Pre- and post-quantum Diffie-Hellman from groups, actions, and isogenies

Benjamin Smith CARAMBA Seminar // LORIA, Nancy // May 14, 2019

Inria + Laboratoire d'Informatique de l'École polytechnique (LIX)

Let's talk about cryptographic key exchange.

The **problem**: two parties, "Alice" and "Bob", want to establish a **shared secret** over a **public channel**.

Solution: Diffie-Hellman key exchange (1976).

- Originally set in $\mathbb{G}_m(\mathbb{F}_q)$, but works in any cyclic group.
- Current state of the art: elliptic curves.
- Elliptic-curve DH security depends on problems that are classically hard but quantumly easy.

How can we replace Diffie-Hellman for a post-quantum world?

Classical Diffie-Hellman

Consider a finite cyclic group

 $\mathcal{G} = \langle P \rangle \cong \mathbb{Z}/N\mathbb{Z}$.

The most important operation is scalar multiplication:

 $[m]P := P + P + \dots + P \quad (m \text{ copies of } P),$

for $P \in \mathcal{G}$ and m in \mathbb{Z} , with [-m]P := [m](-P).

Inverting it is the Discrete Logarithm Problem (DLP) in G:

given P and Q = [x]P, compute x.

Classic Diffie-Hellman key exchange

Phase 1Alice samples a secret $a \in \mathbb{Z}/N\mathbb{Z}$;
Computes A := [a]P and publishes ABob samples a secret $b \in \mathbb{Z}/N\mathbb{Z}$;
computes B := [b]P and publishes B

Breaking keypairs (e.g. recovering a from A) is the DLP.

Phase 2Alice computes S = [a]B.Bob computes S = [b]A.

The protocol correctly computes a shared secret because

$$A = [a]P \qquad B = [b]P \qquad S = [ab]P$$

Recovering the secret *S* given only the public data *P*, *A*, *B* is the **Computational Diffie–Hellman Problem** (CDHP).

Ephemeral: Alice & Bob use keypairs unique to this session. *Ephemeral DH is essentially interactive*.

Static: Alice and/or Bob use long-term keypairs, which may be re-used across sessions. *Static DH can be non-interactive*.

Static DH security requires public key validation:
i.e. checking public keys are legitimate KeyPair() outputs.
So far, this just means checking the key is in G, which is easy.

Complex protocols may **mix ephemeral & static**. Example: **X3DH** initializes conversations in Signal & WhatsApp using **four DH()** calls, mixing ephemeral and longer-term keys. Currently, our best algorithm for solving CDHP is to solve DLP.

Generic algorithms solve DLP instances in $O(\sqrt{\#\mathcal{G}})$:

- Shanks' Baby-step giant-step, Pollard ρ , etc...

Pohlig–Hellman–Silver: when the structure of \mathcal{G} is known, solve DLP instances in $O(\sqrt{\#(\text{largest prime subgroup of }\mathcal{G})})$.

Faster DLP algorithms exist for many concrete groups:

- $\mathcal{G} \subset \mathbb{F}_p^{\times}$: subexponential DLP. Number Field Sieve: $L_p(1/3)$.
- $\mathcal{G} \subset \mathbb{F}_{p^n}^{\times}$ with *p* very small: quasipolynomial DLP.

Today's hardest DLP instances come from elliptic curves.

Elliptic curves are a convenient source of groups that can **replace multiplicative groups** in asymmetric crypto.

Classic "short" Weierstrass model:

 $\mathcal{E}/\mathbb{F}_p: y^2 = x^3 + ax + b$ with $a, b \in \mathbb{F}_p, 4a^3 + 27b^2 \neq 0$.

The **points** on ${\mathcal E}$ are

 $\mathcal{E}(\mathbb{F}_p) = \left\{ (\alpha, \beta) \in \mathbb{F}_p^2 : \beta^2 = \alpha^3 + a \cdot \alpha + b \right\} \cup \{\mathcal{O}_{\mathcal{E}}\}$

where $\mathcal{O}_{\mathcal{E}}$ is the unique "point at infinity".

