MDS Matrices with Lightweight Circuits

Sébastien Duval

Gaëtan Leurent

Sebastien.Duval@inria.fr

February 14, 2019

Introduction ●○○	Lightweight	Our approach	Formal Results	Instantiation	Conclusion o

Security of Block Ciphers

Shannon's criteria

- 1 Diffusion
 - Every bit of plaintext and key must affect every bit of the output
 - We usually use linear functions
- 2 Confusion
 - Relation between plaintext and ciphertext must be intractable
 - Requires non-linear operations
 - Often implemented with tables: S-Boxes

Introduction	Lightweight	Our approach	Formal Results	Instantiation 0000000	Conclusion o
		SPN (Ciphers		

Differential Branch Number

$$\mathcal{B}_d(L) = \min_{x \neq 0} \{ w(x) + w(L(x)) \}$$

Linear Branch Number

$$\mathcal{B}_l(L) = \min_{x \neq 0} \{ w(x) + w(L^\top(x)) \}$$

Introduction	Lightweight	Our approach	Formal Results	Instantiation	Conclusion o
		SPN (Ciphers		

$$\mathcal{B}_d(L) = \min_{x \neq 0} \{ w(x) + w(L(x)) \}$$

Introduction	Lightweight	Our approach	Formal Results	Instantiation 0000000	Conclusion o
		SPN (Ciphers		

Differential Branch Number

$$\mathcal{B}_d(L) = \min_{x \neq 0} \{ w(x) + w(L(x)) \}$$

Linear Branch Number

$$\mathcal{B}_l(L) = \min_{x \neq 0} \{ w(x) + w(L^\top(x)) \}$$

Maximum branch number : k + 1Can be obtained from MDS codes

Introduction	Lightweight	Our approach	Formal Results	Instantiation	Conclusion o
		Diffucion	Matriaga		

Diffusion Matrices

[2	3	1	1]
1	2	3	1
1	1	2	3
3	1	1	2

Usually on finite fields: *x* a primitive element of \mathbb{F}_{2^n} $2 \leftrightarrow x$ $3 \leftrightarrow x + 1$ Coeffs. = polynomials in *x* with binary coefficients *i.e.* coeffs. $\in \mathbb{F}_2[x]/P$, with *P* a primitive polynomial

Characterization

L is MDS iff its minors are non-zero

Introduction	Lightweight ●○○○○	Our approach	Formal Results	Instantiation	Conclusion o
		Going Li	ghtweight		

lightweight cipher = lightweight S-Boxes + lightweight diffusion matrix

Focus on the diffusion function

Goal: Find lightweight MDS matrix

Main approaches:

- ➢ Optimize existing ciphers: MDS matrix → reduce cost (AES MixColumns)
- New ciphers: lightweight by design

Introduction	Lightweight ○●○○○	Our approach	Formal Results	Instantiation	Conclusion o			
Previous Works								

Recursive Matrices

Guo, Peyrin and Poschmann in PHOTON (used in LED) A lightweight matrix A^i MDS Implement A, then iterate A *i* times.

Optimizing Coefficients

- Structured matrices: restrict to a small subspace with many MDS matrices
- More general than finite fields: less costly operations than multiplication in a finite field

Introduction	Lightweight ○○●○○	Our approach	Formal Results	Instantiation	Conclusion o

Cost Evaluation

Previous work: Number of XORS + sum of cost of each coefficient Drawback: Cannot reuse intermediate values Our approach: Global optimization as a circuit

Introduction	Lightweight ○○○●○	Our approach	Formal Results	Instantiation	Conclusion o

Formal Matrices

Finite fields → polynomial ring α linear mapping on F_{2ⁿ} Coefficients ∈ F₂[α] *i.e.* polynomials in α with coeffs. in F₂

Introduction	Lightweight ○○○●○	Our approach	Formal Results	Instantiation	Conclusion o

Formal Matrices

Finite fields \rightarrow polynomial ring

- α linear mapping on \mathbb{F}_{2^n}
- Coefficients $\in \mathbb{F}_2[\alpha]$ *i.e.* polynomials in α with coeffs. in \mathbb{F}_2

Formal matrices

- $\triangleright \alpha$ undefined
- \rightarrow formal coefficients/matrix
- Objective: find $M(\alpha)$ s.t. $\exists A, M(A)$ MDS

Introduction	Lightweight ○○○○●	Our approach	Formal Results	Instantiation	Conclusion o

