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Cryptography and Encryption
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Making (near) Optimal Choices for the Design of Block Ciphers Introduction

Block and Stream Ciphers

Two main ways to build symmetric encryption :

Stream Ciphers :

key PRNG

pi ci

Block ciphers :

Ep

key

c

Ekey is a permutation of fixed size (n bits)
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Distinguishers

⇒ Behavior of the block cipher that a random function does not have.

Random Block cipher

f (x)⊕ f (x ⊕ 0x13) = 0x37 f (x)⊕ f (x ⊕ 0x13) = 0x37

f f

true with probability 2−(n−1) true with probability p

p � 2−(n−1) ⇒ we have a distinguisher
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Substitution-Permutation Networks

p

k0

S-box layer S S S S. . .

LLinear layer

k1
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c

Key-Schedule k
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Feistel Networks
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Making (near) Optimal Choices for the Design of Block Ciphers Introduction

Finding Optimal Components

Näıve algorithm : exhaustive search

Pros :

(Relatively) easy to implement

Optimality is easy to prove

Cons (non-exclusive) :

The search space can be very large
e.g. From 252 up to 275 in the first part of this presentation

Testing one candidate can be expensive
e.g. In the second part of this presentation, ”only” 244 candidates but
testing each of them is expensive
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Making (near) Optimal Choices for the Design of Block Ciphers Introduction

Tools for Optimization

(Mixed) Integer Linear Programming (and some other variants)

Constraint Programming

Metaheuristics (near optimality)

SAT (somewhat)

Dedicated algorithms

In this talk :

Part 1 : Dedicated algorithm (∼ Branch-and-Bound) + efficient
testing for the small cases

Part 2 : Metaheuristics + Constraint Programming
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Generalized Feistel Network

F key
0 F key

1 F key
k−2 F key

k−1

π

State composed of 2k blocks

k Feistels in parallel followed by a permutation π

Easier to design but slower diffusion
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Generalized Feistel Network

S S S S

π

State composed of 2k blocks

k Feistels in parallel followed by a permutation π

Easier to design but slower diffusion

In this work, the key and the definition of the F-functions don’t matter
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Diffusion Round

S S S S

6 5 6 5 6 5 6 5

S S S S

S S S S

S S S S

S S S S

S S S S

5 6 5 6 5 6 5 6

Depends only on π

Tied to impossible
differential and integral
attacks

For encryption

...and
decryption

DR(π) = 6 here
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Making (near) Optimal Choices for the Design of Block Ciphers Efficient Search for Optimal Diffusion Layers of GFNs

Previous Work

Suzaki and Minematsu at FSE’10

Lower bound on DR(π) depending only on k
Exhaustive search for 2k ≤ 16
Observed that all optimal permutations in these cases are even-odd
Generic construction with DR(π) = 2 log2 k (not optimal in general)

Cauchois et al. at FSE’19

Equivalence relation for even-odd permutations
Optimal even-odd permutations for 18 ≤ 2k ≤ 26
Good candidate for 2k = 32 (already known from FSE’10) and
2k = 64, 128

Open problem : is the permutation on 32 blocks optimal ?
Diffusion round of 10 but lower bound at 9 rounds.
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This Work

We solve this 10-year-old problem

New characterization for the diffusion round
⇒ Efficient algorithm to search for an optimal permutation

Results for 28 ≤ 2k ≤ 42

Security evaluation for all permutations found
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Even-odd Permutations

S S S S

π = (3, 0, 5, 6, 1, 2, 7, 4)

p = (1, 2, 0, 3) π(2i) = 2p(i) + 1

q = (0, 3, 1, 2) π(2i + 1) = 2q(i)
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Ideal Diffusion
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A Visualization of This Characterization

x 0 1 2 3 4 5 6 7

p5 3 4 5 6 7 0 1 2

p4q 4 5 6 7 0 1 2 3

p3qp 4 5 6 7 0 1 2 3

p2qp2 4 5 6 7 0 1 2 3

pqp3 4 5 6 7 0 1 2 3

qp4 4 5 6 7 0 1 2 3

p2qpq 5 6 7 0 1 2 3 4

pqp2q 5 6 7 0 1 2 3 4

qp3q 5 6 7 0 1 2 3 4

pqpqp 5 6 7 0 1 2 3 4

qp2qp 5 6 7 0 1 2 3 4

qpqp2 5 6 7 0 1 2 3 4

qpqpq 6 7 0 1 2 3 4 5

diff 4 4 4 4 4 4 4 4

J7
j

Cyclic Shift
p = (7, 0, 1, 2, 3, 4, 5, 6)
q = (0, 1, 2, 3, 4, 5, 6, 7)
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A Visualization of This Characterization

