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Key exchange

Let’s talk about cryptographic key exchange.

The problem: two parties, “Alice” and “Bob”, want to establish a
shared secret over a public channel.

Solution: Diffie–Hellman key exchange (1976).

• Originally set in Gm(Fq), but works in any cyclic group.
• Current state of the art: elliptic curves.
• Elliptic-curve DH security depends on problems that are
classically hard but quantumly easy.

How can we replace Diffie–Hellman for a post-quantum world?
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Classical Diffie–Hellman



The group setting for Diffie–Hellman

Consider a finite cyclic group

G = ⟨P⟩ ∼= Z/NZ .

The most important operation is scalar multiplication:

[m]P := P+ P+ · · ·+ P (m copies of P) ,

for P ∈ G and m in Z, with [−m]P := [m](−P).

Inverting it is the Discrete Logarithm Problem (DLP) in G:

given P and Q = [x]P, compute x .
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Classic Diffie–Hellman key exchange

Phase 1 Alice samples a secret a ∈ Z/NZ;
Computes A := [a]P and publishes A

Bob samples a secret b ∈ Z/NZ;
computes B := [b]P and publishes B

Breaking keypairs (e.g. recovering a from A) is the DLP.

Phase 2 Alice computes S = [a]B.
Bob computes S = [b]A.

The protocol correctly computes a shared secret because

A = [a]P B = [b]P S = [ab]P

Recovering the secret S given only the public data P, A, B
is the Computational Diffie–Hellman Problem (CDHP).

3



Static and ephemeral DH

Ephemeral: Alice & Bob use keypairs unique to this session.
Ephemeral DH is essentially interactive.

Static: Alice and/or Bob use long-term keypairs, which may be
re-used across sessions. Static DH can be non-interactive.

Static DH security requires public key validation:
i.e. checking public keys are legitimate KeyPair() outputs.
So far, this just means checking the key is in G, which is easy.

Complex protocols may mix ephemeral & static.
Example: X3DH initializes conversations in Signal & WhatsApp
using four DH() calls, mixing ephemeral and longer-term keys.
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Conventional CDHP and DLP Hardness

Currently, our best algorithm for solving CDHP is to solve DLP.

Generic algorithms solve DLP instances in O(
√
#G):

— Shanks’ Baby-step giant-step, Pollard ρ, etc...

Pohlig–Hellman–Silver: when the structure of G is known,
solve DLP instances in O(

√
#(largest prime subgroup of G)).

Faster DLP algorithms exist for many concrete groups:

• G ⊂ F×
p : subexponential DLP. Number Field Sieve: Lp(1/3).

• G ⊂ F×
pn with p very small: quasipolynomial DLP.

Today’s hardest DLP instances come from elliptic curves.
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Elliptic curves

Elliptic curves are a convenient source of groups that can
replace multiplicative groups in asymmetric crypto.

Classic “short” Weierstrass model:

E/Fp : y2 = x3 + ax+ b with a,b ∈ Fp, 4a3 + 27b2 ̸= 0 .

The points on E are

E(Fp) =
{
(α, β) ∈ F2p : β2 = α3 + a · α+ b

}
∪ {OE}

where OE is the unique “point at infinity”.

E(Fp) is an algebraic group, with OE the identity element.
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Elliptic curve negation: ⊖R = S

• R

• S = ⊖R
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Elliptic curve addition: P⊕ Q =?

•P

•Q
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Elliptic curve addition: P⊕ Q⊕ R = 0

•P

•Q

• R
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Elliptic curve addition: P⊕ Q = ⊖R = S

•P

•Q

• R

• S
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Elliptic curve group operations

If P = Q, the chord through P and Q degenerates to a tangent.

The important thing is that elliptic curve group operations,
being geometric, have algebraic expressions.

=⇒ They can be computed as a series of Fp-operations, which
can in turn be reduced to a series of machine instructions.

In particular, negation: ⊖(x, y) = (x,−y) and ⊖OE = OE . Up to
“sign”, group elements are encoded by x-coordinates.
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The Elliptic Curve Discrete Logarithm Problem (ECDLP)

Amazing fact: for subgroups G of general1 elliptic curves, we
still do not know how to solve discrete logs significantly faster
than by using generic black-box group algorithms.

In particular: currently, for prime-order G ⊆ E(Fp), we can do
no better than O(

√
#G).

Apart from improvements in distributed computing, and a
constant-factor speedup of about

√
2, there has been

absolutely no progress on general ECDLP algorithms. Ever.

