
Pre- and post-quantum Diffie–Hellman
from groups, actions, and isogenies

Benjamin Smith
CARAMBA Seminar // LORIA, Nancy // May 14, 2019

Inria + Laboratoire d’Informatique de l’École polytechnique (LIX)

1

Key exchange

Let’s talk about cryptographic key exchange.

The problem: two parties, “Alice” and “Bob”, want to establish a
shared secret over a public channel.

Solution: Diffie–Hellman key exchange (1976).

• Originally set in Gm(Fq), but works in any cyclic group.
• Current state of the art: elliptic curves.
• Elliptic-curve DH security depends on problems that are
classically hard but quantumly easy.

How can we replace Diffie–Hellman for a post-quantum world?

1

Classical Diffie–Hellman

The group setting for Diffie–Hellman

Consider a finite cyclic group

G = ⟨P⟩ ∼= Z/NZ .

The most important operation is scalar multiplication:

[m]P := P+ P+ · · ·+ P (m copies of P) ,

for P ∈ G and m in Z, with [−m]P := [m](−P).

Inverting it is the Discrete Logarithm Problem (DLP) in G:

given P and Q = [x]P, compute x .

2

Classic Diffie–Hellman key exchange

Phase 1 Alice samples a secret a ∈ Z/NZ;
Computes A := [a]P and publishes A

Bob samples a secret b ∈ Z/NZ;
computes B := [b]P and publishes B

Breaking keypairs (e.g. recovering a from A) is the DLP.

Phase 2 Alice computes S = [a]B.
Bob computes S = [b]A.

The protocol correctly computes a shared secret because

A = [a]P B = [b]P S = [ab]P

Recovering the secret S given only the public data P, A, B
is the Computational Diffie–Hellman Problem (CDHP).

3

Static and ephemeral DH

Ephemeral: Alice & Bob use keypairs unique to this session.
Ephemeral DH is essentially interactive.

Static: Alice and/or Bob use long-term keypairs, which may be
re-used across sessions. Static DH can be non-interactive.

Static DH security requires public key validation:
i.e. checking public keys are legitimate KeyPair() outputs.
So far, this just means checking the key is in G, which is easy.

Complex protocols may mix ephemeral & static.
Example: X3DH initializes conversations in Signal & WhatsApp
using four DH() calls, mixing ephemeral and longer-term keys.

4

Conventional CDHP and DLP Hardness

Currently, our best algorithm for solving CDHP is to solve DLP.

Generic algorithms solve DLP instances in O(
√
#G):

— Shanks’ Baby-step giant-step, Pollard ρ, etc...

Pohlig–Hellman–Silver: when the structure of G is known,
solve DLP instances in O(

√
#(largest prime subgroup of G)).

Faster DLP algorithms exist for many concrete groups:

• G ⊂ F×
p : subexponential DLP. Number Field Sieve: Lp(1/3).

• G ⊂ F×
pn with p very small: quasipolynomial DLP.

Today’s hardest DLP instances come from elliptic curves.

5

Elliptic curves

Elliptic curves are a convenient source of groups that can
replace multiplicative groups in asymmetric crypto.

Classic “short” Weierstrass model:

E/Fp : y2 = x3 + ax+ b with a,b ∈ Fp, 4a3 + 27b2 ̸= 0 .

The points on E are

E(Fp) =
{
(α, β) ∈ F2p : β2 = α3 + a · α+ b

}
∪ {OE}

where OE is the unique “point at infinity”.

E(Fp) is an algebraic group, with OE the identity element.

6

Elliptic curve negation: ⊖R = S

• R

• S = ⊖R

7

Elliptic curve addition: P⊕ Q =?

•P

•Q

8

Elliptic curve addition: P⊕ Q⊕ R = 0

•P

•Q

• R

9

Elliptic curve addition: P⊕ Q = ⊖R = S

•P

•Q

• R

• S

10

Elliptic curve group operations

If P = Q, the chord through P and Q degenerates to a tangent.

