MDS Matrices with Lightweight Circuits

Sébastien Duval
Gaëtan Leurent

Sebastien.Duval@inria.fr

February 14, 2019

Security of Block Ciphers

Shannon's criteria

1 Diffusion

- Every bit of plaintext and key must affect every bit of the output
- We usually use linear functions

2 Confusion

- Relation between plaintext and ciphertext must be intractable
- Requires non-linear operations
- Often implemented with tables: S-Boxes

SPN Ciphers

Differential Branch Number

$$
\mathcal{B}_{d}(L)=\min _{x \neq 0}\{w(x)+w(L(x))\}
$$

Linear Branch Number

$$
\mathcal{B}_{l}(L)=\min _{x \neq 0}\left\{w(x)+w\left(L^{\top}(x)\right)\right\}
$$

SPN Ciphers

Differential Branch Number

$$
\mathcal{B}_{d}(L)=\min _{x \neq 0}\{w(x)+w(L(x))\}
$$

SPN Ciphers

Differential Branch Number

$$
\mathcal{B}_{d}(L)=\min _{x \neq 0}\{w(x)+w(L(x))\}
$$

Linear Branch Number

$$
\mathcal{B}_{l}(L)=\min _{x \neq 0}\left\{w(x)+w\left(L^{\top}(x)\right)\right\}
$$

Maximum branch number : $k+1$ Can be obtained from MDS codes

Diffusion Matrices

Usually on finite fields: x a primitive element of $\mathbb{F}_{2^{n}}$
$\left[\begin{array}{llll}2 & 3 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 3 \\ 3 & 1 & 1 & 2\end{array}\right]$
$2 \leftrightarrow x$
$3 \leftrightarrow x+1$
Coeffs. = polynomials in x with binary coefficients
i.e. coeffs. $\in \mathbb{F}_{2}[x] / P$, with P a primitive polynomial

Characterization

L is MDS iff its minors are non-zero

Going Lightweight

lightweight cipher $=$ lightweight S-Boxes + lightweight diffusion matrix
Focus on the diffusion function

Goal: Find lightweight MDS matrix

Main approaches:
Optimize existing ciphers: MDS matrix \rightarrow reduce cost (AES MixColumns)
New ciphers: lightweight by design

Previous Works

Recursive Matrices

Guo, Peyrin and Poschmann in PHOTON (used in LED)
A lightweight matrix
$A^{i} \mathrm{MDS}$
Implement A, then iterate $A i$ times.

Optimizing Coefficients

Structured matrices: restrict to a small subspace with many MDS matrices
More general than finite fields: less costly operations than multiplication in a finite field

Cost Evaluation

Previous work: Number of XORS + sum of cost of each coefficient Drawback: Cannot reuse intermediate values Our approach: Global optimization as a circuit
$\left[\begin{array}{lll}3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3\end{array}\right]$

Previous: $\left\{\begin{array}{l}6 \text { mult. by } 2 \\ 3 \text { mult. by } 3 \\ 6 \text { XORS }\end{array}\right.$
New: $\left\{\begin{array}{l}1 \text { mult. by } 2 \\ 5 \text { XORS }\end{array}\right.$

Formal Matrices

Finite fields \rightarrow polynomial ring α linear mapping on $\mathbb{F}_{2^{n}}$ Coefficients $\in \mathbb{F}_{2}[\alpha]$ i.e. polynomials in α with coeffs. in \mathbb{F}_{2}

Formal Matrices

Finite fields \rightarrow polynomial ring

α linear mapping on $\mathbb{F}_{2^{n}}$
Coefficients $\in \mathbb{F}_{2}[\alpha]$
i.e. polynomials in α with coeffs. in \mathbb{F}_{2}

Formal matrices

α undefined formal coefficients/matrix

Objective: find $M(\alpha)$ s.t. $\exists A, M(A)$ MDS

MDS Characterization of Formal Matrices

MDS Characterization

Maximal branch number iff the minors are non-zero (call it formal MDS) Caution: minors are polynomials in α $M(\alpha)$ formal $M D S \Leftrightarrow \exists A, M(A)$ MDS

Objective

Find $M(\alpha)$ formal MDS and lightweight
Fix n
Find A linear mapping over $\mathbb{F}_{2^{n}}$ lightweight s.t. $M(A)$ MDS