x 0 1 2 3 4 5 6 7

p5 3 4 5 6 7 0 1 2

p4q 4 5 6 7 0 1 2 3

p3qp 4 5 6 7 0 1 2 3

p2qp2 4 5 6 7 0 1 2 3

pqp3 4 5 6 7 0 1 2 3

qp4 4 5 6 7 0 1 2 3

p2qpq 5 6 7 0 1 2 3 4

pqp2q 5 6 7 0 1 2 3 4

qp3q 5 6 7 0 1 2 3 4

pqpqp 5 6 7 0 1 2 3 4

qp2qp 5 6 7 0 1 2 3 4

qpqp2 5 6 7 0 1 2 3 4

qpqpq 6 7 0 1 2 3 4 5

diff 4 4 4 4 4 4 4 4

J7
1
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J7
j

Optimal Permutation
p = (6, 3, 7, 1, 0, 2, 4, 5)
q = (3, 5, 1, 6, 4, 0, 2, 7)
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Making (near) Optimal Choices for the Design of Block Ciphers Efficient Search for Optimal Diffusion Layers of GFNs

Searching for an optimal permutation

(k!)2 even-odd permutations, reduced to Nk .k! with an equivalence
relation.
Nk := number of partitions of the integer k .
⇒ For 2k = 32, ∼ 252 permutations instead of (16!)2 ' 288.

Main idea : partially compute some Jrj + Branch-and-Bound

J8
j

J8
p(j)
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Making (near) Optimal Choices for the Design of Block Ciphers Efficient Search for Optimal Diffusion Layers of GFNs

Searching for Optimal Permutations : Observations 1

Can be efficiently implemented with table lookups
⇒ Very efficient exhaustive search for 2k ≤ 26 (but already known)

Focus on 28 ≤ 2k ≤ 42, lower bound for full diffusion at 9 rounds

Main idea : fix p with a given cycle structure and search q

Need to consider J8
j , but computing J8

j requires to known (most of) q

But !

Computing Jij requires to compute Ji ′j for i ′ < i

Some computations for Jij and Jij′ , j 6= j ′, can be the same
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Making (near) Optimal Choices for the Design of Block Ciphers Efficient Search for Optimal Diffusion Layers of GFNs

Searching for Optimal Permutations : Observations 2

Knowing p, computing J6
j requires to make 7 guesses on q

Computing J6
p(j) requires (at most) only 3 additional guesses on q

J6
j can be written as J6

j = X6
j ∪ Y6

j with X6
j ∩ Y6

j = ∅
such that

J8
j = p2(X6

j ∪ Y6
j ) ∪ (pq)(X6

j ) ∪ (qp)(X6
j ∪ Y6

j )
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Making (near) Optimal Choices for the Design of Block Ciphers Efficient Search for Optimal Diffusion Layers of GFNs

Make the 7 seven guesses on q to compute J6
j = X6

j ∪ Y6
j so that

J8
j = p2(X6

j ∪ Y6
j ) ∪ (pq)(X6

j ) ∪ (qp)(X6
j ∪ Y6

j )

Kj

known

=

known

∪ (pq)(X̃6
j )

known

∪ q(Ỹ6
j )

X̃6
j ⊂ X6

j s.t. ∀x ∈ X̃6
j q(x) is unknown

Ỹ6
j ⊂ p(X6

j ∪ Y6
j ), s.t. ∀x ∈ Ỹ6

j q(x) is unknown
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Making (near) Optimal Choices for the Design of Block Ciphers Efficient Search for Optimal Diffusion Layers of GFNs

Make the 7 guesses on q to compute J6
j , thus

J8
j = Kj ∪ q(Ỹ6

j ) ∪ (pq)(X̃6
j )