 $\mathcal{E}(\mathbb{F}_p)$ is an algebraic group, with $\mathcal{O}_{\mathcal{E}}$ the identity element.

Elliptic curve negation: $\ominus R = S$

Elliptic curve addition: $P \oplus Q = ?$

Elliptic curve addition: $P \oplus Q \oplus R = 0$

Elliptic curve addition: $P \oplus Q = \ominus R = S$

If P = Q, the **chord** through P and Q degenerates to a **tangent**. The important thing is that elliptic curve group operations, being geometric, have **algebraic expressions**.

 \implies They can be computed as a series of \mathbb{F}_p -operations, which can in turn be reduced to a series of machine instructions.

In particular, **negation**: $\ominus(x, y) = (x, -y)$ and $\ominus \mathcal{O}_{\mathcal{E}} = \mathcal{O}_{\mathcal{E}}$. Up to "sign", group elements are encoded by x-coordinates.

Amazing fact: for subgroups G of general¹ elliptic curves, we still do not know how to solve discrete logs significantly faster than by using generic black-box group algorithms.

In particular: currently, for prime-order $\mathcal{G} \subseteq \mathcal{E}(\mathbb{F}_p)$, we can do no better than $O(\sqrt{\#\mathcal{G}})$.

Apart from improvements in distributed computing, and a constant-factor speedup of about $\sqrt{2}$, there has been **absolutely no progress** on general ECDLP algorithms. *Ever.*

Current world record for prime-order ECDLP: in a 112-bit group, which is a *long* way away from the 256-bit groups we use today!

¹That is, for all but a very small and easily identifiable subset of curves.

Shor's quantum algorithm solves DLPs in polynomial time.

- Global effort: replacing group-based public-key cryptosystems with **post-quantum** alternatives.
- **NIST** has started a standardization process ("non-competition") for postquantum public-key cryptosystems.
- The process has **many** candidate **Key Encapsulation Mechanisms**, but **no direct Diffie–Hellman replacements** because most major postquantum settings (lattices, codes, multivariate, hashes) don't have *exact* DH equivalents.

Modern Diffie-Hellman

Modern Elliptic Curve Diffie-Hellman (ECDH)

Classic ECDH is just classic DH with $\mathcal{E}(\mathbb{F}_q)$ in place of $\mathbb{G}_m(\mathbb{F}_q)$:

$$A = [a]P \qquad \qquad B = [b]P \qquad \qquad S = [ab]P$$

Miller (1985) suggested ECDH using only x-coordinates:

$$A = x([a]P) \qquad B = x([b]P) \qquad S = x([ab]P)$$
$$= \pm [a]P \qquad = \pm [b]P \qquad = \pm [ab]P$$

We compute $x(Q) \mapsto x([m]Q)$ with differential addition chains such as the Montgomery ladder.

We have replaced $\mathcal{G} \subset \mathcal{E}(\mathbb{F}_q)$ with a quotient set $\mathcal{G}/\langle \pm 1 \rangle \subset \mathbb{F}_q$.

Example: **Curve25519** (Bernstein 2006), the benchmark for conventional DH (and now standard in TLS 1.3).

Modern x-only ECDH is interesting: it highlights the fact that **Diffie–Hellman does not explicitly require a group operation**.

$$A = [a]P$$
 $B = [b]P$ $S = [ab]P$

Formally, we have an action of \mathbb{Z} on a set \mathcal{X} (here, $\mathcal{X} = \mathcal{G}/\langle \pm 1 \rangle$). In fact, the quotient structure $\mathcal{G}/\langle \pm 1 \rangle$ is important: it facilitates

- \cdot security proofs by relating CDHPs in ${\mathcal X}$ and ${\mathcal G}$
- efficient evaluation of the \mathbb{Z} -action on \mathcal{X} : \oplus on \mathcal{G} induces an operation $(\pm P, \pm Q, \pm (P-Q)) \mapsto \pm (P+Q)$ on \mathcal{X} , which we can use to compute $(m, x(P)) \mapsto x([m]P)$ using differential addition chains.

