Making (near) Optimal Choices for the Design of Block Ciphers

Baptiste Lambin

Horst Görtz Institute for IT Security, Ruhr University Bochum

27/01/2020

- 2 Efficient Search for Optimal Diffusion Layers of GFNs
- Variants of the AES Key-Schedule for Better Truncated Differential Bounds

2) Efficient Search for Optimal Diffusion Layers of GFNs

3 Variants of the AES Key-Schedule for Better Truncated Differential Bounds

Cryptography and Encryption

Symmetric Encryption

Symmetric Encryption

Block and Stream Ciphers

Two main ways to build symmetric encryption :

• Stream Ciphers :

• Block ciphers :

 E_{key} is a permutation of fixed size (*n* bits)

Distinguishers

\Rightarrow Behavior of the block cipher that a random function does not have.

 $p \gg 2^{-(n-1)} \Rightarrow$ we have a distinguisher

Substitution-Permutation Networks

Feistel Networks

Finding Optimal Components

Naïve algorithm : exhaustive search

Finding Optimal Components

Naïve algorithm : exhaustive search Pros :

- (Relatively) easy to implement
- Optimality is easy to prove

Finding Optimal Components

Naïve algorithm : exhaustive search Pros :

- (Relatively) easy to implement
- Optimality is easy to prove

Cons (non-exclusive) :

- The search space can be very large *e.g.* From 2⁵² up to 2⁷⁵ in the first part of this presentation
- Testing one candidate can be expensive *e.g.* In the second part of this presentation, "only" 2⁴⁴ candidates but testing each of them is expensive

Tools for Optimization

- (Mixed) Integer Linear Programming (and some other variants)
- Constraint Programming
- Metaheuristics (near optimality)
- SAT (somewhat)
- Dedicated algorithms

Tools for Optimization

- (Mixed) Integer Linear Programming (and some other variants)
- Constraint Programming
- Metaheuristics (near optimality)
- SAT (somewhat)
- Dedicated algorithms

In this talk :

- $\bullet\,$ Part 1 : Dedicated algorithm ($\sim\,$ Branch-and-Bound) $+\,$ efficient testing for the small cases
- Part 2 : Metaheuristics + Constraint Programming

12 / 49

2 Efficient Search for Optimal Diffusion Layers of GFNs

3 Variants of the AES Key-Schedule for Better Truncated Differential Bounds

Generalized Feistel Network

- State composed of 2k blocks
- k Feistels in parallel followed by a permutation π
- Easier to design but slower diffusion

Generalized Feistel Network

- State composed of 2k blocks
- k Feistels in parallel followed by a permutation π
- Easier to design but slower diffusion
- In this work, the key and the definition of the F-functions don't matter

15 / 49

15 / 49

15 / 49

- \bullet Depends only on π
- Tied to impossible differential and integral attacks
- For encryption...

Efficient Search for Optimal Diffusion Layers of GFNs

Diffusion Round

- \bullet Depends only on π
- Tied to impossible differential and integral attacks
- For encryption and decryption

15 / 49

- $\bullet\,$ Depends only on $\pi\,$
- Tied to impossible differential and integral attacks
- For encryption and decryption
- $DR(\pi) = 6$ here

Previous Work

• Suzaki and Minematsu at FSE'10

- Lower bound on $DR(\pi)$ depending only on k
- Exhaustive search for $2k \leq 16$
- Observed that all optimal permutations in these cases are *even-odd*
- Generic construction with $DR(\pi) = 2 \log_2 k$ (not optimal in general)

Previous Work

• Suzaki and Minematsu at FSE'10

- Lower bound on $DR(\pi)$ depending only on k
- Exhaustive search for $2k \le 16$
- Observed that all optimal permutations in these cases are *even-odd*
- Generic construction with $DR(\pi) = 2 \log_2 k$ (not optimal in general)
- Cauchois *et al.* at FSE'19
 - Equivalence relation for *even-odd* permutations
 - Optimal even-odd permutations for $18 \le 2k \le 26$
 - Good candidate for 2k = 32 (already known from FSE'10) and 2k = 64,128

Previous Work

• Suzaki and Minematsu at FSE'10

- Lower bound on $DR(\pi)$ depending only on k
- Exhaustive search for $2k \le 16$
- Observed that all optimal permutations in these cases are *even-odd*
- Generic construction with $DR(\pi) = 2 \log_2 k$ (not optimal in general)
- Cauchois *et al.* at FSE'19
 - Equivalence relation for *even-odd* permutations
 - Optimal even-odd permutations for $18 \le 2k \le 26$
 - Good candidate for 2k = 32 (already known from FSE'10) and 2k = 64,128

Open problem : is the permutation on 32 blocks optimal ? Diffusion round of 10 but lower bound at 9 rounds.