MDS Characterization of Formal Matrices

MDS Characterization

Maximal branch number iff the minors are non-zero (call it *formal MDS*) <u>Caution</u>: minors are polynomials in α $M(\alpha)$ formal MDS $\Leftrightarrow \exists A, M(A)$ MDS

Objective

- Find $M(\alpha)$ formal MDS and lightweight
- ► Fix n
- Find A linear mapping over \mathbb{F}_{2^n} lightweight *s.t.* M(A) MDS

Introduction	Lightweight	Our approach ●○○○○○	Formal Results	Instantiation	Conclusion o
		Algo	rithm		

- Exhaustive search over circuits
- Search Space
- MDS matrices of sizes 3×3 and 4×4
- For **any** word size *n*
- Operations:
 - word-wise XOR
 - > α (generalization of a multiplication)
 - Copy
- *r* registers: one register per word (3 for 3×3)
- + (at least) one more register \rightarrow more complex operations

Very costly

Introduction	Lightweight	Our approach	Formal Results	Instantiation	Conclusion o
	Im	plementati	on: Main Id	lea	

Graph-based search

- Node = matrix = sequence of operations
- Lightest implementation = shortest path to MDS matrix
- When we spawn a node, we test if it is MDS

Representation

 $k \times r$ matrix, coefficients are polynomials in $\mathbb{F}_2[\alpha]$

Introduction	Lightweight	Our approach	Formal Results	Instantiation	Conclusion O
	Optimiza	ations: Cu	t Useless B	ranches	

Limit use of Copy

After copy, force use of the copied value

Introduction	Lightweight	Our approach	Formal Results	Instantiation 0000000	Conclusion o
	Optimiza	ations: Cu	t Useless B	ranches	

Limit use of Copy

After copy, force use of the copied value

Set up Boundaries

Choose maximum cost and maximum depth for circuits

+ many more optimizations to save memory (at the cost of computation time)

Introduction	Lightweight	Our approach	Formal Results	Instantiation	Conclusion o
		Optimiza	ations: <i>A</i> *		

A*

Guided Dijkstra

weight = weight from origin + estimated weight to objective

Introduction	Lightweight	Our approach	Formal Results	Instantiation	Conclusion o
		Optimiza	ations: A*		

A*

- Guided Dijkstra
- weight = weight from origin + estimated weight to objective

Our estimate:

Introduction	Lightweight	Our approach	Formal Results	Instantiation	Conclusion o
		Optimiza	ations: A*		

A*

- Guided Dijkstra
- weight = weight from origin + estimated weight to objective
- Our estimate:
 - Heuristic
 - How far from MDS ?

Introduction	Lightweight	Our approach	Formal Results	Instantiation	Conclusion o
		Optimiza	ations: A*		

A*

- Guided Dijkstra
- weight = weight from origin + estimated weight to objective
- Our estimate:
 - Heuristic
 - How far from MDS ?
 - Column with a 0: cannot be part of MDS matrix

Introduction	Lightweight	Our approach	Formal Results	Instantiation	Conclusion o
		Optimiza	ations: A*		

A*

- Guided Dijkstra
- weight = weight from origin + estimated weight to objective
- Our estimate:
 - Heuristic
 - How far from MDS ?
 - Column with a 0: cannot be part of MDS matrix
 - Linearly dependent columns: not part of MDS matrix

Introduction	Lightweight	Our approach	Formal Results	Instantiation	Conclusion o
		Optimiza	ations: A*		

A*

- Guided Dijkstra
- weight = weight from origin + estimated weight to objective
- Our estimate:
 - Heuristic
 - How far from MDS ?
 - Column with a 0: cannot be part of MDS matrix
 - Linearly dependent columns: not part of MDS matrix
 - Estimate: m = rank of the matrix (without columns containing 0)
 - Need at least k m word-wise XORs to MDS

Result: much faster

S. Duval, G. Leurent

Introduction	Lightweight	Our approach	Formal Results	Instantiation	Conclusion o
	Optin	nizations: I	Use Equiva	lence	

- TestedNodes: list of all nodes that have been tested for MDS
- UntestedNodes: list of all untested nodes

Introduction	Lightweight 00000	Our approach	Formal Results	Instantiation 0000000	Conclusion o
	Optin	nizations:	Use Equiva	lence	

- TestedNodes: list of all nodes that have been tested for MDS
- UntestedNodes: list of all untested nodes