Current world record for prime-order ECDLP: in a 112-bit group,
which is a long way away from the 256-bit groups we use today!
1That is, for all but a very small and easily identifiable subset of curves.
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The quantum menace

Shor’s quantum algorithm solves DLPs in polynomial time.

Global effort: replacing group-based public-key cryptosystems
with post-quantum alternatives.

NIST has started a standardization process (“non-competition”)
for postquantum public-key cryptosystems.

The process has many candidate Key Encapsulation
Mechanisms, but no direct Diffie–Hellman replacements
because most major postquantum settings (lattices, codes,
multivariate, hashes) don’t have exact DH equivalents.
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Modern Diffie–Hellman



Modern Elliptic Curve Diffie–Hellman (ECDH)

Classic ECDH is just classic DH with E(Fq) in place of Gm(Fq):

A = [a]P B = [b]P S = [ab]P

Miller (1985) suggested ECDH using only x-coordinates:

A = x([a]P) B = x([b]P) S = x([ab]P)
= ±[a]P = ±[b]P = ±[ab]P

We compute x(Q) 7→ x([m]Q) with differential addition chains
such as the Montgomery ladder.

We have replaced G ⊂ E(Fq) with a quotient set G/⟨±1⟩ ⊂ Fq.

Example: Curve25519 (Bernstein 2006), the benchmark for
conventional DH (and now standard in TLS 1.3).
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Modern ECDH: where is the group?

Modern x-only ECDH is interesting: it highlights the fact that
Diffie–Hellman does not explicitly require a group operation.

A = [a]P B = [b]P S = [ab]P

Formally, we have an action of Z on a set X (here, X = G/⟨±1⟩).

In fact, the quotient structure G/⟨±1⟩ is important: it facilitates

• security proofs by relating CDHPs in X and G
• efficient evaluation of the Z-action on X : ⊕ on G
induces an operation (±P,±Q,±(P−Q)) 7→ ±(P+Q) on X ,
which we can use to compute (m, x(P)) 7→ x([m]P)
using differential addition chains.
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Towards postquantum
Diffie–Hellman:
Hard Homogeneous Spaces



Towards postquantum Diffie–Hellman

Starting point for postquantum DH: an obscure framework
proposed by Couveignes in 1997, Hard Homogeneous Spaces.

Old DH Z acts on a group G
Modern DH Z acts on a set X (via a group G)

HHS-DH a group G acts on a set X .

(We use the symbol G for groups written multiplicatively,
and G for groups written additively.)
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Homogeneous Spaces

Let G be a finite commutative group acting on a set X .

This means: for each g ∈ G and P ∈ X , there is a g · P ∈ X , and

a · (b · P) = ab · P ∀a, b ∈ G, ∀P ∈ X .

X is a principal homogeneous space (PHS) under G if

P,Q ∈ X =⇒ ∃! g ∈ G such that Q = g · P .

So: φP : g 7→ g · P is a bijection G→ X for each P ∈ X .

Example: G = a vector space, X = the underlying affine space.
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Examples of Homogeneous Spaces

A PHS is like a copy of G with the identity 1G forgotten.

Each map φP : g 7→ g · P endows X with the structure of G, with
P as the identity element, via

(a · P)(b · P) = φP(a)φP(b) := φP(ab) = (ab) · P .

Each choice of P yields a different group structure on X .

18



DH in a group again

Expressing DH in a group as functions KeyPair and DH:

Algorithm 1: Key generation for a group G = ⟨P⟩
1 function KeyPair()
2 x← Random(Z/NZ)
3 Q← [x]P // Scalar multiplication
4 return (Q, x) // (Public, private)

Algorithm 2: Compute a Diffie–Hellman shared secret
1 function DH(m ∈ Z,Q ∈ G)
2 S← [m]Q // Scalar multiplication
3 return S // Shared secret
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DH in a PHS

We define analogous functions KeyPair and DH for a PHS:

Algorithm 3: Key generation for a PHS (G,X )
1 function KeyPair()
2 x← Random(G)
3 Q← x · P // Group action
4 return (Q, x) // (Public, private)

Algorithm 4: Compute a Diffie–Hellman shared secret
1 function DH(m ∈ G,Q ∈ X)
2 S← m · Q // Group action
3 return S // Shared secret
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A Diffie–Hellman analogue

We have an obvious analogy between Group-DH and HHS-DH:

A = [a]P B = [b]P S = [ab]P
A = a · P B = b · P S = ab · P

Security: need PHS analogues of DLP and CDHP to be hard.
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Hard Homogeneous Spaces

Vectorization (Vec: breaking public keys):
Given P and Q in X , compute the (unique) g ∈ G s.t. Q = g · P.