Towards postquantum Diffie-Hellman: Hard Homogeneous Spaces **Starting point** for postquantum DH: an obscure framework proposed by Couveignes in 1997, *Hard Homogeneous Spaces*.

Old DH \mathbb{Z} acts on a group \mathcal{G} Modern DH \mathbb{Z} acts on a set \mathcal{X} (via a group \mathcal{G}) HHS-DH a group \mathfrak{G} acts on a set \mathcal{X} .

(We use the symbol & for groups written multiplicatively, and *G* for groups written additively.)

Let \mathfrak{G} be a finite commutative group acting on a set \mathcal{X} . This means: for each $\mathfrak{g} \in \mathfrak{G}$ and $P \in \mathcal{X}$, there is a $\mathfrak{g} \cdot P \in \mathcal{X}$, and

 $\mathfrak{a} \cdot (\mathfrak{b} \cdot P) = \mathfrak{a} \mathfrak{b} \cdot P \qquad \forall \mathfrak{a}, \mathfrak{b} \in \mathfrak{G}, \quad \forall P \in \mathcal{X}.$

 \mathcal{X} is a **principal homogeneous space** (PHS) under \mathfrak{G} if

$$P, Q \in \mathcal{X} \implies \exists ! \mathfrak{g} \in \mathfrak{G} \text{ such that } Q = \mathfrak{g} \cdot P.$$

So: $\varphi_P : \mathfrak{g} \mapsto \mathfrak{g} \cdot P$ is a bijection $\mathfrak{G} \to \mathcal{X}$ for each $P \in \mathcal{X}$.

Example: $\mathfrak{G} = a$ vector space, $\mathcal{X} = the underlying affine space.$

A PHS is like a copy of \mathfrak{G} with the identity $1_{\mathfrak{G}}$ forgotten.

Each map $\varphi_P : \mathfrak{g} \mapsto \mathfrak{g} \cdot P$ endows \mathcal{X} with the structure of \mathfrak{G} , with P as the identity element, via

$$(\mathfrak{a} \cdot P)(\mathfrak{b} \cdot P) = \varphi_P(\mathfrak{a})\varphi_P(\mathfrak{b}) := \varphi_P(\mathfrak{ab}) = (\mathfrak{ab}) \cdot P.$$

Each choice of P yields a different group structure on \mathcal{X} .

DH in a group again

Expressing DH in a group as functions **KeyPair** and **DH**:

Algorithm 1: Key generation for a group $\mathcal{G} = \langle P \rangle$

- 1 function KeyPair()
- $x \leftarrow \mathsf{Random}(\mathbb{Z}/N\mathbb{Z})$
- 3 $Q \leftarrow [x]P$ // Scalar multiplication4return (Q, x)// (Public, private)

Algorithm 2: Compute a Diffie–Hellman shared secret

- 1 function DH($m \in \mathbb{Z}, Q \in \mathcal{G}$)
- 2 $S \leftarrow [m]Q$ // Scalar multiplication3return S// Shared secret

DH in a PHS

We define analogous functions **KeyPair** and **DH** for a PHS:

Algorithm 3: Key generation for a PHS $(\mathfrak{G}, \mathcal{X})$

- 1 function KeyPair()
- 2 $\mathfrak{x} \leftarrow \mathsf{Random}(\mathfrak{G})$
- 3 $Q \leftarrow \mathfrak{x} \cdot P$

4 return (Q, \mathfrak{x})

// Group action
// (Public, private)

Algorithm 4: Compute a Diffie–Hellman shared secret

- 1 function DH($\mathfrak{m} \in \mathfrak{G}, Q \in \mathcal{X}$)
- $2 \qquad \mathsf{S} \leftarrow \mathfrak{m} \cdot \mathsf{Q}$
- 3 return S

// Group action
// Shared secret

We have an obvious analogy between Group-DH and HHS-DH:

A = [a]P	B = [b]P	S = [ab]P
$A = \mathfrak{a} \cdot P$	$B = \mathfrak{b} \cdot P$	$S = \mathfrak{ab} \cdot P$

Security: need PHS analogues of DLP and CDHP to be hard.