Full diffusion for j means that we have the constraint

Cj :
∣∣∣Kj ∪ q(Ỹ6

j ) ∪ (pq)(X̃6
j )
∣∣∣ ≥ k

Make 3 additional guesses on q, update and check1 Cj , and then we get

Cj ′ :
∣∣∣Kj ′ ∪ q(Ỹ6

j ′) ∪ (pq)(X̃6
j ′)
∣∣∣ ≥ k , j ′ = p(j)

Keep going until q is fully defined (or constraints can never be all satisfied)

1Use voodoo magic to check if a constraint Cj can be satisfied, see paper
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j ) ∪ (pq)(X̃6
j )

Full diffusion for j means that we have the constraint

Cj :
∣∣∣Kj ∪ q(Ỹ6
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Making (near) Optimal Choices for the Design of Block Ciphers Efficient Search for Optimal Diffusion Layers of GFNs

Results and Summary

New characterization for the diffusion round in a GFN

Very efficient search algorithm, highly parallelizable (< 1h for each
case with 72 threads)

For 2k = 28, 30, 32 and 36, the optimal number of rounds for full
diffusion is 9.

For 2k = 34, the optimal number of rounds for full diffusion is 10.

For 2k = 38, 40 and 42, the optimal number of rounds for full
diffusion is at least 10 and at most 11.
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Making (near) Optimal Choices for the Design of Block Ciphers
Variants of the AES Key-Schedule for Better Truncated
Differential Bounds

1 Introduction

2 Efficient Search for Optimal Diffusion Layers of GFNs

3 Variants of the AES Key-Schedule for Better Truncated Differential Bounds

4 Perspectives
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Making (near) Optimal Choices for the Design of Block Ciphers
Variants of the AES Key-Schedule for Better Truncated
Differential Bounds

Security model

Attacker

Ekey

p Encrypt(p, key)

Standard model

Can only ask the encryption of
some plaintexts p.

Attacker

Ekey

f , p Encrypt(p, f (key))

Related-key model

Can ask the encryption of some
plaintexts p with a modified key.
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Making (near) Optimal Choices for the Design of Block Ciphers
Variants of the AES Key-Schedule for Better Truncated
Differential Bounds

(Related-key) Differentials attacks

Given an n-bit block cipher E , can we find a tuple (∆in,∆out ,∆k) ∈ F3n
2

such that for any message p,

E (p ⊕∆in, k ⊕∆k) = E (p, k)⊕∆out

holds independently from the value of the key with high probability ?
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Making (near) Optimal Choices for the Design of Block Ciphers
Variants of the AES Key-Schedule for Better Truncated
Differential Bounds

AES

SB

x0

L

y0 z0

k0

KS

SB

x1

L

y1 z1

k1

. . .

x2

128-bit block cipher, {128, 192, 256}-bit key

Round function :

- SubBytes (SB,non-linear)
- L = MixColumns ◦ ShiftRows (linear)
- AddRoundKey (⊕)

Round keys are derived from the master key using a key schedule KS
(non-linear)
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Making (near) Optimal Choices for the Design of Block Ciphers
Variants of the AES Key-Schedule for Better Truncated
Differential Bounds

Truncated differential characteristic

SB

x0

L

y0 z0

k0

KS

SB

x1

L

y1 z1

k1

. . .

x2

Only consider whether a difference is zero or not (active byte).
⇒ Easier to search than regular differentials
⇒ Can still give some security results for differential attacks

May be impossible to instantiate with regular differentials
⇒ We can consider some additional information to avoid this !

(Induced equations !)
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Making (near) Optimal Choices for the Design of Block Ciphers
Variants of the AES Key-Schedule for Better Truncated
Differential Bounds

Equations induced by MixColumns (MDS property)

MC

y0

y1

y2

y3

z0

z1

z2

z3

k0

k1

k2

k3

Let z = MC(y) with y , z ∈
(
F8

2

)4
. Then there is a linear equation between

any 5 bytes in y and z .

5.y0 ⊕ 7.y1 ⊕ y3 = 2.z0 ⊕ z2

But y0, y1 and y3 are zero differences, and (z0, z2) is cancelled by (k0, k2).
Hence 2.k0 ⊕ k2 = 0.
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Making (near) Optimal Choices for the Design of Block Ciphers
Variants of the AES Key-Schedule for Better Truncated
Differential Bounds

Active S-Boxes

SB

x0

L

y0 z0

k0

KS

SB

x1

L

y1 z1

k1

. . .

x2

Number of active S-boxes ⇒ maximal probability of the (truncated)
differential characteristic.