P g
//_______ Q

Parallelization (Par: recovering shared secrets):
Given P, A, B in X with A = a · P, B = b · P, compute S = (ab) · P.

P a //_______

b
''N

NNNNNN A
b

''N
NNNNNN

B
a

//______ S
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Hard homogeneous spaces

A Hard Homogeneous Space (HHS) is a PHS where Vec and Par
are computationally infeasible.

We will give an example of a conjectural HHS later.

We have a lot intuition and folklore about DLP and CDHP.

• Decades of algorithmic study
• Conditional polynomial-time equivalences

What carries over to Vec and Par?
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...It’s only an analogy

Warning: HHS-DH is not a true generalization of Group-DH.

For group-DH in a group G of order N:

• Group-DH scalars are elements of Z/NZ
• The group operation in Z/NZ is +, not the × of Group-DH.
• Scalars do not form a group under ×.
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Homogeneous spaces from cyclic groups

However, there is a hack relating important special cases.

Given a cyclic G of order N, we have a PHS

Exp(G) = (G,X ) :=
(
(Z/NZ)×, {P ∈ G : G = ⟨P⟩}

)
Action: (a,P) 7→ [a]P.

Now if N is prime (or almost), then

• Vec(G,X ) ⇐⇒ DLP(G)
• Par(G,X ) ⇐⇒ CDHP(G)
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How hard are hard homogeneous spaces?

Obviously, if we can solve Vecs

(P,Q = x · P) 7−→ x ,

then we can solve Pars

(P,A = a · P,B = b · P) 7−→ S = ab · P .

Let’s focus on Vec for a moment.

We can solve any DLP classically in time O(
√
N)

using Pollard’s ρ or Shanks’ Baby-step giant-step.

We can solve Vec in time O(
√
N) using the same algorithms!
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Generic DLP: Shanks’ BSGS in G

Algorithm 5: Baby-step giant-step in G

Input: g and h in G

Output: x such that h = gx

1 β ← ⌈
√
#G⌉

2 (si)← (gi : 1 ≤ i ≤ β)
3 Sort/hash ((si, i))βi=1
4 t← h

5 for j in (1, . . . , β) do
6 if t = si for some i then
7 return i− jβ

8 t← gβt

9 return ⊥ // Only if h /∈ ⟨g⟩
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Generic vectorization: Shanks’ BSGS in (G,X )

Algorithm 6: Baby-step giant-step in (G,X )
Input: P and Q in X , and a generator g for G
Output: x such that Q = gx · P

1 β ← ⌈
√
#G⌉

2 (Pi)← (gi · P : 1 ≤ i ≤ β)
3 Sort/hash ((Pi, i))βi=1
4 T← Q
5 for j in (1, . . . , β) do
6 if T = Pi for some i then
7 return i− jβ

8 T← gβ · T

9 return ⊥ // Only if Q /∈ ⟨e⟩ · P
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Why is this post-quantum?

Shor’s algorithm solves DLP in polynomial time, but not Vec.

Vec is an instance of the abelian hidden shift problem.
Solve using (variants of) Kuperberg’s algorithm in quantum
subexponential time LN(1/2).
=⇒ upper bound for quantum Vec hardness is LN(1/2).
=⇒ upper bound for quantum Par hardness is LN(1/2).

In a sense, BSGS and Pollard ρ are actually PHS algorithms
(with G acting on itself), not group algorithms!
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Quantum equivalence of Vec and Par

Galbraith–Panny–S.–Vercauteren (2019): Unconditional
quantum polynomial equivalence Par ⇐⇒ Vec.

Vec =⇒ Par: obvious. Par =⇒ Vec: quantum Par circuit
(P, a · P, b · P) 7→ ab · P gives X an implicit group structure.

1. We can compute a basis {g1, . . . , gr} for G using
Kitaev/Shor (if not already known)

2. The map µ : (x1, . . . , xr, y) 7→
(∏

i g
xi
i
)
· ay · P is a

homomorphism (Zr × Z)→ X (implicit group).
3. Evaluate (y, a · P) 7→ ay · P, hence µ, using Θ(log n) Pars
4. Computing kerµ = {(x1, . . . , xr, y) : gx11 · · · g

xr
r a

y = 1G}
is a hidden subgroup problem (Shor again);

5. Any (a1, . . . ,ar, 1) in kerµ gives a representation a =
∏
i g
ai
i .
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Classical limits of the analogy

Curiously, in the classical setting we don’t have Par =⇒ Vec.