Vectorization (VEC: breaking public keys): Given P and Q in \mathcal{X} , compute the (unique) $\mathfrak{g} \in \mathfrak{G}$ s.t. $Q = \mathfrak{g} \cdot P$.

$$P - - - \frac{\mathfrak{g}}{-} - - \rightarrow Q$$

Parallelization (PAR: recovering shared secrets):

Given P, A, B in \mathcal{X} with $A = \mathfrak{a} \cdot P$, $B = \mathfrak{b} \cdot P$, compute $S = (\mathfrak{ab}) \cdot P$.

$$P = --\stackrel{a}{-} - \rightarrow A$$

$$\stackrel{b}{\longrightarrow} B = --\stackrel{b}{-} - \stackrel{s}{\rightarrow} S$$

A **Hard Homogeneous Space (HHS)** is a PHS where **VEC** and **PAR** are computationally infeasible.

We will give an example of a conjectural HHS later.

We have a lot intuition and folklore about DLP and CDHP.

- Decades of algorithmic study
- Conditional polynomial-time equivalences

What carries over to VEC and PAR?

Warning: HHS-DH is **not a true generalization** of Group-DH. For group-DH in a group *G* of order *N*:

- + Group-DH scalars are elements of $\mathbb{Z}/N\mathbb{Z}$
- \cdot The group operation in $\mathbb{Z}/N\mathbb{Z}$ is +, not the \times of Group-DH.
- Scalars do *not* form a group under \times .

However, there is a hack relating important special cases. Given a cyclic \mathcal{G} of order *N*, we have a PHS

$$Exp(\mathcal{G}) = (\mathfrak{G}, \mathcal{X}) := ((\mathbb{Z}/N\mathbb{Z})^{\times}, \{P \in \mathcal{G} : \mathcal{G} = \langle P \rangle\})$$

Action: $(\mathfrak{a}, P) \mapsto [\mathfrak{a}]P$.

Now if N is prime (or almost), then

- $\cdot \ \mathsf{VEC}(\mathfrak{G},\mathcal{X}) \iff \mathsf{DLP}(\mathcal{G})$
- $\cdot \operatorname{Par}(\mathfrak{G}, \mathcal{X}) \iff \operatorname{CDHP}(\mathcal{G})$

Obviously, if we can solve VECs

$$(P,Q=\mathfrak{x}\cdot P)\longmapsto \mathfrak{x}\,,$$

then we can solve PARs

$$(P, A = \mathfrak{a} \cdot P, B = \mathfrak{b} \cdot P) \longmapsto S = \mathfrak{ab} \cdot P.$$

Let's focus on VEC for a moment.

We can solve any DLP classically in time $O(\sqrt{N})$ using Pollard's ρ or Shanks' Baby-step giant-step.

We can solve VEC in time $O(\sqrt{N})$ using the same algorithms!

Algorithm 5: Baby-step giant-step in &

Input: g and h in G **Output:** *x* such that $\mathfrak{h} = \mathfrak{g}^{x}$ $1 \beta \leftarrow \left[\sqrt{\#\mathfrak{G}}\right]$ 2 $(\mathfrak{s}_i) \leftarrow (\mathfrak{g}^i : 1 \leq i \leq \beta)$ 3 Sort/hash $((\mathfrak{s}_i, i))_{i=1}^{\beta}$ 4 $\mathfrak{t} \leftarrow \mathfrak{h}$ 5 for *j* in $(1, \ldots, \beta)$ do 6 if $\mathfrak{t} = \mathfrak{s}_i$ for some *i* then 7 return $i - j\beta$ $\mathfrak{t} \leftarrow \mathfrak{g}^{\beta}\mathfrak{t}$ 8