The higher the minimal number of active S-boxes is, the better.

How to choose the key schedule to maximize the minimal number of
active S-Boxes ?

⇒ What if we use a byte-permutation instead of the original KS ?
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Making (near) Optimal Choices for the Design of Block Ciphers
Variants of the AES Key-Schedule for Better Truncated
Differential Bounds

Changing the key schedule for a permutation

Using a permutation as key schedule :

Efficient in both hardware and software

Easier to analyze

Better security with simpler design ?

Khoo et al.2 gave an example of a permutation for AES-128 reaching
22 S-boxes in 7 rounds at FSE’18

2Khoo, K., Lee, E., Peyrin, T., Sim, S.M.: Human-readable Proof of the Related-Key
Security of AES-128, FSE’18
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Making (near) Optimal Choices for the Design of Block Ciphers
Variants of the AES Key-Schedule for Better Truncated
Differential Bounds

About Khoo et al. ’s permutation

Built according to some results in their paper and two criteria :

Only having one cycle (of length 16)
Minimizing the ”overlap” between the Key Schedule and the round
function

Reach 14, 18 and 21 active S-boxes over respectively 5, 6 and 7
rounds

But actually...

Reach 22 S-boxes over 7 rounds when considering equations

Easy to generate randomly (∼ 100 trials)

Goal : Find a permutation to use instead of the key schedule reaching 22
S-Boxes in 6 rounds (or less ?)

Baptiste Lambin Making (near) Optimal Choices for the Design of Block Ciphers 36 / 49



Making (near) Optimal Choices for the Design of Block Ciphers
Variants of the AES Key-Schedule for Better Truncated
Differential Bounds

About Khoo et al. ’s permutation

Built according to some results in their paper and two criteria :

Only having one cycle (of length 16)
Minimizing the ”overlap” between the Key Schedule and the round
function

Reach 14, 18 and 21 active S-boxes over respectively 5, 6 and 7
rounds

But actually...

Reach 22 S-boxes over 7 rounds when considering equations

Easy to generate randomly (∼ 100 trials)

Goal : Find a permutation to use instead of the key schedule reaching 22
S-Boxes in 6 rounds (or less ?)

Baptiste Lambin Making (near) Optimal Choices for the Design of Block Ciphers 36 / 49



Making (near) Optimal Choices for the Design of Block Ciphers
Variants of the AES Key-Schedule for Better Truncated
Differential Bounds

About Khoo et al. ’s permutation

Built according to some results in their paper and two criteria :

Only having one cycle (of length 16)
Minimizing the ”overlap” between the Key Schedule and the round
function

Reach 14, 18 and 21 active S-boxes over respectively 5, 6 and 7
rounds

But actually...

Reach 22 S-boxes over 7 rounds when considering equations

Easy to generate randomly (∼ 100 trials)

Goal : Find a permutation to use instead of the key schedule reaching 22
S-Boxes in 6 rounds (or less ?)

Baptiste Lambin Making (near) Optimal Choices for the Design of Block Ciphers 36 / 49



Making (near) Optimal Choices for the Design of Block Ciphers
Variants of the AES Key-Schedule for Better Truncated
Differential Bounds

About Khoo et al. ’s permutation

Built according to some results in their paper and two criteria :

Only having one cycle (of length 16)
Minimizing the ”overlap” between the Key Schedule and the round
function

Reach 14, 18 and 21 active S-boxes over respectively 5, 6 and 7
rounds

But actually...

Reach 22 S-boxes over 7 rounds when considering equations

Easy to generate randomly (∼ 100 trials)

Goal : Find a permutation to use instead of the key schedule reaching 22
S-Boxes in 6 rounds (or less ?)

Baptiste Lambin Making (near) Optimal Choices for the Design of Block Ciphers 36 / 49



Making (near) Optimal Choices for the Design of Block Ciphers
Variants of the AES Key-Schedule for Better Truncated
Differential Bounds

Generic Bounds on 2, 3 and 4 rounds

Formally proven [Our paper]

The optimal bounds for 2, 3 and 4 rounds are respectively 1, 5 and 10
active S-boxes, even when considering induced equations

SB SR

MC

x0 y0

P

SB SR

MC

x1 y1

1 P

1 SB SR

MC

x2

4

y2

1

3
4
5

x3

2 rounds

3 rounds
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Generic Bounds on 5, 6 and 7 rounds

Formally proven [Our paper]

The optimal bounds for 5, 6 and 7 rounds are respectively 14, 18 and 21
active S-boxes, without considering equations

5 rounds

6 rounds
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More precise bound over 5 rounds

Computer aided [Our paper]

There is no permutation that, when used as key schedule, can reach a
minimal number of active S-boxes of 18 or higher over 5 rounds.
There is at least one permutation that can reach 16 S-boxes over 5 rounds.