Compare with classical CDHP =⇒ DLP, where we have a
standard black-box field approach:

1. Reduce to prime order case (Pohlig–Hellman algorithm);
2. View G as a representation of Fp via G ∋ ga ↔ a ∈ Fp;

• for +, use group operation (ga, gb) 7→ gagb = ga+b

• for ×, use G-DH oracle (g, ga, gb) 7→ gab

3. den Boer, Maurer, Wolf: conditional polynomial reduction.

Does not work for Par =⇒ Vec because (P, a · P, b · P) 7→ ab · P
oracle yields a group structure on X , not a field structure.
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Classical limits: Pohlig–Hellman

The Pohlig–Hellman algorithm exploits subgroups of G
to solve DLP instances in time Õ(

√
largest prime factor of #G).

Simplest case: #G =
∏
i ℓi, with the ℓi prime.

To find x such that h = gx, for each i we

1. compute hi ← hmi and gi ← gmi , where mi = #G/ℓi;
2. compute xi such that hi = g

xi
i (DLP in order-ℓi subgroup)

We then recover x from the (xi, ℓi) using the CRT.

Problem: the HHS analogue of Step 1 is supposedly hard!
(Computing Qi = gi · P where Q = g · P is an instance of Par.)
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No Pohlig–Hellman

Funny: We don’t know how to use the structure of G to
accelerate algorithms for Vec or Par in (G,X ).

Surprise: classical acceleration shouldn’t exist in general.
Why?

• Choose p from a family of primes such that the largest
prime factor of p− 1 is in o(p).

• Now take a black-box group G of order p.
• Shoup’s theorem: DLP(G) is in Θ(

√p).
• The Group-DH→HHS-DH “hack” above yields a HHS
(G,X ) = Exp(G) = ((Z/pZ)×,G \ {0}).

• Now #G = p− 1, whose prime factors are in o(p),
so classical subgroup DLPs and Vecs are in o(√p);
a HHS Pohlig–Hellman analogue would contradict Shoup.
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Isogeny-based key exchange:
A concrete HHS



Couveignes’ isogeny HHS

Couveignes suggested a concrete example of an HHS, based
on isogeny classes of elliptic curves.

Comparison with DLP-based elliptic curve crypto:
Pre-quantum Post-quantum

Conventional ECC Isogeny HHS
Universe One elliptic curve E One isogeny class X
Elements Points P and Q in E Curves E and F in X
Relations DLP: Q = [x]P Isogeny: ϕ : E → F
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Endomorphism rings of elliptic curves

An isogeny is just a nonzero homomorphism of elliptic curves.
Geometrically, isogenies = nonconstant algebraic mappings.

Existence of isogenies between curves is an equivalence
relation, so we can talk about isogeny classes of curves.

An endomorphism is a homomorphism from a curve to itself.

The endomorphisms of a given curve form a ring.

Isogeny classes decompose into subclasses of curves with
isomorphic endomorphism rings.
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Couveignes’ HHS: Class groups acting on isogeny classes

A Well-understood PHS from complex multiplication theory.

The group: G = Cl(OK), the group of ideal classes of a
quadratic imaginary field K

The space: X = the set of (Fq-isomorphism classes of)
elliptic curves E/Fq with End(E) ∼= OK.

The action: Ideals in OK correspond to isogenies, which take
us from one curve to another.

We have #G = #X ∼
√
|∆|, where ∆ = disc(OK) ∼ q.

Why is this a HHS? When #G ∼ √q,

• The best known classical solution to Vec is in O(q1/4).
• The best known quantum solution to Vec is in Lq(1/2).
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HHS-DH: the action

The action of an ideal (class) a ⊂ OK on a curve (class) E ∈ X :

Suppose a is an integral ideal.

1. We can identify End(E) with OK, so a ⊂ End(E).
2. Then E has a subgroup E [a] = {P ∈ E : ψ(P) = 0 ∀ψ ∈ a}
3. We can compute a quotient isogeny ϕ : E → E/E [a]. We let

a · E be the quotient curve E/E [a];

This is all well-defined up to isomorphism.

a = (ϕ) principal =⇒ ϕ ∈ End(E), so a · E = E .
So: action extends to fractional ideals, factors through Cl(OK).
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HHS-DH: Computing the action

We need to be able to compute this action efficiently for
random-looking a in Cl(OK).

Bad news: Computing the isogenous a · E directly, by
computing the quotient isogeny, is exponential in N(a).