The important thing is that elliptic curve group operations,
being geometric, have algebraic expressions.

=⇒ They can be computed as a series of Fp-operations, which
can in turn be reduced to a series of machine instructions.

In particular, negation: ⊖(x, y) = (x,−y) and ⊖OE = OE . Up to
“sign”, group elements are encoded by x-coordinates.

11

The Elliptic Curve Discrete Logarithm Problem (ECDLP)

Amazing fact: for subgroups G of general1 elliptic curves, we
still do not know how to solve discrete logs significantly faster
than by using generic black-box group algorithms.

In particular: currently, for prime-order G ⊆ E(Fp), we can do
no better than O(

√
#G).

Apart from improvements in distributed computing, and a
constant-factor speedup of about

√
2, there has been

absolutely no progress on general ECDLP algorithms. Ever.

Current world record for prime-order ECDLP: in a 112-bit group,
which is a long way away from the 256-bit groups we use today!
1That is, for all but a very small and easily identifiable subset of curves.

12

The quantum menace

Shor’s quantum algorithm solves DLPs in polynomial time.

Global effort: replacing group-based public-key cryptosystems
with post-quantum alternatives.

NIST has started a standardization process (“non-competition”)
for postquantum public-key cryptosystems.

The process has many candidate Key Encapsulation
Mechanisms, but no direct Diffie–Hellman replacements
because most major postquantum settings (lattices, codes,
multivariate, hashes) don’t have exact DH equivalents.

13

Modern Diffie–Hellman

Modern Elliptic Curve Diffie–Hellman (ECDH)

Classic ECDH is just classic DH with E(Fq) in place of Gm(Fq):

A = [a]P B = [b]P S = [ab]P

Miller (1985) suggested ECDH using only x-coordinates:

A = x([a]P) B = x([b]P) S = x([ab]P)
= ±[a]P = ±[b]P = ±[ab]P

We compute x(Q) 7→ x([m]Q) with differential addition chains
such as the Montgomery ladder.

We have replaced G ⊂ E(Fq) with a quotient set G/⟨±1⟩ ⊂ Fq.

Example: Curve25519 (Bernstein 2006), the benchmark for
conventional DH (and now standard in TLS 1.3).

14

Modern ECDH: where is the group?

Modern x-only ECDH is interesting: it highlights the fact that
Diffie–Hellman does not explicitly require a group operation.

A = [a]P B = [b]P S = [ab]P

Formally, we have an action of Z on a set X (here, X = G/⟨±1⟩).

In fact, the quotient structure G/⟨±1⟩ is important: it facilitates

• security proofs by relating CDHPs in X and G
• efficient evaluation of the Z-action on X : ⊕ on G
induces an operation (±P,±Q,±(P−Q)) 7→ ±(P+Q) on X ,
which we can use to compute (m, x(P)) 7→ x([m]P)
using differential addition chains.

15

Towards postquantum
Diffie–Hellman:
Hard Homogeneous Spaces

Towards postquantum Diffie–Hellman

Starting point for postquantum DH: an obscure framework
proposed by Couveignes in 1997, Hard Homogeneous Spaces.

Old DH Z acts on a group G
Modern DH Z acts on a set X (via a group G)

HHS-DH a group G acts on a set X .

(We use the symbol G for groups written multiplicatively,
and G for groups written additively.)

16

Homogeneous Spaces

Let G be a finite commutative group acting on a set X .

This means: for each g ∈ G and P ∈ X , there is a g · P ∈ X , and

a · (b · P) = ab · P ∀a, b ∈ G, ∀P ∈ X .

X is a principal homogeneous space (PHS) under G if

P,Q ∈ X =⇒ ∃! g ∈ G such that Q = g · P .

So: φP : g 7→ g · P is a bijection G→ X for each P ∈ X .