Next node = minimal weight/depth node

Introduction	Lightweight 00000	Our approach	Formal Results	Instantiation 0000000	Conclusion o
	Optin	nizations: I	Use Equiva	lence	

- TestedNodes: list of all nodes that have been tested for MDS
- UntestedNodes: list of all untested nodes

Introduction	Lightweight	Our approach	Formal Results	Instantiation	Conclusion o
	Optin	nizations:	Use Equiva	lence	

- TestedNodes: list of all nodes that have been tested for MDS
- UntestedNodes: list of all untested nodes

▶ $M \in \texttt{TestedNodes} \rightarrow \texttt{skip}$

Introduction	Lightweight	Our approach	Formal Results	Instantiation	Conclusion o
	Optin	nizations: I	lse Fouiva	lence	

- TestedNodes: list of all nodes that have been tested for MDS
- UntestedNodes: list of all untested nodes

- ▶ $M \in \texttt{TestedNodes} \rightarrow \texttt{skip}$
- ▶ MDS? true \rightarrow END
- > MDS? false \rightarrow spawn all children nodes in UntestedNodes

Introduction	Lightweight	Our approach	Formal Results	Instantiation	Conclusion o
	Optin	nizations: I	lse Fauiva	lence	

- TestedNodes: list of all nodes that have been tested for MDS
- UntestedNodes: list of all untested nodes

- ▶ $M \in \texttt{TestedNodes} \to \texttt{skip}$
- ▶ MDS? true \rightarrow END
- > MDS? false \rightarrow spawn all children nodes in UntestedNodes
- Add M to TestedNodes

Introduction	Lightweight	Our approach	Formal Results	Instantiation	Conclusion o
	Ontin	nizations: I	lse Fauiva	lence	

- TestedNodes: list of all nodes that have been tested for MDS
- UntestedNodes: list of all untested nodes

- ▶ $M \in \texttt{TestedNodes} \to \texttt{skip}$
- ▶ MDS? true \rightarrow END
- > MDS? false \rightarrow spawn all children nodes in UntestedNodes
- Add *M* to TestedNodes

Use Equivalence

Matrices are equivalent up to reordering of input/output words Use unique ID for equivalent nodes Store TestedIDs rather than TestedNodes

Introduction	Lightweight	Our approach	Formal Results	Instantiation	Conclusion O			
	Extensions							

Additional Read-only Registers

Allow for use of the input values of the function at any time

Inverse	
Allow use of α^{-1}	

Powers

Allow use of α^2

Independent Operations

Allow use of 3 independent linear operations α , β , γ

Introduction	Lightweight	Our approach	Formal Results ●oooooooo	Instantiation	Conclusion o
		3×3 MD	S Search		

Depth	Cost	Extensions	Memory
4	5 XOR, 1 LIN	RO_IN	14
3	5 XOR, 2 LIN		5
2	6 XOR, 3 LIN		4

Table: Optimal 3 \times 3 MDS matrices (all results are obtained in less than 1 second, memory is given in MB).

Introduction	Lightweight	Our approach	Formal Results o●ooooooo	Instantiation	Conclusion o

Introduction	Lightweight	Our approach	Formal Results	Instantiation	Conclusion o

3×3 MDS Matrices

Introduction	Lightweight	Our approach	Formal Results	Instantiation	Conclusion o

4×4 MDS Matrices

Depth	Cost	Extensions	Memory (GB)	Time (h)
6	8 XOR, 3 LIN		30.9	19.5
5	8 XOR, 3 LIN	INDEP	24.3	2.3
5	9 XOR, 3 LIN		154.5	25.6
4	8 XOR, 4 LIN	$MAX_POW = 2$	274	30.2
4	9 XOR, 3 LIN	INDEP	46	4.5
4	9 XOR, 4 LIN		77.7	12.8
3	9 XOR, 5 LIN	INV	279.1	38.5

Table: Optimal 4×4 MDS matrices.