Couveignes suggested using LLL to compute an equivalent∏
i l
ei
i ∼ a with each N(li) small, then act with the li in serial.

Each small ideal li acts as an isogeny of degree ℓi = Norm(li),
called an ℓi-isogeny.
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What happened?

1997: Couveignes submitted to Crypto; rejected.
Later published in French, in an obscure special SMF issue.
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HHS-DH: Rostovtsev–Stolbunov

1997: Couveignes submitted to Crypto; rejected.
Later published in French, in an obscure special SMF issue.
∼= Unknown/Forgotten.

2006: Rostovtsev and Stolbunov independently rediscover
isogeny-based key exchange.

The (minor) essential difference:

Couveignes samples a secret a in Cl(OK) and smooths to
∏
i l
ei
i ;

Rostovtsev–Stolbunov sample a smooth product
∏
i l
ei
i directly,

and hope this distribution is very close to uniform on Cl(OK).
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Moving to isogeny graphs

Rostovtsev and Stolbunov sample exponent vectors (e1, . . . , er)
as secret keys, corresponding to ideal products

∏
i l
ei
i .

• Act e1 times by l1, then
• act e2 times by l2, then
• ...

Actions expressed as random walks in isogeny graphs.

For each prime ℓ, restrict to ℓ-isogeny graphs:

• vertices = X ,
• edges = isogenies of degree ℓ
(corresponding to actions of ideals l of norm ℓ).
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Isogeny graphs

1. A walk of length e1 in the
ℓ1-isogeny graph, then

2. A walk of length e2 in the
ℓ2-isogeny graph, then

3. A walk of length e3 in the
ℓ3-isogeny graph,

4. More walks ...
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From Rostovtsev–Stolbunov to SIDH and back

Plain Rostovtsev–Stolbunov: totally impractical key exchange.

This prompted Jao & De Feo’s SIDH (Supersingular Isogeny DH)

• Uses only tiny-degree isogenies (fast)
• between curves with quaternionic endomorphism rings
• forming isogeny graphs that are expanders

SIDH is cool, but it has some disadvantages:

1. Static key exchange (long term keys) is unsafe
2. The API doesn’t match Diffie–Hellman
(e.g. Alice and Bob’s public keys don’t have the same type).

Our idea: go back and improve Rostovtsev–Stolbunov.

43



Towards practical isogeny key exchange

De Feo–Kieffer–S. (Asiacrypt 2018):
algorithmic improvements and security proofs.

• Use ordinary curves, following Couveignes and Stolbunov.
• Faster isogeny steps when E [li] has rational points.
• Problem: no efficient algorithm to construct ordinary E
with a point of degree ℓ for hundreds of very small ℓ.
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Towards practical isogeny key exchange

Castryck et al. (Asiacrypt 2018): CSIDH.

• Solves the parametrization problem by using
supersingular curves over Fp.

• Supersingular curves are easy to construct.
Order p+ 1, so choose p s.t. ℓ | (p+ 1) for lots of small ℓ.

=⇒ Practical isogeny-based Diffie–Hellman.
Keysize = log2 p Classical queries Quantum queries*

512 128 62
1024 256 94
1792 448 129

*Claimed by CSIDH authors. Precise quantum query counts and costs
are the subject of current research and debate.
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Conclusions

• In CSIDH, isogeny-based crypto now has a practical
postquantum drop-in replacement for Diffie–Hellman.
Can also be used for OT; no practical signatures though.

• Couveignes’ Hard Homogeneous Spaces framework helps
to model postquantum DH protocols on an abstract level,
without understanding the mechanics of isogenies

• Pre- and post-quantum DH have the same “API”,
but HHS-DH does not respect Group-DH intuitition.
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The Maurer reduction: how does it work?

We want to solve a DLP instance h = gx in G of prime order p,
given a DH oracle for G (so we can compute gF(x), ∀ poly F):

1. Find an E/Fp s.t. E(Fp) has polynomially smooth order2
and compute a generator (x0, y0) for E(Fp).
Pohlig–Hellman: solve DLPs in E(Fp) in polynomial time.

2. Use Tonelli–Shanks to compute a gy s.t. gy2 = gx
3+ax+b.

If this fails: replace h = gx with hgδ = gx+δ and try again...
Now (gx, gy) is a point in E(G); we still don’t know x or y.

3. Solve the DLP instance (gx, gy) = [e](gx0 , gy0) in E(G) for e.
4. Compute (x, y) = [e](x0, y0) in E(Fp) and return x.

2This is the tricky part! Seems to work in practice for cryptographically
useful p, even in not in theory for arbitrary p.
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