Algorithm

Exhaustive search over circuits

Search Space
 MDS matrices of sizes 3×3 and 4×4

For any word size n
Operations:
word-wise XOR
α (generalization of a multiplication)
Copy
r registers: one register per word (3 for 3×3)

+ (at least) one more register \rightarrow more complex operations
Very costly

Implementation: Main Idea

Graph-based search

Node = matrix = sequence of operations
Lightest implementation = shortest path to MDS matrix
When we spawn a node, we test if it is MDS

Representation

$k \times r$ matrix, coefficients are polynomials in $\mathbb{F}_{2}[\alpha]$

Optimizations: Cut Useless Branches

Limit use of Copy

After copy, force use of the copied value

Optimizations: Cut Useless Branches

Limit use of Copy

After copy, force use of the copied value

Set up Boundaries

Choose maximum cost and maximum depth for circuits

+ many more optimizations to save memory (at the cost of computation time)

Optimizations: A*

A^{*}

Idea of \boldsymbol{A}^{*}
Guided Dijkstra
weight $=$ weight from origin + estimated weight to objective

Optimizations: A*

A^{*}

Idea of \boldsymbol{A}^{*}
Guided Dijkstra
weight $=$ weight from origin + estimated weight to objective
Our estimate:

Optimizations: A*

A^{*}

Idea of \boldsymbol{A}^{*}
Guided Dijkstra
weight $=$ weight from origin + estimated weight to objective
Our estimate:

Heuristic

How far from MDS ?

Optimizations: A^{*}

A^{*}

Idea of \boldsymbol{A}^{*}
Guided Dijkstra
weight $=$ weight from origin + estimated weight to objective
Our estimate:
Heuristic
How far from MDS ?
Column with a 0: cannot be part of MDS matrix

Optimizations: A^{*}

A^{*}

Idea of \boldsymbol{A}^{*}
Guided Dijkstra
weight $=$ weight from origin + estimated weight to objective
Our estimate:
Heuristic
How far from MDS ?
Column with a 0: cannot be part of MDS matrix
Linearly dependent columns: not part of MDS matrix

Optimizations: A^{*}

A*
Idea of \boldsymbol{A}^{*}
Guided Dijkstra
weight $=$ weight from origin + estimated weight to objective
Our estimate:
Heuristic
How far from MDS ?
Column with a 0: cannot be part of MDS matrix
Linearly dependent columns: not part of MDS matrix
Estimate: $m=$ rank of the matrix (without columns containing 0)
Need at least $k-m$ word-wise XORs to MDS
Result: much faster

Optimizations: Use Equivalence

TestedNodes: list of all nodes that have been tested for MDS
UntestedNodes: list of all untested nodes

Optimizations: Use Equivalence

TestedNodes: list of all nodes that have been tested for MDS
UntestedNodes: list of all untested nodes
Next node $=$ minimal weight/depth node

Optimizations: Use Equivalence

TestedNodes: list of all nodes that have been tested for MDS
UntestedNodes: list of all untested nodes
Next node = minimal weight/depth node When we test a node M :

Optimizations: Use Equivalence

TestedNodes: list of all nodes that have been tested for MDS
UntestedNodes: list of all untested nodes
Next node = minimal weight/depth node When we test a node M :
$M \in$ TestedNodes \rightarrow skip

Optimizations: Use Equivalence

TestedNodes: list of all nodes that have been tested for MDS
UntestedNodes: list of all untested nodes
Next node = minimal weight/depth node
When we test a node M :
$M \in$ TestedNodes \rightarrow skip
MDS? true \rightarrow END
MDS? false \rightarrow spawn all children nodes in UntestedNodes

Optimizations: Use Equivalence

TestedNodes: list of all nodes that have been tested for MDS
UntestedNodes: list of all untested nodes
Next node = minimal weight/depth node
When we test a node M :
$M \in$ TestedNodes \rightarrow skip
MDS? true \rightarrow END
MDS? false \rightarrow spawn all children nodes in UntestedNodes
Add M to TestedNodes

Optimizations: Use Equivalence

TestedNodes: list of all nodes that have been tested for MDS
UntestedNodes: list of all untested nodes
Next node = minimal weight/depth node
When we test a node M :
$M \in$ TestedNodes \rightarrow skip
MDS? true \rightarrow END
MDS? false \rightarrow spawn all children nodes in UntestedNodes
Add M to TestedNodes

Use Equivalence

Matrices are equivalent up to reordering of input/output words Use unique ID for equivalent nodes
Store TestedIDs rather than TestedNodes

Extensions

Additional Read-only Registers

Allow for use of the input values of the function at any time

Inverse

Allow use of α^{-1}
Powers
Allow use of α^{2}

Independent Operations

Allow use of 3 independent linear operations α, β, γ

3×3 MDS Search

Depth	Cost	Extensions	Memory
4	5 XOR, 1 LIN		14
3	5 XOR, 2 LIN		5
2	6 XOR, 3 LIN	RO_IN	4

Table: Optimal 3×3 MDS matrices (all results are obtained in less than 1 second, memory is given in MB).