9 return \perp

// Only if $\mathfrak{h} \notin \langle \mathfrak{g} \rangle$

Generic vectorization: Shanks' BSGS in $(\mathfrak{G}, \mathcal{X})$

Algorithm 6: Baby-step giant-step in $(\mathfrak{G}, \mathcal{X})$

Input: *P* and *Q* in \mathcal{X} , and a generator \mathfrak{g} for \mathfrak{G} **Output:** *x* such that $Q = \mathfrak{g}^{X} \cdot P$

- $1 \ \beta \leftarrow \lceil \sqrt{\#\mathfrak{G}} \rceil$ $2 \ (P_i) \leftarrow (\mathfrak{g}^i \cdot P : 1 \le i \le \beta)$ $2 \ \text{Cort} (\text{hash} ((P_i)))^{\beta}$
- ³ Sort/hash $((P_i, i))_{i=1}^{\beta}$
- 4 $T \leftarrow Q$
- 5 for j in $(1,\ldots,\beta)$ do
- 6 if $T = P_i$ for some *i* then
- 7 return $i j\beta$
- $\mathbf{8} \quad \left[\begin{array}{c} \mathbf{T} \leftarrow \mathbf{\mathfrak{g}}^{\beta} \cdot \mathbf{T} \end{array} \right]$

9 return \perp

// Only if $Q \notin \langle \mathfrak{e} \rangle \cdot P$

Shor's algorithm solves DLP in polynomial time, but **not** VEC.

VEC is an instance of the abelian hidden shift problem. Solve using (variants of) Kuperberg's algorithm in quantum subexponential time $L_N(1/2)$.

- \implies upper bound for quantum VEC hardness is $L_N(1/2)$.
- \implies upper bound for quantum PAR hardness is $L_N(1/2)$.

In a sense, BSGS and Pollard ρ are actually **PHS algorithms** (with \mathfrak{G} acting on itself), not group algorithms!

Quantum equivalence of Vec and Par

Galbraith−Panny–S.–Vercauteren (2019): Unconditional quantum polynomial equivalence PAR ↔ VEC.

VEC \implies PAR: obvious. PAR \implies VEC: quantum PAR circuit $(P, \mathfrak{a} \cdot P, \mathfrak{b} \cdot P) \mapsto \mathfrak{ab} \cdot P$ gives \mathcal{X} an implicit group structure.

- We can compute a basis {g₁,..., g_r} for 𝔅 using Kitaev/Shor (if not already known)
- 2. The map $\mu : (x_1, \dots, x_r, y) \mapsto (\prod_i \mathfrak{g}_i^{x_i}) \cdot \mathfrak{a}^y \cdot P$ is a homomorphism $(\mathbb{Z}^r \times \mathbb{Z}) \to \mathcal{X}$ (implicit group).
- 3. Evaluate $(y, \mathfrak{a} \cdot P) \mapsto \mathfrak{a}^{y} \cdot P$, hence μ , using $\Theta(\log n)$ PARS
- 4. Computing ker $\mu = \{(x_1, \dots, x_r, y) : \mathfrak{g}_1^{x_1} \cdots \mathfrak{g}_r^{x_r} \mathfrak{a}^y = 1_{\mathfrak{G}}\}$ is a hidden subgroup problem (Shor again);
- 5. Any $(a_1, \ldots, a_r, 1)$ in ker μ gives a representation $\mathfrak{a} = \prod_i \mathfrak{g}_i^{a_i}$.

Curiously, in the classical setting we don't have PAR \implies VEC.

Compare with classical CDHP \implies DLP, where we have a standard **black-box field** approach:

- 1. Reduce to prime order case (Pohlig-Hellman algorithm);
- 2. View \mathfrak{G} as a representation of \mathbb{F}_p via $\mathfrak{G} \ni \mathfrak{g}^a \leftrightarrow a \in \mathbb{F}_p$;
 - for +, use group operation $(\mathfrak{g}^a, \mathfrak{g}^b) \mapsto \mathfrak{g}^a \mathfrak{g}^b = \mathfrak{g}^{a+b}$
 - · for \times , use \mathfrak{G} -DH oracle $(\mathfrak{g}, \mathfrak{g}^a, \mathfrak{g}^b) \mapsto \mathfrak{g}^{ab}$

3. den Boer, Maurer, Wolf: conditional polynomial reduction.