Example: G = a vector space, X = the underlying affine space.

17

Examples of Homogeneous Spaces

A PHS is like a copy of G with the identity 1G forgotten.

Each map φP : g 7→ g · P endows X with the structure of G, with
P as the identity element, via

(a · P)(b · P) = φP(a)φP(b) := φP(ab) = (ab) · P .

Each choice of P yields a different group structure on X .

18

DH in a group again

Expressing DH in a group as functions KeyPair and DH:

Algorithm 1: Key generation for a group G = ⟨P⟩
1 function KeyPair()
2 x← Random(Z/NZ)
3 Q← [x]P // Scalar multiplication
4 return (Q, x) // (Public, private)

Algorithm 2: Compute a Diffie–Hellman shared secret
1 function DH(m ∈ Z,Q ∈ G)
2 S← [m]Q // Scalar multiplication
3 return S // Shared secret

19

DH in a PHS

We define analogous functions KeyPair and DH for a PHS:

Algorithm 3: Key generation for a PHS (G,X)
1 function KeyPair()
2 x← Random(G)
3 Q← x · P // Group action
4 return (Q, x) // (Public, private)

Algorithm 4: Compute a Diffie–Hellman shared secret
1 function DH(m ∈ G,Q ∈ X)
2 S← m · Q // Group action
3 return S // Shared secret

20

A Diffie–Hellman analogue

We have an obvious analogy between Group-DH and HHS-DH:

A = [a]P B = [b]P S = [ab]P
A = a · P B = b · P S = ab · P

Security: need PHS analogues of DLP and CDHP to be hard.

21

Hard Homogeneous Spaces

Vectorization (Vec: breaking public keys):
Given P and Q in X , compute the (unique) g ∈ G s.t. Q = g · P.

P g
//_______ Q

Parallelization (Par: recovering shared secrets):
Given P, A, B in X with A = a · P, B = b · P, compute S = (ab) · P.

P a //_______

b
''N

NNNNNN A
b

''N
NNNNNN

B
a

//______ S

22

Hard homogeneous spaces

A Hard Homogeneous Space (HHS) is a PHS where Vec and Par
are computationally infeasible.

We will give an example of a conjectural HHS later.

We have a lot intuition and folklore about DLP and CDHP.

• Decades of algorithmic study
• Conditional polynomial-time equivalences

What carries over to Vec and Par?

23

...It’s only an analogy

Warning: HHS-DH is not a true generalization of Group-DH.

For group-DH in a group G of order N:

• Group-DH scalars are elements of Z/NZ
• The group operation in Z/NZ is +, not the × of Group-DH.
• Scalars do not form a group under ×.

24

Homogeneous spaces from cyclic groups

However, there is a hack relating important special cases.

Given a cyclic G of order N, we have a PHS

Exp(G) = (G,X) :=
(
(Z/NZ)×, {P ∈ G : G = ⟨P⟩}

)
Action: (a,P) 7→ [a]P.

Now if N is prime (or almost), then

• Vec(G,X) ⇐⇒ DLP(G)
• Par(G,X) ⇐⇒ CDHP(G)

25

How hard are hard homogeneous spaces?

Obviously, if we can solve Vecs

(P,Q = x · P) 7−→ x ,

then we can solve Pars

(P,A = a · P,B = b · P) 7−→ S = ab · P .

Let’s focus on Vec for a moment.

We can solve any DLP classically in time O(
√
N)

using Pollard’s ρ or Shanks’ Baby-step giant-step.

We can solve Vec in time O(
√
N) using the same algorithms!