Main idea to search for s S-boxes:

Build a list of cycles which don’t lead to any characteristic
of weight < s.

Combine all of them to see if we can find a permutation
reaching s S-boxes.
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Iteratively building cycles

(x0 x1 x2 ? ? . . . )

(x0 x1 x2)

Keep if
no characteristic

of weight < s

Closed cycle

(x0 x1 x2 x3 ? ? . . . )

Guess x3

∃ characteristic
of weight < s

No new characteristic
of weight < s

(x0 x1 x2 x3)

Keep if
no characteristic

of weight < s

Closed cycle

(x0 x1 x2 x3 x4 ? . . . )

Guess x4
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Over 6 rounds

More than 244 possible permutations + cost of finding the minimal
number of active S-boxes
⇒ Too expensive to try them all !

We have an optimization problem :

Maximize the minimal number of active S-boxes over 6 rounds

Get a high enough minimal number of active S-boxes over 6 rounds

Metaheuristic Constraint Programming+
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We used a meta-heuristic called simulated annealing3. Main idea :

Generate a sequence x0, x1, . . . where xi and xi+1 are ”close”

If f (xi ) > f (xi−1), accept xi and search for the next one

Otherwise only accept xi with a certain (decreasing) probability

Choose another xi if it was rejected

Stop when f (xi ) reach a certain threshold

3Nikolić, How to use metaheuristics for design of symmetric-key primitives -
ASIACRYPT’17
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Constraint Programming

Sudoku’s rules :

All values in a row are different

All values in a column are different

All values in a square are different

You have knowledge of a few values to start with

Claimed to be the ”World’s Hardest Sudoku”
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Constraint Programming

allDifferent(x[i][0],...,x[i][8]) for i in {0,...,8}
allDifferent(x[0][i],...,x[8][i]) for i in {0,...,8}
allDifferent(s[i][0],...,s[i][8]) for i in {0,...,8}
Initial values : x[0][0] = 8, x[1][2] = 3, etc.

Constraint Solver

Solution

(Previous sudoku solved in less than 0.1 seconds)
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Efficient evaluation of f

Efficiency of the meta-heuristic
= Efficiency of evaluating the minimal number of active S-boxes !

Candidate permutation P
s = Target number of S-boxes

Quick search
a = weight of a valid characteristic

Return a
P cannot reach

our target

a < s

Full search with
Constraint Programming model

We manage equations here!

a ≥ s

Return the true minimal weight
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Summary of the search over 6 rounds

We used a meta-heuristic for an efficient search.

We proposed a new CP model which directly manages induced
equations.

We found a permutation reaching 20 active S-boxes over 6 rounds,
and no characteristic with a probability better than 2−128 exists !
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Conclusion

Number of rounds 2 3 4 5 6 7

Original key schedule 1 3 9 11 13† 15†

Khoo et al.’s permutation 1 5 10 14 18† 22†

Our permutation 1 5 10 15 20† 23†

We cannot reach 18 S-boxes over 5 rounds, and 17 is still an open
question.

Modifying the ShiftRows operation, we can reach 21† S-boxes over 6
rounds.

22 S-boxes is an open question

† no characteristic with probability > 2−128
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Long term goal : The ”Ultimate” GFN
⇒ Probably not unique, need to consider trade-offs (harder than
focusing on optimality)
⇒ Would lead to a nice generic tool for evaluating the security of any
GFN (to some extend)

”Provable” key-schedules ⇒ Adding concrete and well defined
security arguments for the key-schedule
⇒ In the end, I would like to show that using a very simple
key-schedule is enough, i.e. convoluted key-schedules are not better
than a carefully crafted simple one

Automatic tools for cryptanalysis
⇒ Improving the current ones
⇒ New tools for new attacks
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