This Work

- We solve this 10-year-old problem
- New characterization for the diffusion round
 ⇒ Efficient algorithm to search for an optimal permutation
- Results for $28 \le 2k \le 42$
- Security evaluation for all permutations found

Even-odd Permutations

 $\pi = (3, 0, 5, 6, 1, 2, 7, 4)$

Even-odd Permutations

 $\pi = (3, 0, 5, 6, 1, 2, 7, 4)$

p = (1, 2, 0, 3) $\pi(2i) = 2p(i) + 1$

Even-odd Permutations

 $\pi = (3, 0, 5, 6, 1, 2, 7, 4)$

p = (1, 2, 0, 3) $\pi(2i) = 2p(i) + 1$

q = (0, 3, 1, 2) $\pi(2i + 1) = 2q(i)$

Ideal Diffusion

Baptiste Lambin

Baptiste Lambin

Searching for an optimal permutation

• $(k!)^2$ even-odd permutations, reduced to $\mathcal{N}_k \cdot k!$ with an equivalence relation.

 $\mathcal{N}_k :=$ number of partitions of the integer k.

 \Rightarrow For 2k = 32, $\sim 2^{52}$ permutations instead of $(16!)^2 \simeq 2^{88}$.

• Main idea : partially compute some \mathbb{J}_{i}^{r} + Branch-and-Bound

- Can be efficiently implemented with table lookups
 ⇒ Very efficient exhaustive search for 2k ≤ 26 (but already known)
- Focus on $28 \le 2k \le 42$, lower bound for full diffusion at 9 rounds

- Can be efficiently implemented with table lookups
 ⇒ Very efficient exhaustive search for 2k ≤ 26 (but already known)
- Focus on $28 \le 2k \le 42$, lower bound for full diffusion at 9 rounds
- Main idea : fix p with a given cycle structure and search q
- Need to consider \mathbb{J}_i^8 , but computing \mathbb{J}_i^8 requires to known (most of) q

- Can be efficiently implemented with table lookups
 ⇒ Very efficient exhaustive search for 2k ≤ 26 (but already known)
- Focus on $28 \le 2k \le 42$, lower bound for full diffusion at 9 rounds
- Main idea : fix p with a given cycle structure and search q
- Need to consider \mathbb{J}_j^8 , but computing \mathbb{J}_j^8 requires to known (most of) q
- But !
 - Computing \mathbb{J}_{j}^{i} requires to compute $\mathbb{J}_{j}^{i'}$ for i' < i
 - Some computations for \mathbb{J}^i_j and $\mathbb{J}^i_{j'}$, $j \neq j'$, can be the same

- Knowing p, computing \mathbb{J}_j^6 requires to make 7 guesses on q
- Computing $\mathbb{J}_{p(j)}^{6}$ requires (at most) only 3 additional guesses on q

- Knowing p, computing \mathbb{J}_j^6 requires to make 7 guesses on q
- Computing $\mathbb{J}_{p(j)}^{6}$ requires (at most) only 3 additional guesses on q
- \mathbb{J}_j^6 can be written as $\mathbb{J}_j^6 = \mathbb{X}_j^6 \cup \mathbb{Y}_j^6$ with $\mathbb{X}_j^6 \cap \mathbb{Y}_j^6 = \emptyset$ such that

$$\mathbb{J}_j^8 = p^2(\mathbb{X}_j^6 \cup \mathbb{Y}_j^6) \cup (pq)(\mathbb{X}_j^6) \cup (qp)(\mathbb{X}_j^6 \cup \mathbb{Y}_j^6)$$

$$\mathbb{J}_j^8 \hspace{0.1 cm} = \hspace{0.1 cm} p^2(\mathbb{X}_j^6 \cup \mathbb{Y}_j^6) \hspace{0.1 cm} \cup \hspace{0.1 cm} (pq)(\mathbb{X}_j^6) \hspace{0.1 cm} \cup \hspace{0.1 cm} (qp)(\mathbb{X}_j^6 \cup \mathbb{Y}_j^6)$$

$$\mathbb{J}_{j}^{8} = p^{2}(\mathbb{X}_{j}^{6} \cup \mathbb{Y}_{j}^{6}) \cup (pq)(\mathbb{X}_{j}^{6}) \cup (qp)(\mathbb{X}_{j}^{6} \cup \mathbb{Y}_{j}^{6})$$

$$= \mathbb{K}_{j}$$

$$\mathbb{J}_{j}^{8} = p^{2}(\mathbb{X}_{j}^{6} \cup \mathbb{Y}_{j}^{6}) \cup (pq)(\mathbb{X}_{j}^{6}) \cup (qp)(\mathbb{X}_{j}^{6} \cup \mathbb{Y}_{j}^{6})$$

$$= \mathbb{K}_{j}$$

• $\widetilde{\mathbb{X}}_{j}^{6} \subset \mathbb{X}_{j}^{6}$ s.t. $\forall x \in \widetilde{\mathbb{X}}_{j}^{6}$ q(x) is unknown