3×3 MDS Matrices

3×3 MDS Matrices

Depth	Cost	M	Fig.

3 XOR, 2 LIN $M_{3,3}^{5,2}=\left[\begin{array}{lll}3 & 1 & 3 \\ 1 & 1 & 2 \\ 2 & 1 & 1\end{array}\right]$

4×4 MDS Matrices

Depth	Cost	Extensions	Memory (GB)	Time (h)
6	8 XOR, 3 LIN		30.9	19.5
5	8 XOR, 3 LIN	INDEP	24.3	2.3
5	9 XOR, 3 LIN		154.5	25.6
4	8 XOR, 4 LIN	MAX_POW $=2$	274	30.2
4	9 XOR, 3 LIN	INDEP	46	4.5
4	9 XOR, 4 LIN		77.7	12.8
3	9 XOR, 5 LIN	INv	279.1	38.5

Table: Optimal 4×4 MDS matrices.

4×4 MDS Matrices

Depth	Cost

1 \& 3 \& 6 \& 4

2 \& 2 \& 3 \& 1

3 \& 2 \& 1 \& 3\end{array}\right]\)

4×4 MDS Matrices

Depth
Cost
M

$$
M_{4,5}^{9,3}=\left[\begin{array}{llll}
2 & 2 & 3 & 1 \\
1 & 3 & 6 & 4 \\
3 & 1 & 4 & 4 \\
3 & 2 & 1 & 3
\end{array}\right]
$$

4×4 MDS Matrices

4×4 MDS Matrices

Depth Cost M Fig.
$4 \quad 9$ XOR, 3 LIN $M_{4,4}^{9,3}=\left[\begin{array}{cccc}\alpha+1 & \alpha & \gamma+1 & \gamma+1 \\ \beta & \beta+1 & 1 & \beta \\ 1 & 1 & \gamma & \gamma+1 \\ \alpha & \alpha+1 & \gamma+1 & \gamma\end{array}\right]$

49 XOR, 4 LIN $\quad M_{4,4}^{9,4}=\left[\begin{array}{llll}1 & 2 & 4 & 3 \\ 2 & 3 & 2 & 3 \\ 3 & 3 & 5 & 1 \\ 3 & 1 & 1 & 3\end{array}\right]$

4×4 MDS Matrices

From Formal Matrices to Instances

The Idea

1 Input: Formal matrix $M(\alpha)$ MDS
2 Output: $M(A)$ MDS, with A a linear mapping (the lightest we can find)

Characterization of MDS Instantiations

MDS Test

Intuitive approach:
1 Choose A a linear mapping
2 Evaluate $M(A)$
3 See if all minors are non-zero

Characterization of MDS Instantiations

MDS Test

Intuitive approach:
1 Choose A a linear mapping
2 Evaluate $M(A)$
3 See if all minors are non-zero
We can start by computing the minors:
1 Let I, J subsets of the lines and columns
2 Define $m_{l, J}=\operatorname{det}_{\mathbb{F}_{2}[\alpha]}\left(M_{l, J}\right)$
$3 M(A)$ is MDS iff all $m_{l, J}(A)$ are non-zero

Characterization of MDS Instantiations

MDS Test

Intuitive approach:
1 Choose A a linear mapping
2 Evaluate $M(A)$
3 See if all minors are non-zero
We can start by computing the minors:
1 Let I, J subsets of the lines and columns
2 Define $m_{l, J}=\operatorname{det}_{\mathbb{F}_{2}[\alpha]}\left(M_{l, J}\right)$
$3 M(A)$ is MDS iff all $m_{l, J}(A)$ are non-zero
With the minimal polynomial
1 Let μ_{A} the minimal polynomial of A
$2 M(A)$ is MDS iff $\forall(I, J), \operatorname{gcd}\left(\mu_{A}, m_{l, J}\right)=1$