Does not work for PAR \implies VEC because $(P, \mathfrak{a} \cdot P, \mathfrak{b} \cdot P) \mapsto \mathfrak{ab} \cdot P$ oracle yields a group structure on \mathcal{X} , not a field structure.

The **Pohlig–Hellman** algorithm exploits subgroups of \mathfrak{G} to solve DLP instances in time $\widetilde{O}(\sqrt{\text{largest prime factor of } \#\mathfrak{G}})$.

Simplest case: $\#\mathfrak{G} = \prod_i \ell_i$, with the ℓ_i prime. To find x such that $\mathfrak{h} = \mathfrak{g}^x$, for each *i* we

- 1. compute $\mathfrak{h}_i \leftarrow \mathfrak{h}^{m_i}$ and $\mathfrak{g}_i \leftarrow \mathfrak{g}^{m_i}$, where $m_i = \#\mathfrak{G}/\ell_i$;
- 2. compute x_i such that $\mathfrak{h}_i = \mathfrak{g}_i^{x_i}$ (DLP in order- ℓ_i subgroup)

We then recover x from the (x_i, ℓ_i) using the CRT.

Problem: the **HHS analogue of Step 1 is supposedly hard**! (Computing $Q_i = \mathfrak{g}^i \cdot P$ where $Q = \mathfrak{g} \cdot P$ is an instance of PAR.) Funny: We don't know how to use the structure of \mathfrak{G} to accelerate algorithms for VEC or PAR in $(\mathfrak{G}, \mathcal{X})$.

Surprise: classical acceleration shouldn't exist in general. Why?

- Choose p from a family of primes such that the largest prime factor of p 1 is in o(p).
- Now take a black-box group \mathcal{G} of order p.
- Shoup's theorem: $DLP(\mathcal{G})$ is in $\Theta(\sqrt{p})$.
- The Group-DH \rightarrow HHS-DH "hack" above yields a HHS $(\mathfrak{G}, \mathcal{X}) = \operatorname{Exp}(\mathcal{G}) = ((\mathbb{Z}/p\mathbb{Z})^{\times}, \mathcal{G} \setminus \{0\}).$
- Now $\#\mathfrak{G} = p 1$, whose prime factors are in o(p), so classical subgroup DLPs and VECs are in $o(\sqrt{p})$; a HHS Pohlig-Hellman analogue would **contradict Shoup**.

Isogeny-based key exchange: A concrete HHS Couveignes suggested a **concrete example** of an HHS, based on isogeny classes of elliptic curves.

Comparison with **DLP**-based elliptic curve crypto:

	Pre-quantum	Post-quantum
	Conventional ECC	lsogeny HHS
Universe	One elliptic curve ${\cal E}$	One isogeny class ${\mathcal X}$
Elements	Points P and Q in ${\cal E}$	Curves ${\mathcal E}$ and ${\mathcal F}$ in ${\mathcal X}$
Relations	DLP: Q = [x]P	Isogeny: $\phi: \mathcal{E} \to \mathcal{F}$

- An **isogeny** is just a nonzero homomorphism of elliptic curves. Geometrically, isogenies = nonconstant algebraic mappings.
- Existence of isogenies between curves is an **equivalence relation**, so we can talk about **isogeny classes** of curves.
- An endomorphism is a homomorphism from a curve to itself.
- The endomorphisms of a given curve form a ring.
- Isogeny classes decompose into subclasses of curves with isomorphic endomorphism rings.

Couveignes' HHS: Class groups acting on isogeny classes

A Well-understood PHS from **complex multiplication** theory.

- **The group:** $\mathfrak{G} = \operatorname{Cl}(O_K)$, the group of ideal classes of a quadratic imaginary field *K*
- **The space:** $\mathcal{X} =$ the set of (\mathbb{F}_q -isomorphism classes of) elliptic curves \mathcal{E}/\mathbb{F}_q with $\operatorname{End}(\mathcal{E}) \cong O_K$.
- **The action:** Ideals in O_K correspond to **isogenies**, which take us from one curve to another.