26

Generic DLP: Shanks’ BSGS in G

Algorithm 5: Baby-step giant-step in G

Input: g and h in G

Output: x such that h = gx

1 β ← ⌈
√
#G⌉

2 (si)← (gi : 1 ≤ i ≤ β)
3 Sort/hash ((si, i))βi=1
4 t← h

5 for j in (1, . . . , β) do
6 if t = si for some i then
7 return i− jβ

8 t← gβt

9 return ⊥ // Only if h /∈ ⟨g⟩

27

Generic vectorization: Shanks’ BSGS in (G,X)

Algorithm 6: Baby-step giant-step in (G,X)
Input: P and Q in X , and a generator g for G
Output: x such that Q = gx · P

1 β ← ⌈
√
#G⌉

2 (Pi)← (gi · P : 1 ≤ i ≤ β)
3 Sort/hash ((Pi, i))βi=1
4 T← Q
5 for j in (1, . . . , β) do
6 if T = Pi for some i then
7 return i− jβ

8 T← gβ · T

9 return ⊥ // Only if Q /∈ ⟨e⟩ · P

28

Why is this post-quantum?

Shor’s algorithm solves DLP in polynomial time, but not Vec.

Vec is an instance of the abelian hidden shift problem.
Solve using (variants of) Kuperberg’s algorithm in quantum
subexponential time LN(1/2).
=⇒ upper bound for quantum Vec hardness is LN(1/2).
=⇒ upper bound for quantum Par hardness is LN(1/2).

In a sense, BSGS and Pollard ρ are actually PHS algorithms
(with G acting on itself), not group algorithms!

29

Quantum equivalence of Vec and Par

Galbraith–Panny–S.–Vercauteren (2019): Unconditional
quantum polynomial equivalence Par ⇐⇒ Vec.

Vec =⇒ Par: obvious. Par =⇒ Vec: quantum Par circuit
(P, a · P, b · P) 7→ ab · P gives X an implicit group structure.

1. We can compute a basis {g1, . . . , gr} for G using
Kitaev/Shor (if not already known)

2. The map µ : (x1, . . . , xr, y) 7→
(∏

i g
xi
i
)
· ay · P is a

homomorphism (Zr × Z)→ X (implicit group).
3. Evaluate (y, a · P) 7→ ay · P, hence µ, using Θ(log n) Pars
4. Computing kerµ = {(x1, . . . , xr, y) : gx11 · · · g

xr
r a

y = 1G}
is a hidden subgroup problem (Shor again);

5. Any (a1, . . . ,ar, 1) in kerµ gives a representation a =
∏
i g
ai
i .

30

Classical limits of the analogy

Curiously, in the classical setting we don’t have Par =⇒ Vec.

Compare with classical CDHP =⇒ DLP, where we have a
standard black-box field approach:

1. Reduce to prime order case (Pohlig–Hellman algorithm);
2. View G as a representation of Fp via G ∋ ga ↔ a ∈ Fp;

• for +, use group operation (ga, gb) 7→ gagb = ga+b

• for ×, use G-DH oracle (g, ga, gb) 7→ gab

3. den Boer, Maurer, Wolf: conditional polynomial reduction.

Does not work for Par =⇒ Vec because (P, a · P, b · P) 7→ ab · P
oracle yields a group structure on X , not a field structure.

31

Classical limits: Pohlig–Hellman

The Pohlig–Hellman algorithm exploits subgroups of G
to solve DLP instances in time Õ(

√
largest prime factor of #G).

Simplest case: #G =
∏
i ℓi, with the ℓi prime.

To find x such that h = gx, for each i we

1. compute hi ← hmi and gi ← gmi , where mi = #G/ℓi;
2. compute xi such that hi = g

xi
i (DLP in order-ℓi subgroup)

We then recover x from the (xi, ℓi) using the CRT.

Problem: the HHS analogue of Step 1 is supposedly hard!
(Computing Qi = gi · P where Q = g · P is an instance of Par.)

32

No Pohlig–Hellman

Funny: We don’t know how to use the structure of G to
accelerate algorithms for Vec or Par in (G,X).

Surprise: classical acceleration shouldn’t exist in general.
Why?

• Choose p from a family of primes such that the largest
prime factor of p− 1 is in o(p).