•
$$\widetilde{\mathbb{X}}_{j}^{6} \subset \mathbb{X}_{j}^{6}$$
 s.t. $\forall x \in \widetilde{\mathbb{X}}_{j}^{6}$ $q(x)$ is unknown
• $\widetilde{\mathbb{Y}}_{j}^{6} \subset p(\mathbb{X}_{j}^{6} \cup \mathbb{Y}_{j}^{6})$, s.t. $\forall x \in \widetilde{\mathbb{Y}}_{j}^{6}$ $q(x)$ is unknown

$$\mathbb{J}_{j}^{8}=\mathbb{K}_{j}\cup q(\widetilde{\mathbb{Y}}_{j}^{6})\cup (pq)(\widetilde{\mathbb{X}}_{j}^{6})$$

$$\mathbb{J}_{j}^{8}=\mathbb{K}_{j}\cup q(\widetilde{\mathbb{Y}}_{j}^{6})\cup (pq)(\widetilde{\mathbb{X}}_{j}^{6})$$

Full diffusion for j means that we have the constraint

$$C_j: \left|\mathbb{K}_j \cup q(\widetilde{\mathbb{Y}}_j^6) \cup (pq)(\widetilde{\mathbb{X}}_j^6)\right| \geq k$$

$$\mathbb{J}_{j}^{8}=\mathbb{K}_{j}\cup q(\widetilde{\mathbb{Y}}_{j}^{6})\cup (pq)(\widetilde{\mathbb{X}}_{j}^{6})$$

Full diffusion for j means that we have the constraint

$$C_j: \left|\mathbb{K}_j \cup q(\widetilde{\mathbb{Y}}_j^6) \cup (pq)(\widetilde{\mathbb{X}}_j^6)\right| \geq k$$

Make 3 additional guesses on q, update and check¹ C_j , and then we get

$$C_{j'}: \left|\mathbb{K}_{j'} \cup q(\widetilde{\mathbb{Y}}_{j'}^6) \cup (pq)(\widetilde{\mathbb{X}}_{j'}^6)\right| \geq k, \quad j' = p(j)$$

¹Use voodoo magic to check if a constraint C_j can be satisfied, see paper

Baptiste Lambin

Making (near) Optimal Choices for the Design of Block Ciphers

$$\mathbb{J}_{j}^{8}=\mathbb{K}_{j}\cup q(\widetilde{\mathbb{Y}}_{j}^{6})\cup (pq)(\widetilde{\mathbb{X}}_{j}^{6})$$

Full diffusion for j means that we have the constraint

$$C_j: \left|\mathbb{K}_j \cup q(\widetilde{\mathbb{Y}}_j^6) \cup (pq)(\widetilde{\mathbb{X}}_j^6)\right| \geq k$$

Make 3 additional guesses on q, update and check¹ C_j , and then we get

$$C_{j'}: \left|\mathbb{K}_{j'} \cup q(\widetilde{\mathbb{Y}}_{j'}^6) \cup (pq)(\widetilde{\mathbb{X}}_{j'}^6)\right| \geq k, \quad j' = p(j)$$

Keep going until q is fully defined (or constraints can never be all satisfied)

¹Use voodoo magic to check if a constraint C_j can be satisfied, see paper

- New characterization for the diffusion round in a GFN
- Very efficient search algorithm, highly parallelizable (< 1*h* for each case with 72 threads)

- New characterization for the diffusion round in a GFN
- Very efficient search algorithm, highly parallelizable (< 1*h* for each case with 72 threads)
- For 2k = 28, 30, 32 and 36, the optimal number of rounds for full diffusion is 9.

- New characterization for the diffusion round in a GFN
- Very efficient search algorithm, highly parallelizable (< 1*h* for each case with 72 threads)
- For 2k = 28, 30, 32 and 36, the optimal number of rounds for full diffusion is 9.
- For 2k = 34, the optimal number of rounds for full diffusion is 10.