Introduction	Lightweight	Our approach	Formal Results	Instantiation	Conclusion o
		$4 \times 4 \text{ MD}$	S Matrices		

Depth	Cost	М	Fig.
6	8 XOR, 3 LIN	$M_{4,6}^{8,3} = \begin{bmatrix} 3 & 1 & 4 & 4 \\ 1 & 3 & 6 & 4 \\ 2 & 2 & 3 & 1 \\ 3 & 2 & 1 & 3 \end{bmatrix}$	

Introduction	Lightweight	Our approach	Formal Results ○○○○●○○○	Instantiation	Conclusion O
		$4 \times 4 \text{ MD}$	S Matrices		

Depth	Cost	М	Fig.
5	8 XOR, 3 LIN	$M_{4,5}^{8,3} = \begin{bmatrix} \alpha + \gamma & \alpha & \gamma \\ \alpha + \gamma + 1 & \alpha + 1 & \gamma + 1 \\ 1 & 1 & \beta + 1 \\ \gamma + 1 & 1 & \beta + \gamma + 1 \end{bmatrix}$	$ \begin{array}{c} \gamma \\ \gamma \\ \beta \\ \beta + \gamma \end{array} \right) \begin{array}{c} \bullet \\ \bullet $
5	9 XOR, 3 LIN	$M_{4,5}^{9,3} = \begin{bmatrix} 2 & 2 & 3 & 1 \\ 1 & 3 & 6 & 4 \\ 3 & 1 & 4 & 4 \\ 3 & 2 & 1 & 3 \end{bmatrix}$	

S. Duval, G. Leurent

Introduction	Light	weight Our	approach 0000	Forn	nal Resi 000●0	ults	Instantiation	Conclusion o
		4 ×	4 MDS	S Ma	atrio	ces		
	Depth	Cost		М			Fig.	
	4	8 XOR, 4 LIN	$M_{4,4}^{8,4} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	5 7 4 6 1 3 1 1	1 1 5 4	3 1 7 6		
			$M_{4,4}^{8,4\prime} = \Bigg[$	6 7 2 3 1 5 1 1	1 1 6 2	5 1 7 3		

Intra 000	oduction	Lightweight 00000	Our approach	Formal Results ○○○○○○○●○	Instantiation 0000000	Conclusion o
			$4 \times 4 \text{ MD}$	S Matrice	s	
	Depth	Cost		М		Fig.
	4	9 XOR, 3 LIN	$M_{4,4}^{9,3} = \begin{bmatrix} \alpha + 1 \\ \beta \\ 1 \\ \alpha \end{bmatrix}$	$\begin{array}{ccc} \alpha & \gamma+1 \\ \beta+1 & 1 \\ 1 & \gamma \\ \alpha+1 & \gamma+1 \end{array}$	$ \begin{array}{c} \gamma + 1 \\ \beta \\ \gamma + 1 \\ \gamma \end{array} \right] \textcircled{e} \end{array}{e} \textcircled{e} \textcircled{e} \textcircled{e} \textcircled{e} \textcircled{e} \textcircled{e} \textcircled{e} \textcircled{e} \end{array}{e} \textcircled{e} \textcircled{e} \textcircled{e} \textcircled{e} \end{array}{e} \begin{array}{e} \begin{array}{e} \end{array}{e} \end{array}{e} \begin{array}{e} \end{array}{e} \end{array}{e} \end{array}{e} \end{array}{e} \begin{array}{e} \end{array}{e} \end{array}{e} \end{array}{e} \end{array}{e} \end{array}{e} \end{array}{e} \begin{array}{e} \end{array}{e} } \begin{array}{e} \end{array}{e} \end{array}{e} } \end{array}{e} \end{array}{e} } \begin{array}{e} \end{array}{e} } \begin{array}{e} \end{array}{e} } \end{array}{e} } \begin{array}{e} \end{array}{e} } \begin{array}{e} \end{array}{e} } \\{e} } \end{array}{e} } \begin{array}{e} \end{array}{e} } \begin{array}{e} \end{array}{e} } \begin{array}{e} \end{array}{e} } \\{e} } \\{e} } \end{array}{e} } \begin{array}{e} \end{array}{e} } \begin{array}{e} \end{array}{e} } \\{e} } \end{array}{e} } \end{array}{e} } \end{array}{e} } \begin{array}{e} \end{array}{e} } \\{e} } \end{array}{e} } \end{array}{e} } \end{array}{e} } \end{array}{e} } \end{array}{e} } \\{e} } \end{array}{e} } \\{e} } \end{array}{e} } \\{e} } \end{array}{e} } \\{e} } \\ \\{e} } \\{e} } \\{e} } \\ \\{e} } \\\\{e} } \\\\{e} } \\\\{e} } \\ \\ \\\\{e} } \\\\{e} } \\\\{e} } \\\\ \\\\{e} } \\\\\\ \\ \\\\\\\\ \\ \\ \\\\ \\ \\ \\ \\ \\ \\ \\ \\ $	
	4	9 XOR, 4 LIN	$M^{9,4}_{4,4} =$	$\begin{bmatrix} 1 & 2 & 4 & 3 \\ 2 & 3 & 2 & 3 \\ 3 & 3 & 5 & 1 \\ 3 & 1 & 1 & 3 \end{bmatrix}$		