• Now take a black-box group G of order p.
• Shoup’s theorem: DLP(G) is in Θ(

√p).
• The Group-DH→HHS-DH “hack” above yields a HHS
(G,X) = Exp(G) = ((Z/pZ)×,G \ {0}).

• Now #G = p− 1, whose prime factors are in o(p),
so classical subgroup DLPs and Vecs are in o(√p);
a HHS Pohlig–Hellman analogue would contradict Shoup.

33

Isogeny-based key exchange:
A concrete HHS

Couveignes’ isogeny HHS

Couveignes suggested a concrete example of an HHS, based
on isogeny classes of elliptic curves.

Comparison with DLP-based elliptic curve crypto:
Pre-quantum Post-quantum

Conventional ECC Isogeny HHS
Universe One elliptic curve E One isogeny class X
Elements Points P and Q in E Curves E and F in X
Relations DLP: Q = [x]P Isogeny: ϕ : E → F

34

Endomorphism rings of elliptic curves

An isogeny is just a nonzero homomorphism of elliptic curves.
Geometrically, isogenies = nonconstant algebraic mappings.

Existence of isogenies between curves is an equivalence
relation, so we can talk about isogeny classes of curves.

An endomorphism is a homomorphism from a curve to itself.

The endomorphisms of a given curve form a ring.

Isogeny classes decompose into subclasses of curves with
isomorphic endomorphism rings.

35

Couveignes’ HHS: Class groups acting on isogeny classes

A Well-understood PHS from complex multiplication theory.

The group: G = Cl(OK), the group of ideal classes of a
quadratic imaginary field K

The space: X = the set of (Fq-isomorphism classes of)
elliptic curves E/Fq with End(E) ∼= OK.

The action: Ideals in OK correspond to isogenies, which take
us from one curve to another.

We have #G = #X ∼
√
|∆|, where ∆ = disc(OK) ∼ q.

Why is this a HHS? When #G ∼ √q,

• The best known classical solution to Vec is in O(q1/4).
• The best known quantum solution to Vec is in Lq(1/2).

36

HHS-DH: the action

The action of an ideal (class) a ⊂ OK on a curve (class) E ∈ X :

Suppose a is an integral ideal.

1. We can identify End(E) with OK, so a ⊂ End(E).
2. Then E has a subgroup E [a] = {P ∈ E : ψ(P) = 0 ∀ψ ∈ a}
3. We can compute a quotient isogeny ϕ : E → E/E [a]. We let

a · E be the quotient curve E/E [a];

This is all well-defined up to isomorphism.

a = (ϕ) principal =⇒ ϕ ∈ End(E), so a · E = E .
So: action extends to fractional ideals, factors through Cl(OK).

37

HHS-DH: Computing the action

We need to be able to compute this action efficiently for
random-looking a in Cl(OK).

Bad news: Computing the isogenous a · E directly, by
computing the quotient isogeny, is exponential in N(a).

Couveignes suggested using LLL to compute an equivalent∏
i l
ei
i ∼ a with each N(li) small, then act with the li in serial.

Each small ideal li acts as an isogeny of degree ℓi = Norm(li),
called an ℓi-isogeny.

38

What happened?

1997: Couveignes submitted to Crypto; rejected.
Later published in French, in an obscure special SMF issue.

39

HHS-DH: Rostovtsev–Stolbunov

1997: Couveignes submitted to Crypto; rejected.
Later published in French, in an obscure special SMF issue.
∼= Unknown/Forgotten.

2006: Rostovtsev and Stolbunov independently rediscover
isogeny-based key exchange.

The (minor) essential difference:

Couveignes samples a secret a in Cl(OK) and smooths to
∏
i l
ei
i ;

Rostovtsev–Stolbunov sample a smooth product
∏
i l
ei
i directly,

and hope this distribution is very close to uniform on Cl(OK).