- New characterization for the diffusion round in a GFN
- Very efficient search algorithm, highly parallelizable (< 1*h* for each case with 72 threads)
- For 2k = 28, 30, 32 and 36, the optimal number of rounds for full diffusion is 9.
- For 2k = 34, the optimal number of rounds for full diffusion is 10.
- For 2k = 38,40 and 42, the optimal number of rounds for full diffusion is at least 10 and at most 11.

2) Efficient Search for Optimal Diffusion Layers of GFNs

3 Variants of the AES Key-Schedule for Better Truncated Differential Bounds

4 Perspectives

Differential Bounds

Security model

Standard model

Can only ask the encryption of some plaintexts *p*.

Related-key model

Can ask the encryption of some plaintexts *p* with a modified key.

(Related-key) Differentials attacks

Given an *n*-bit block cipher *E*, can we find a tuple $(\Delta_{in}, \Delta_{out}, \Delta_k) \in \mathbb{F}_2^{3n}$ such that for any message *p*,

$$E(p \oplus \Delta_{in}, k \oplus \Delta_k) = E(p, k) \oplus \Delta_{out}$$

holds independently from the value of the key with high probability ?

- 128-bit block cipher, $\{128, 192, 256\}$ -bit key
- Round function :
 - SubBytes (SB,non-linear)
 - L = MixColumns \circ ShiftRows (linear)
 - AddRoundKey (\oplus)
- Round keys are derived from the master key using a key schedule KS (non-linear)

Truncated differential characteristic

Only consider whether a difference is zero or not (active byte). \Rightarrow Easier to search than regular differentials \Rightarrow Can still give some security results for differential attacks

Truncated differential characteristic

Only consider whether a difference is zero or not (active byte). \Rightarrow Easier to search than regular differentials

 \Rightarrow Can still give some security results for differential attacks

May be impossible to instantiate with regular differentials \Rightarrow We can consider some additional information to avoid this ! (Induced equations !)

Equations induced by MixColumns (MDS property)

Let z = MC(y) with $y, z \in (\mathbb{F}_2^8)^4$. Then there is a linear equation between any 5 bytes in y and z.

$$5.y_0 \oplus 7.y_1 \oplus y_3 = 2.z_0 \oplus z_2$$

But y_0, y_1 and y_3 are zero differences, and (z_0, z_2) is cancelled by (k_0, k_2) . Hence $2.k_0 \oplus k_2 = 0$.

Number of active S-boxes \Rightarrow maximal probability of the (truncated) differential characteristic.

Number of active S-boxes \Rightarrow maximal probability of the (truncated) differential characteristic.

The higher the minimal number of active S-boxes is, the better.

Number of active S-boxes \Rightarrow maximal probability of the (truncated) differential characteristic.

The higher the minimal number of active S-boxes is, the better. How to choose the key schedule to maximize the minimal number of active S-Boxes ?

Number of active S-boxes \Rightarrow maximal probability of the (truncated) differential characteristic.

The higher the minimal number of active S-boxes is, the better.

How to choose the key schedule to maximize the minimal number of active S-Boxes $? \end{tabular}$

 \Rightarrow What if we use a byte-permutation instead of the original KS ?

Changing the key schedule for a permutation

Using a permutation as key schedule :

- Efficient in both hardware and software
- Easier to analyze
- Better security with simpler design ?
- Khoo *et al.*² gave an example of a permutation for AES-128 reaching 22 S-boxes in 7 rounds at FSE'18

 $^{^2 {\}rm Khoo},$ K., Lee, E., Peyrin, T., Sim, S.M.: Human-readable Proof of the Related-Key Security of AES-128, FSE'18

- Built according to some results in their paper and two criteria :
 - Only having one cycle (of length 16)
 - Minimizing the "overlap" between the Key Schedule and the round function

- Built according to some results in their paper and two criteria :
 - Only having one cycle (of length 16)
 - Minimizing the "overlap" between the Key Schedule and the round function
- Reach 14, 18 and 21 active S-boxes over respectively 5, 6 and 7 rounds

- Built according to some results in their paper and two criteria :
 - Only having one cycle (of length 16)
 - Minimizing the "overlap" between the Key Schedule and the round function
- Reach 14, 18 and 21 active S-boxes over respectively 5, 6 and 7 rounds

But actually...

- Reach 22 S-boxes over 7 rounds when considering equations
- Easy to generate randomly (\sim 100 trials)

- Built according to some results in their paper and two criteria :
 - Only having one cycle (of length 16)
 - Minimizing the "overlap" between the Key Schedule and the round function
- Reach 14, 18 and 21 active S-boxes over respectively 5, 6 and 7 rounds

But actually...