General Idea of Instantiation

We want A s.t. $\forall(I, J), \operatorname{gcd}\left(\mu_{A}, m_{l, J}\right)=1$

General Idea of Instantiation

We want A s.t. $\forall(I, J), \operatorname{gcd}\left(\mu_{A}, m_{l, J}\right)=1$
Easy Way to Instantiate: Multiplications

$$
d>\max _{I, J}\left\{\operatorname{deg}\left(m_{l, J}\right)\right\}
$$

General Idea of Instantiation

We want A s.t. $\forall(I, J), \operatorname{gcd}\left(\mu_{A}, m_{l, J}\right)=1$
Easy Way to Instantiate: Multiplications
$d>\max _{I, J}\left\{\operatorname{deg}\left(m_{l, J}\right)\right\}$
Choose π an irreducible polynomial of degree d

General Idea of Instantiation

We want A s.t. $\forall(I, J), \operatorname{gcd}\left(\mu_{A}, m_{l, J}\right)=1$
Easy Way to Instantiate: Multiplications
$d>\max _{I, J}\left\{\operatorname{deg}\left(m_{I, J}\right)\right\}$
Choose π an irreducible polynomial of degree d π is relatively prime with all $m_{l, J}$

General Idea of Instantiation

We want A s.t. $\forall(I, J), \operatorname{gcd}\left(\mu_{A}, m_{l, J}\right)=1$
Easy Way to Instantiate: Multiplications
$d>\max _{I, J}\left\{\operatorname{deg}\left(m_{l, J}\right)\right\}$
Choose π an irreducible polynomial of degree d
π is relatively prime with all $m_{l, J}$
Take $A=$ companion matrix of π

General Idea of Instantiation

We want A s.t. $\forall(I, J), \operatorname{gcd}\left(\mu_{A}, m_{l, J}\right)=1$
Easy Way to Instantiate: Multiplications
$d>\max _{I, J}\left\{\operatorname{deg}\left(m_{l, J}\right)\right\}$
Choose π an irreducible polynomial of degree d
π is relatively prime with all $m_{l, J}$
Take $A=$ companion matrix of π
A corresponds to a finite field multiplication

General Idea of Instantiation

We want A s.t. $\forall(I, J), \operatorname{gcd}\left(\mu_{A}, m_{l, J}\right)=1$
Easy Way to Instantiate: Multiplications
$d>\max _{I, J}\left\{\operatorname{deg}\left(m_{l, J}\right)\right\}$
Choose π an irreducible polynomial of degree d
π is relatively prime with all $m_{l, J}$
Take $A=$ companion matrix of π
A corresponds to a finite field multiplication

Low Cost Instantiation

Pick π with few coefficients: a trinomial requires 1 rotation +1 binary xor If using A^{-1} or A^{2}, make sure they are lightweight too

Concrete Choices of A

We need to fix the size

Branches of size 4 bits $\left(\mathbb{F}_{2^{4}}\right)$
(companion matrix of $X^{4}+X+1$ (irreducible))

$$
\begin{aligned}
& \left.x^{8}+X^{\text {(companion matrix of }}+1=\left(X^{4}+X+1\right)^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (minimal polynomial is } X^{4}+X^{3}+1 \text {) }
\end{aligned}
$$

Branches of size 8 bits $\left(\mathbb{F}_{2^{8}}\right)$
(minimal polynomial is $X^{8}+X^{6}+1$)

Example of Instantiation: \mathbb{F}^{28}

$\ln \mathbb{F}_{2}^{8}$, the trinomials and their factorization are

$$
\begin{aligned}
& X^{8}+X+1=\left(X^{2}+X+1\right)\left(X^{6}+X^{5}+X^{3}+X^{2}+1\right), \\
& X^{8}+X^{2}+1=\left(X^{4}+X+1\right)^{2}, \\
& X^{8}+X^{3}+1=\left(X^{3}+X+1\right)\left(X^{5}+X^{3}+X^{2}+X+1\right), \\
& X^{8}+X^{4}+1=\left(X^{2}+X+1\right)^{4}, \\
& X^{8}+X^{5}+1=\left(X^{3}+X^{2}+1\right)\left(X^{5}+X^{4}+X^{3}+X^{2}+1\right), \\
& X^{8}+X^{6}+1=\left(X^{4}+X^{3}+1\right)^{2}, \\
& X^{8}+X^{7}+1=\left(X^{2}+X+1\right)\left(X^{6}+X^{4}+X^{3}+X+1\right) .
\end{aligned}
$$

In particular, there are only 2 trinomials which factorize to degree 4 polynomials: $X^{8}+X^{2}+1=\left(X^{4}+X+1\right)^{2}$ and $X^{8}+X^{6}+1=\left(X^{4}+X^{3}+1\right)^{2}$.