S. Duval, G. Leurent

February 14, 2019 23 / 32

Introduction	Lightweight	Our approach	Formal Results ○○○○○○○●	Instantiation	Conclusion o
		$4 \times 4 \text{ MD}$	S Matrices		
Depth	Cost		Μ		Fig.
3	9 XOR, 5 LIN	$M_{4,3}^{9,5} = \begin{bmatrix} \alpha + \alpha^{-1} \\ 1 \\ 1 + \alpha^{-1} \\ \alpha^{-1} \end{bmatrix}$	$ \begin{array}{ccc} \alpha & 1 \\ \alpha + 1 & \alpha \\ 1 & 1 \\ \alpha^{-1} & 1 + \alpha^{-1} \end{array} $	$\begin{bmatrix} 1\\ \alpha^{-1}\\ 1+\alpha^{-1}\\ 1 \end{bmatrix}$	

		\sim \cdot	
U. D	uvai,	ч. с	

•

Introduction	Lightweight	Our approach	Formal Results	Instantiation	Conclusion o
	From F	ormal Mat	rices to Ins	tances	

The Idea

- 1 Input: Formal matrix $M(\alpha)$ MDS
- 2 Output: M(A) MDS, with A a linear mapping (the lightest we can find)

Introduction	Lightweight	Our approach	Formal Results	Instantiation ••••••	Conclusion o

Characterization of MDS Instantiations

MDS Test

- Intuitive approach:
 - 1 Choose A a linear mapping
 - 2 Evaluate M(A)
 - 3 See if all minors are non-zero

Introduction	Lightweight 00000	Our approach	Formal Results	Instantiation	Conclusion o

Characterization of MDS Instantiations

MDS Test

- Intuitive approach:
 - 1 Choose A a linear mapping
 - 2 Evaluate M(A)
 - 3 See if all minors are non-zero
- We can start by computing the minors:
 - 1 Let I, J subsets of the lines and columns
 - 2 Define $m_{I,J} = \det_{\mathbb{F}_2[\alpha]}(M_{|I,J})$
 - 3 M(A) is MDS iff all $m_{I,J}(A)$ are non-zero

Introduction	Lightweight	Our approach	Formal Results	Instantiation	Conclusion
				000000	

Characterization of MDS Instantiations

MDS Test

- Intuitive approach:
 - 1 Choose A a linear mapping
 - 2 Evaluate M(A)
 - 3 See if all minors are non-zero
- We can start by computing the minors:
 - 1 Let I, J subsets of the lines and columns
 - 2 Define $m_{I,J} = \det_{\mathbb{F}_2[\alpha]}(M_{|I,J})$
 - 3 M(A) is MDS iff all $m_{I,J}(A)$ are non-zero
- With the minimal polynomial
 - 1 Let μ_A the minimal polynomial of A
 - 2 M(A) is MDS iff $\forall (I, J), \text{gcd}(\mu_A, m_{I,J}) = 1$

Introduction	Lightweight	Our approach	Formal Results	Instantiation	Conclusion o
	Ger	neral Idea	of Instantia	tion	

We want A s.t. $\forall (I, J), \operatorname{gcd}(\mu_A, m_{I,J}) = 1$

Introduction	Lightweight	Our approach	Formal Results	Instantiation ○○●○○○○	Conclusion O
	Ger	neral Idea (of Instantia	tion	

We want A s.t. $\forall (I, J), gcd(\mu_A, m_{I,J}) = 1$

Easy Way to Instantiate: Multiplications

 $\flat d > \max_{I,J} \{ deg(m_{I,J}) \}$

Introduction	Lightweight	Our approach	Formal Results	Instantiation	Conclusion o
	Cor	orol Idoo	of Inctantia	tion	

We want A s.t. $\forall (I, J), gcd(\mu_A, m_{I,J}) = 1$

- $> d > \max_{I,J} \{ deg(m_{I,J}) \}$
- Choose π an irreducible polynomial of degree d