- Reach 22 S-boxes over 7 rounds when considering equations
- Easy to generate randomly (\sim 100 trials)

Goal : Find a permutation to use instead of the key schedule reaching 22 S-Boxes in 6 rounds (or less ?)

Generic Bounds on 2, 3 and 4 rounds

Formally proven [Our paper]

The optimal bounds for 2, 3 and 4 rounds are respectively 1, 5 and 10 active S-boxes, even when considering induced equations

Generic Bounds on 5, 6 and 7 rounds

Formally proven [Our paper]

The optimal bounds for 5, 6 and 7 rounds are respectively 14, 18 and 21 active S-boxes, *without considering equations*

More precise bound over 5 rounds

Computer aided [Our paper]

There is no permutation that, when used as key schedule, can reach a minimal number of active S-boxes of 18 or higher over 5 rounds. There is at least one permutation that can reach 16 S-boxes over 5 rounds.

Main idea to search for *s* S-boxes:

- Build a list of cycles which don't lead to any characteristic of weight < *s*.
- Combine all of them to see if we can find a permutation reaching *s* S-boxes.

Iteratively building cycles

 $(x_0 x_1 x_2 ? ? \dots)$

Iteratively building cycles

40 / 49

Iteratively building cycles

40 / 49

Iteratively building cycles

Iteratively building cycles

Iteratively building cycles

Over 6 rounds

More than 2^{44} possible permutations + cost of finding the minimal number of active S-boxes

 \Rightarrow Too expensive to try them all !

We have an optimization problem :

Maximize the minimal number of active S-boxes over 6 rounds

Over 6 rounds

More than 2^{44} possible permutations $+\mbox{ cost}$ of finding the minimal number of active S-boxes

 \Rightarrow Too expensive to try them all !

We have an optimization problem :

Get a high enough minimal number of active S-boxes over 6 rounds

Over 6 rounds

More than 2^{44} possible permutations $+\mbox{ cost}$ of finding the minimal number of active S-boxes

 \Rightarrow Too expensive to try them all !

We have an optimization problem :

Get a high enough minimal number of active S-boxes over 6 rounds Metaheuristic + Constraint Programming We used a meta-heuristic called simulated annealing³. Main idea :

- Generate a sequence x_0, x_1, \ldots where x_i and x_{i+1} are "close"
- If $f(x_i) > f(x_{i-1})$, accept x_i and search for the next one
- Otherwise only accept x_i with a certain (decreasing) probability
- Choose another x_i if it was rejected
- Stop when $f(x_i)$ reach a certain threshold

³Nikolić, *How to use metaheuristics for design of symmetric-key primitives* - ASIACRYPT'17

Constraint Programming

Sudoku's rules :

- All values in a row are different
- All values in a column are different
- All values in a square are different
- You have knowledge of a few values to start with

Claimed to be the "World's Hardest Sudoku"

Constraint Programming

(Previous sudoku solved in less than 0.1 seconds)

Efficient evaluation of f

Efficiency of the meta-heuristic

= Efficiency of evaluating the minimal number of active S-boxes !

Summary of the search over 6 rounds

- We used a meta-heuristic for an efficient search.
- We proposed a new CP model which directly manages induced equations.
- We found a permutation reaching 20 active S-boxes over 6 rounds, and no characteristic with a probability better than 2⁻¹²⁸ exists !

Conclusion

Number of rounds	2	3	4	5	6	7
Original key schedule	1	3	9	11	13^{\dagger}	15^{\dagger}
Khoo et al.'s permutation	1	5	10	14	18^{\dagger}	22^{\dagger}
Our permutation	1	5	10	15	20^{\dagger}	23^{\dagger}

- We cannot reach 18 S-boxes over 5 rounds, and 17 is still an open question.
- \bullet Modifying the ShiftRows operation, we can reach 21^{\dagger} S-boxes over 6 rounds.
- 22 S-boxes is an open question

 † no characteristic with probability $> 2^{-128}$

2) Efficient Search for Optimal Diffusion Layers of GFNs

3 Variants of the AES Key-Schedule for Better Truncated Differential Bounds

- Long term goal : The "Ultimate" GFN
 ⇒ Probably not unique, need to consider trade-offs (harder than
 focusing on optimality)
 ⇒ Would lead to a nice generic tool for evaluating the security of any
 GFN (to some extend)
- "Provable" key-schedules ⇒ Adding concrete and well defined security arguments for the key-schedule
 ⇒ In the end, I would like to show that using a very simple key-schedule is enough, *i.e.* convoluted key-schedules are not better than a carefully crafted simple one
- Automatic tools for cryptanalysis
 - \Rightarrow Improving the current ones
 - \Rightarrow New tools for new attacks