Example of Instantiation: \mathbb{F}^{28}

$\ln \mathbb{F}_{2}^{8}$, the trinomials and their factorization are

$$
\begin{aligned}
& X^{8}+X+1=\left(X^{2}+X+1\right)\left(X^{6}+X^{5}+X^{3}+X^{2}+1\right), \\
& X^{8}+X^{2}+1=\left(X^{4}+X+1\right)^{2}, \\
& X^{8}+X^{3}+1=\left(X^{3}+X+1\right)\left(X^{5}+X^{3}+X^{2}+X+1\right), \\
& X^{8}+X^{4}+1=\left(X^{2}+X+1\right)^{4}, \\
& X^{8}+X^{5}+1=\left(X^{3}+X^{2}+1\right)\left(X^{5}+X^{4}+X^{3}+X^{2}+1\right), \\
& X^{8}+X^{6}+1=\left(X^{4}+X^{3}+1\right)^{2}, \\
& X^{8}+X^{7}+1=\left(X^{2}+X+1\right)\left(X^{6}+X^{4}+X^{3}+X+1\right) .
\end{aligned}
$$

In particular, there are only 2 trinomials which factorize to degree 4 polynomials: $X^{8}+X^{2}+1=\left(X^{4}+X+1\right)^{2}$ and $X^{8}+X^{6}+1=\left(X^{4}+X^{3}+1\right)^{2}$.

Example of Instantiation: $M_{4,6}^{8,3}$

The minors of $M_{4,6}^{8,3}=\left[\begin{array}{llll}2 & 2 & 3 & 1 \\ 1 & 3 & 6 & 4 \\ 3 & 1 & 4 & 4 \\ 3 & 2 & 1 & 3\end{array}\right]$ are $\left\{1, X, X+1, X^{2}, X^{2}+1, X^{2}+X, X^{2}+X+1, X^{3}, X^{3}+1, X^{3}+X, X^{3}+\right.$ $\left.X+1, X^{3}+X^{2}+1, X^{3}+X^{2}+X, X^{3}+X^{2}+X+1\right\}$
whose factors are

$$
\left\{X, X+1, X^{3}+X+1, X^{2}+X+1, X^{3}+X^{2}+1\right\}
$$

On 4 bits: Degrees $\leq 3 \Rightarrow$ relatively prime with $X^{4}+X+1$ and $X^{4}+X^{3}+1$ because irreducible
$\alpha=A_{4}$ or $\alpha=A_{4}^{-1} \Rightarrow$ MDS matrix over $\mathbb{F}_{2^{4}}$.
On 8 bits: All relatively prime with $X^{8}+X^{2}+1$ and $X^{8}+X^{6}+1$ $\left(\left(X^{4}+X+1\right)^{2}\right.$ and $\left(X^{4}+X^{3}+1\right)^{2}$
$\alpha=A_{8}$ or $\alpha=A_{8}^{-1} \Rightarrow$ MDS matrix over $\mathbb{F}_{2^{8}}$.

Example of Instantiation: $M_{4.4}^{3.4}$

The factors of the minors of $M_{4,4}^{8,4}=\left[\begin{array}{llll}5 & 7 & 1 & 3 \\ 4 & 6 & 1 & 1 \\ 1 & 3 & 5 & 7 \\ 1 & 1 & 4 & 6\end{array}\right]$ are

$$
\left\{X, X+1, X^{3}+X+1, X^{2}+X+1, X^{3}+X^{2}+1, X^{4}+X^{3}+1\right\}
$$

Example of Instantiation: $M_{4,4}^{8,4}$

The factors of the minors of $M_{4,4}^{8,4}=\left[\begin{array}{llll}5 & 7 & 1 & 3 \\ 4 & 6 & 1 & 1 \\ 1 & 3 & 5 & 7 \\ 1 & 1 & 4 & 6\end{array}\right]$ are

$$
\left\{X, X+1, X^{3}+X+1, X^{2}+X+1, X^{3}+X^{2}+1, X^{4}+X^{3}+1\right\}
$$

Factors of degree ≤ 3 relatively prime with $X^{8}+X^{2}+1$ and $X^{8}+X^{6}+1$.