Introduction	Lightweight	Our approach	Formal Results	Instantiation	Conclusion O

We want A s.t. $\forall (I, J), gcd(\mu_A, m_{I,J}) = 1$

- $> d > \max_{I,J} \{ deg(m_{I,J}) \}$
- Choose π an irreducible polynomial of degree d
- π is relatively prime with all $m_{I,J}$

Introduction	Lightweight	Our approach	Formal Results	Instantiation	Conclusion O
	•				

We want A s.t. $\forall (I, J), \operatorname{gcd}(\mu_A, m_{I,J}) = 1$

- $> d > \max_{I,J} \{ deg(m_{I,J}) \}$
- Choose π an irreducible polynomial of degree d
- > π is relatively prime with all $m_{I,J}$
- Take A = companion matrix of π

Introduction	n Lightweight Our appro 00000 000000		Formal Results	Instantiation	Conclusion O

We want A s.t. $\forall (I, J), \operatorname{gcd}(\mu_A, m_{I,J}) = 1$

- $> d > \max_{I,J} \{ deg(m_{I,J}) \}$
- Choose π an irreducible polynomial of degree d
- > π is relatively prime with all $m_{I,J}$
- Take A = companion matrix of π
- > A corresponds to a finite field multiplication

Introduction	Lightweight	Our approach	Formal Results	Instantiation	Conclusion O

We want A s.t. $\forall (I, J), \operatorname{gcd}(\mu_A, m_{I,J}) = 1$

Easy Way to Instantiate: Multiplications

- $> \mathsf{max}_{I,J}\{\mathsf{deg}(\mathsf{m}_{I,J})\}$
- Choose π an irreducible polynomial of degree *d*
- π is relatively prime with all $m_{I,J}$
- Take A = companion matrix of π
- A corresponds to a finite field multiplication

Low Cost Instantiation

- Pick π with few coefficients: a trinomial requires 1 rotation + 1 binary xor
- If using A^{-1} or A^2 , make sure they are lightweight too

Introduction	Lightweight	Our approach	Formal Results	Instantiation	Conclusion o
	(Concrete C	hoices of A	٩	
		We need to	o fix the size		
Branc	hes of size 4	bits (\mathbb{F}_{2^4})	Branches	of size 8 bits	(_{2⁸})

 $A_4 = \begin{bmatrix} \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & 1 \\ 1 & 1 & \cdot & \cdot \end{bmatrix}$

(companion matrix of $X^4 + X + 1$ (irreducible))

$$A_4^{-1} = \begin{bmatrix} 1 & \cdot & 1 \\ 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$$

(minimal polynomial is $X^4 + X^3 + 1$)

Branches of size 8 bits (\mathbb{F}_{2^8}) $A_{8} = \begin{bmatrix} \cdot & 1 & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & 1 \end{bmatrix}$ (companion matrix of $X^{8} + X^{2} + 1 = (X^{4} + X + 1)^{2}$) $A_{8}^{-1} = \begin{bmatrix} 1 & 1 & \dots & 1 & 1 \\ 1 & 1 & \dots & 1 & 1 \\ \ddots & 1 & 1 & \ddots & \ddots & 1 \\ \ddots & 1 & 1 & \ddots & \ddots & 1 \\ \ddots & \ddots & 1 & 1 & \ddots & 1 \\ \ddots & \ddots & \ddots & 1 & 1 & \ddots \end{bmatrix}$

(minimal polynomial is $X^8 + X^6 + 1$)

Introduction	Lightweight	Our approach	Formal Results	Instantiation	Conclusion o
	Exa	imple of In	stantiation:	\mathbb{F}_{2^8}	

In \mathbb{F}_2^8 , the trinomials and their factorization are

$$\begin{aligned} X^8 + X &+ 1 = (X^2 + X + 1)(X^6 + X^5 + X^3 + X^2 + 1), \\ X^8 + X^2 + 1 &= (X^4 + X + 1)^2, \\ X^8 + X^3 + 1 &= (X^3 + X + 1)(X^5 + X^3 + X^2 + X + 1), \\ X^8 + X^4 + 1 &= (X^2 + X + 1)^4, \\ X^8 + X^5 + 1 &= (X^3 + X^2 + 1)(X^5 + X^4 + X^3 + X^2 + 1), \\ X^8 + X^6 + 1 &= (X^4 + X^3 + 1)^2, \\ X^8 + X^7 + 1 &= (X^2 + X + 1)(X^6 + X^4 + X^3 + X + 1). \end{aligned}$$

In particular, there are only 2 trinomials which factorize to degree 4 polynomials: $X^8 + X^2 + 1 = (X^4 + X + 1)^2$ and $X^8 + X^6 + 1 = (X^4 + X^3 + 1)^2$.

