoo et al. 's permutation

- Built according to some results in their paper and two criteria :
- Only having one cycle (of length 16)
- Minimizing the "overlap" between the Key Schedule and the round function
- Reach 14, 18 and 21 active S-boxes over respectively 5, 6 and 7 rounds

But actually...

- Reach 22 S-boxes over 7 rounds when considering equations
- Easy to generate randomly (~ 100 trials)

About Khoo et al. 's permutation

- Built according to some results in their paper and two criteria :
- Only having one cycle (of length 16)
- Minimizing the "overlap" between the Key Schedule and the round function
- Reach 14, 18 and 21 active S-boxes over respectively 5, 6 and 7 rounds

But actually...

- Reach 22 S-boxes over 7 rounds when considering equations
- Easy to generate randomly (~ 100 trials)

Goal : Find a permutation to use instead of the key schedule reaching 22 S-Boxes in 6 rounds (or less ?)

Generic Bounds on 2, 3 and 4 rounds

Formally proven [Our paper]

The optimal bounds for 2, 3 and 4 rounds are respectively 1,5 and 10 active S-boxes, even when considering induced equations

Generic Bounds on 5, 6 and 7 rounds

Formally proven [Our paper]

The optimal bounds for 5, 6 and 7 rounds are respectively 14,18 and 21 active S-boxes, without considering equations

More precise bound over 5 rounds

Computer aided [Our paper]

There is no permutation that, when used as key schedule, can reach a minimal number of active S-boxes of 18 or higher over 5 rounds. There is at least one permutation that can reach 16 S-boxes over 5 rounds.

Main idea to search for s S-boxes:

- Build a list of cycles which don't lead to any characteristic of weight $<s$.
- Combine all of them to see if we can find a permutation reaching s S-boxes.

Iteratively building cycles

$$
\left(x_{0} x_{1} x_{2} ? ? \ldots\right)
$$

Iteratively building cycles

```
                    (x0 x < x < ? ? ...)
Closed cycle
(x0 x ( 
Keep if
no characteristic
    of weight < s
```


Iteratively building cycles

Iteratively building cycles

Iteratively building cycles

Iteratively building cycles

Over 6 rounds

More than 2^{44} possible permutations + cost of finding the minimal number of active S-boxes
\Rightarrow Too expensive to try them all!
We have an optimization problem :
Maximize the minimal number of active S-boxes over 6 rounds

Over 6 rounds

More than 2^{44} possible permutations + cost of finding the minimal number of active S-boxes
\Rightarrow Too expensive to try them all !
We have an optimization problem :
Get a high enough minimal number of active S-boxes over 6 rounds

Over 6 rounds

More than 2^{44} possible permutations + cost of finding the minimal number of active S-boxes
\Rightarrow Too expensive to try them all!
We have an optimization problem :

Get a high enough minimal number of active S-boxes over 6 rounds

We used a meta-heuristic called simulated annealing ${ }^{3}$. Main idea :

- Generate a sequence x_{0}, x_{1}, \ldots where x_{i} and x_{i+1} are "close"
- If $f\left(x_{i}\right)>f\left(x_{i-1}\right)$, accept x_{i} and search for the next one
- Otherwise only accept x_{i} with a certain (decreasing) probability
- Choose another x_{i} if it was rejected
- Stop when $f\left(x_{i}\right)$ reach a certain threshold

[^1]
Constraint Programming

Sudoku's rules:

- All values in a row are different
- All values in a column are different
- All values in a square are different
- You have knowledge of a few values to start with

8								
		3	6					
7			9		2			
5				7				
			4	5	7			
			1				3	
	1					6	8	
	8	5				1		
	9					4		

Claimed to be the "World's Hardest Sudoku"

Constraint Programming

$$
\begin{aligned}
& \text { allDifferent (x[i] [0] , ..., x[i] [8]) for i in }\{0, \ldots, 8\} \\
& \text { allDifferent }(x[0][i], \ldots, x[8][i]) \text { for } i \text { in }\{0, \ldots, 8\} \\
& \text { allDifferent }(s[i][0], \ldots, s[i][8]) \text { for } i \text { in }\{0, \ldots, 8\} \\
& \text { Initial values }: x[0][0]=8, x[1][2]=3 \text {, etc. }
\end{aligned}
$$

Solution
(Previous sudoku solved in less than 0.1 seconds)

Efficient evaluation of f

Efficiency of the meta-heuristic

$=$ Efficiency of evaluating the minimal number of active S-boxes !

Summary of the search over 6 rounds

- We used a meta-heuristic for an efficient search.
- We proposed a new CP model which directly manages induced equations.
- We found a permutation reaching 20 active S-boxes over 6 rounds, and no characteristic with a probability better than 2^{-128} exists !

Conclusion

Number of rounds	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
Original key schedule	1	3	9	11	13^{\dagger}	15^{\dagger}
Khoo et al.'s permutation	1	5	10	14	18^{\dagger}	22^{\dagger}
Our permutation	1	5	10	15	20^{\dagger}	23^{\dagger}

- We cannot reach 18 S-boxes over 5 rounds, and 17 is still an open question.
- Modifying the ShiftRows operation, we can reach 21^{\dagger} S-boxes over 6 rounds.
- 22 S-boxes is an open question
${ }^{\dagger}$ no characteristic with probability $>2^{-128}$

(2) Efficient Search for Optimal Diffusion Layers of GFNs

(3) Variants of the AES Key-Schedule for Better Truncated Differential Bounds

(4) Perspectives

- Long term goal : The "Ultimate" GFN
\Rightarrow Probably not unique, need to consider trade-offs (harder than focusing on optimality)
\Rightarrow Would lead to a nice generic tool for evaluating the security of any GFN (to some extend)
- "Provable" key-schedules \Rightarrow Adding concrete and well defined security arguments for the key-schedule \Rightarrow In the end, I would like to show that using a very simple key-schedule is enough, i.e. convoluted key-schedules are not better than a carefully crafted simple one
- Automatic tools for cryptanalysis
\Rightarrow Improving the current ones
\Rightarrow New tools for new attacks

[^0]: ${ }^{2}$ Khoo, K., Lee, E., Peyrin, T., Sim, S.M.: Human-readable Proof of the Related-Key Security of AES-128, FSE'18

[^1]: ${ }^{3}$ Nikolić, How to use metaheuristics for design of symmetric-key primitives ASIACRYPT'17