Example of Instantiation: $M_{4,4}^{8,4}$

The factors of the minors of $M_{4,4}^{8,4}=\left[\begin{array}{llll}5 & 7 & 1 & 3 \\ 4 & 6 & 1 & 1 \\ 1 & 3 & 5 & 7 \\ 1 & 1 & 4 & 6\end{array}\right]$ are

$$
\left\{X, X+1, X^{3}+X+1, X^{2}+X+1, X^{3}+X^{2}+1, X^{4}+X^{3}+1\right\}
$$

Factors of degree ≤ 3 relatively prime with $X^{8}+X^{2}+1$ and $X^{8}+X^{6}+1$.
On 4 bits: Not relatively prime with $X^{4}+X^{3}+1$ but all relatively prime with $X^{4}+X+1$. $\alpha=A_{4} \Rightarrow$ MDS matrix over $\mathbb{F}_{2^{4}}$.

Example of Instantiation: $M_{4,4}^{8,4}$

The factors of the minors of $M_{4,4}^{8,4}=\left[\begin{array}{llll}5 & 7 & 1 & 3 \\ 4 & 6 & 1 & 1 \\ 1 & 3 & 5 & 7 \\ 1 & 1 & 4 & 6\end{array}\right]$ are

$$
\left\{X, X+1, X^{3}+X+1, X^{2}+X+1, X^{3}+X^{2}+1, X^{4}+X^{3}+1\right\}
$$

Factors of degree ≤ 3 relatively prime with $X^{8}+X^{2}+1$ and $X^{8}+X^{6}+1$.

On 4 bits: Not relatively prime with $X^{4}+X^{3}+1$ but all relatively prime with $X^{4}+X+1$. $\alpha=A_{4} \Rightarrow$ MDS matrix over $\mathbb{F}_{2^{4}}$.
On 8 bits: Not relatively prime with $X^{8}+X^{6}+1$ but all relatively prime with $X^{8}+X^{2}+1$.
$\alpha=A_{8} \Rightarrow$ MDS matrix over $\mathbb{F}_{2^{8}}$.

Comparison With Existing MDS Matrices

Size	Ring	Matrix	Cost			Ref
			Naive	Best	Depth	
$M_{4}\left(M_{8}\left(\mathbb{F}_{2}\right)\right)$	$G L\left(8, \mathbb{F}_{2}\right)$	Circulant	106			(Li Wang 2016)
	$G L\left(8, \mathbb{F}_{2}\right)$	Hadamard		72	6	(Kranz et al. 2018)
	$\mathbb{F}_{2}[\alpha]$	$M_{4,6}^{8,3}$		67	6	$\alpha=A_{8}$ or A_{8}^{-1}
	$\mathbb{F}_{2}[\alpha]$	$M_{4,5}^{8,3}$		68	5	$\alpha=A_{8}, \beta=A_{8}^{-1}, \gamma=A_{8}^{-2}$
	$\mathbb{F}_{2}[\alpha]$	$M_{4,4}^{8,4}$		70	4	$\alpha=A_{8}$
	$\mathbb{F}_{2}[\alpha]$	$M_{4,3}^{9,5}$		77	3	$\alpha=A_{8}$ or A_{8}^{-1}
$M_{4}\left(M_{4}\left(\mathbb{F}_{2}\right)\right)$	$G F\left(2^{4}\right)$	$M_{4, n, 4}$	58	58	3	(Jean Peyrin Sim 2017)
	$G F\left(2^{4}\right)$	Toeplitz	58	58	3	(Sarkar Syed 2016)
	$G L\left(4, \mathbb{F}_{2}\right)$	Subfield		36	6	(Kranz et al. 2018)
	$\mathbb{F}_{2}[\alpha]$	$M_{4,6}^{8,3}$		35	6	$\alpha=A_{4}$ or A_{4}^{-1}
	$\mathbb{F}_{2}[\alpha]$	$M_{4,5}^{8,3^{-1}}$		36	5	$\alpha=A_{4}, \beta=A_{4}^{-1}, \gamma=A_{4}^{-2}$
	$\mathbb{F}_{2}[\alpha]$	$M_{4,4}^{8,4}$		38	4	$\alpha=A_{4}$
	$\mathbb{F}_{2}[\alpha]$	$M_{4,3}^{9,5}$		41	3	$\alpha=A_{4}$ or A_{4}^{-1}