We have $\#\mathfrak{G} = \#\mathcal{X} \sim \sqrt{|\Delta|}$, where $\Delta = \operatorname{disc}(\mathcal{O}_{\mathcal{K}}) \sim q$.

Why is this a HHS? When $\#\mathfrak{G} \sim \sqrt{q}$,

- The best known classical solution to VEC is in $O(q^{1/4})$.
- The best known quantum solution to VEC is in $L_q(1/2)$.

The action of an ideal (class) $\mathfrak{a} \subset O_K$ on a curve (class) $\mathcal{E} \in \mathcal{X}$: Suppose \mathfrak{a} is an integral ideal.

- 1. We can identify $\operatorname{End}(\mathcal{E})$ with O_K , so $\mathfrak{a} \subset \operatorname{End}(\mathcal{E})$.
- 2. Then \mathcal{E} has a subgroup $\mathcal{E}[\mathfrak{a}] = \{P \in \mathcal{E} : \psi(P) = 0 \quad \forall \psi \in \mathfrak{a}\}$
- We can compute a quotient isogeny φ : E → E/E[𝔅]. We let 𝔅 ⋅ E be the quotient curve E/E[𝔅];

This is all well-defined up to isomorphism.

 $\mathfrak{a} = (\phi)$ principal $\implies \phi \in \operatorname{End}(\mathcal{E})$, so $\mathfrak{a} \cdot \mathcal{E} = \mathcal{E}$. So: action extends to fractional ideals, factors through $\operatorname{Cl}(O_K)$. We need to be able to compute this action efficiently for random-looking \mathfrak{a} in $\operatorname{Cl}(O_K)$.

Bad news: Computing the isogenous $a \cdot E$ directly, by computing the quotient isogeny, is **exponential** in N(a).

Couveignes suggested using LLL to compute an equivalent $\prod_i \mathfrak{l}_i^{e_i} \sim \mathfrak{a}$ with each $N(\mathfrak{l}_i)$ small, then act with the \mathfrak{l}_i in serial. Each small ideal \mathfrak{l}_i acts as an isogeny of degree $\ell_i = \text{Norm}(\mathfrak{l}_i)$, called an ℓ_i -isogeny.

What happened?

1997: Couveignes submitted to Crypto; rejected. Later published in French, in an obscure special SMF issue.

QUELQUES MATHÉMATIQUES DE LA CRYPTOLOGIE À CLÉS PUBLIQUES

par

Jean-Marc Couveignes

 $R\acute{e}sum\acute{e}.$ Cette note présente quelques développements mathématiques plus ou moins récents de la cryptologie à clés publiques.

Abstract (A few mathematical tools for public key cryptology)

I present examples of mathematical objects that are of interest for public key cryptography.

1997: Couveignes submitted to Crypto; rejected. Later published in French, in an obscure special SMF issue. ≅ Unknown/Forgotten.

2006: Rostovtsev and Stolbunov independently rediscover isogeny-based key exchange.

The (minor) essential difference:

Couveignes samples a secret \mathfrak{a} in $\operatorname{Cl}(O_{\mathcal{K}})$ and smooths to $\prod_{i} \mathfrak{l}_{i}^{e_{i}}$;

Rostovtsev–Stolbunov sample a smooth product $\prod_i l_i^{e_i}$ directly, and hope this distribution is very close to uniform on $Cl(O_K)$.

Rostovtsev and Stolbunov sample exponent vectors (e_1, \ldots, e_r) as secret keys, corresponding to ideal products $\prod_i \mathfrak{l}_i^{e_i}$.

- Act e_1 times by l_1 , then
- act e_2 times by l_2 , then
- ...

Actions expressed as random walks in isogeny graphs.

For each prime ℓ , restrict to ℓ -isogeny graphs:

- vertices = \mathcal{X} ,
- edges = isogenies of degree l
 (corresponding to actions of ideals l of norm l).