40

Moving to isogeny graphs

Rostovtsev and Stolbunov sample exponent vectors (e1, . . . , er)
as secret keys, corresponding to ideal products

∏
i l
ei
i .

• Act e1 times by l1, then
• act e2 times by l2, then
• ...

Actions expressed as random walks in isogeny graphs.

For each prime ℓ, restrict to ℓ-isogeny graphs:

• vertices = X ,
• edges = isogenies of degree ℓ
(corresponding to actions of ideals l of norm ℓ).

41

Isogeny graphs

1. A walk of length e1 in the
ℓ1-isogeny graph, then

2. A walk of length e2 in the
ℓ2-isogeny graph, then

3. A walk of length e3 in the
ℓ3-isogeny graph,

4. More walks ...

42

From Rostovtsev–Stolbunov to SIDH and back

Plain Rostovtsev–Stolbunov: totally impractical key exchange.

This prompted Jao & De Feo’s SIDH (Supersingular Isogeny DH)

• Uses only tiny-degree isogenies (fast)
• between curves with quaternionic endomorphism rings
• forming isogeny graphs that are expanders

SIDH is cool, but it has some disadvantages:

1. Static key exchange (long term keys) is unsafe
2. The API doesn’t match Diffie–Hellman
(e.g. Alice and Bob’s public keys don’t have the same type).

Our idea: go back and improve Rostovtsev–Stolbunov.

43

Towards practical isogeny key exchange

De Feo–Kieffer–S. (Asiacrypt 2018):
algorithmic improvements and security proofs.

• Use ordinary curves, following Couveignes and Stolbunov.
• Faster isogeny steps when E [li] has rational points.
• Problem: no efficient algorithm to construct ordinary E
with a point of degree ℓ for hundreds of very small ℓ.

44

Towards practical isogeny key exchange

Castryck et al. (Asiacrypt 2018): CSIDH.

• Solves the parametrization problem by using
supersingular curves over Fp.

• Supersingular curves are easy to construct.
Order p+ 1, so choose p s.t. ℓ | (p+ 1) for lots of small ℓ.

=⇒ Practical isogeny-based Diffie–Hellman.
Keysize = log2 p Classical queries Quantum queries*

512 128 62
1024 256 94
1792 448 129

*Claimed by CSIDH authors. Precise quantum query counts and costs
are the subject of current research and debate.

45

Conclusions

• In CSIDH, isogeny-based crypto now has a practical
postquantum drop-in replacement for Diffie–Hellman.
Can also be used for OT; no practical signatures though.

• Couveignes’ Hard Homogeneous Spaces framework helps
to model postquantum DH protocols on an abstract level,
without understanding the mechanics of isogenies

• Pre- and post-quantum DH have the same “API”,
but HHS-DH does not respect Group-DH intuitition.

46

The Maurer reduction: how does it work?

We want to solve a DLP instance h = gx in G of prime order p,
given a DH oracle for G (so we can compute gF(x), ∀ poly F):

1. Find an E/Fp s.t. E(Fp) has polynomially smooth order2
and compute a generator (x0, y0) for E(Fp).
Pohlig–Hellman: solve DLPs in E(Fp) in polynomial time.

2. Use Tonelli–Shanks to compute a gy s.t. gy2 = gx
3+ax+b.

If this fails: replace h = gx with hgδ = gx+δ and try again...
Now (gx, gy) is a point in E(G); we still don’t know x or y.

3. Solve the DLP instance (gx, gy) = [e](gx0 , gy0) in E(G) for e.
4. Compute (x, y) = [e](x0, y0) in E(Fp) and return x.

2This is the tricky part! Seems to work in practice for cryptographically
useful p, even in not in theory for arbitrary p.

47

	Classical Diffie–Hellman
	Modern Diffie–Hellman
	Towards postquantum Diffie–Hellman: Hard Homogeneous Spaces
	Isogeny-based key exchange: A concrete HHS