- 1. A walk of length e_1 in the ℓ_1 -isogeny graph, then
- 2. A walk of length e_2 in the ℓ_2 -isogeny graph, then
- 3. A walk of length e_3 in the ℓ_3 -isogeny graph,
- 4. More walks ...

From Rostovtsev-Stolbunov to SIDH and back

Plain Rostovtsev–Stolbunov: **totally impractical** key exchange. This prompted Jao & De Feo's **SIDH** (Supersingular Isogeny DH)

- Uses only tiny-degree isogenies (fast)
- \cdot between curves with quaternionic endomorphism rings
- forming isogeny graphs that are expanders

SIDH is cool, but it has some disadvantages:

- 1. Static key exchange (long term keys) is unsafe
- 2. The API doesn't match Diffie–Hellman (e.g. Alice and Bob's public keys don't have the same type).

Our idea: go back and **improve Rostovtsev–Stolbunov**.

De Feo-Kieffer-S. (Asiacrypt 2018): algorithmic improvements and security proofs.

- Use ordinary curves, following Couveignes and Stolbunov.
- Faster isogeny steps when $\mathcal{E}[\mathfrak{l}_i]$ has rational points.
- **Problem**: no efficient algorithm to construct ordinary \mathcal{E} with a point of degree ℓ for hundreds of very small ℓ .

Towards practical isogeny key exchange

Castryck et al. (Asiacrypt 2018): CSIDH.

- Solves the parametrization problem by using supersingular curves over \mathbb{F}_p .
- Supersingular curves are easy to construct. Order p + 1, so choose p s.t. $\ell \mid (p + 1)$ for lots of small ℓ .

\implies Practical isogeny-based Diffie-Hellman.

Keysize = $\log_2 p$	Classical queries	Quantum queries*
512	128	62
1024	256	94
1792	448	129

*Claimed by CSIDH authors. Precise quantum query counts and costs are the subject of current research and debate.

- In CSIDH, isogeny-based crypto now has a practical postquantum drop-in replacement for Diffie-Hellman. Can also be used for OT; no practical signatures though.
- Couveignes' Hard Homogeneous Spaces framework helps to model postquantum DH protocols on an abstract level, without understanding the mechanics of isogenies
- Pre- and post-quantum DH have the same "API", but **HHS-DH does not respect Group-DH intuitition**.

We want to **solve a DLP** instance $\mathfrak{h} = \mathfrak{g}^{X}$ in \mathfrak{G} of prime order p, **given a DH oracle** for \mathfrak{G} (so we can compute $\mathfrak{g}^{F(X)}$, \forall poly F):

- Find an *E*/𝔽_p s.t. *E*(𝔽_p) has polynomially smooth order² and compute a generator (x₀, y₀) for *E*(𝔽_p). *Pohlig–Hellman: solve DLPs in E*(𝔽_p) *in polynomial time.*
- 2. Use Tonelli–Shanks to compute a \mathfrak{g}^{y} s.t. $\mathfrak{g}^{y^{2}} = \mathfrak{g}^{x^{3}+ax+b}$. If this fails: replace $\mathfrak{h} = \mathfrak{g}^{x}$ with $\mathfrak{hg}^{\delta} = \mathfrak{g}^{x+\delta}$ and try again... Now $(\mathfrak{g}^{x}, \mathfrak{g}^{y})$ is a point in $\mathcal{E}(\mathfrak{G})$; we still don't know x or y.
- 3. Solve the DLP instance $(\mathfrak{g}^{\chi},\mathfrak{g}^{y}) = [e](\mathfrak{g}^{\chi_{0}},\mathfrak{g}^{y_{0}})$ in $\mathcal{E}(\mathfrak{G})$ for e.
- 4. Compute $(x, y) = [e](x_0, y_0)$ in $\mathcal{E}(\mathbb{F}_p)$ and return x.

²This is the tricky part! Seems to work in practice for cryptographically useful p, even in not in theory for arbitrary p.