Introduction	Lightweight	Our approach	Formal Results	Instantiation	Conclusion O
	Exa	mple of In	stantiation:	\mathbb{F}_{2^8}	

In \mathbb{F}_2^8 , the trinomials and their factorization are

$$\begin{aligned} X^8 + X &+ 1 = (X^2 + X + 1)(X^6 + X^5 + X^3 + X^2 + 1), \\ X^8 + X^2 + 1 &= (X^4 + X + 1)^2, \\ X^8 + X^3 + 1 &= (X^3 + X + 1)(X^5 + X^3 + X^2 + X + 1), \\ X^8 + X^4 + 1 &= (X^2 + X + 1)^4, \\ X^8 + X^5 + 1 &= (X^3 + X^2 + 1)(X^5 + X^4 + X^3 + X^2 + 1), \\ X^8 + X^6 + 1 &= (X^4 + X^3 + 1)^2, \\ X^8 + X^7 + 1 &= (X^2 + X + 1)(X^6 + X^4 + X^3 + X + 1). \end{aligned}$$

In particular, there are only 2 trinomials which factorize to degree 4 polynomials: $X^8 + X^2 + 1 = (X^4 + X + 1)^2$ and $X^8 + X^6 + 1 = (X^4 + X^3 + 1)^2$.

Introduction	Lightweight 00000	Our approach			Formal Results	Instantiation	Conclusion o	
	Exam	npl	e c	of I	ns	tantiation:	$M_{4,6}^{8,3}$	
The minor	rs of $M^{8,3}_{4,6} =$	2 1 3 3	2 3 1 2	3 6 4 1	1 4 4 3	are		
$\{1, X, X + X + 1, X^3\}$ whose fac	$+1, X^2, X^2 + X^2 + X^2 + 1, X^3$ etors are	1,) ³ +	< ² ⊣ X ²	⊢ X +)	, X ² X, X	$X^{2} + X + 1, X^{3},$ $X^{3} + X^{2} + X + X^{3}$	$X^3 + 1, X^3 + 1$	X , X ³ +

$$\{X, X+1, X^3+X+1, X^2+X+1, X^3+X^2+1\}$$

On 4 bits: Degrees $\leq 3 \Rightarrow$ relatively prime with $X^4 + X + 1$ and $X^4 + X^3 + 1$ because irreducible $\alpha = A_4$ or $\alpha = A_4^{-1} \Rightarrow$ MDS matrix over \mathbb{F}_{2^4} . On 8 bits: All relatively prime with $X^8 + X^2 + 1$ and $X^8 + X^6 + 1$ $((X^4 + X + 1)^2 \text{ and } (X^4 + X^3 + 1)^2 \alpha = A_8 \text{ or } \alpha = A_8^{-1} \Rightarrow$ MDS matrix over \mathbb{F}_{2^8} .

S. Duval, G. Leuren

Introduction	Lightweight	Our approach	Formal Results		S	Instantiation ○○○○○●	Conclusion o	
	Exar	nple of Inst	an	tia	tio	n:	$M_{4,4}^{8,4}$	
The facto	ors of the min	ors of $M^{8,4}_{4,4} =$	5 4 1 1	7 6 3 1	1 1 5 4	3 1 7 6	are	
{ $X, X + 1, X^3 + X + 1, X^2 + X + 1, X^3 + X^2 + 1, X^4 + X^3 + 1$ }								

{ $X, X + 1, X^3 + X + 1, X^2 + X + 1, X^3 + X^2 + 1, X^4 + X^3 + 1$ }

Factors of degree \leq 3 relatively prime with $X^8 + X^2 + 1$ and $X^8 + X^6 + 1$.

Introduction	Lightweight	Our approach	Formal Results		Instantiation ○○○○○●	Conclusio o		
	Exam	ple of Inst	an	tia	tio	n:	M ^{8,4}	
The factors	s of the minc	ors of $M^{8,4}_{4,4} =$	5 4 1 1	7 6 3 1	1 1 5 4	3 1 7 6_	are	

{
$$X, X + 1, X^3 + X + 1, X^2 + X + 1, X^3 + X^2 + 1, X^4 + X^3 + 1$$
}

Factors of degree \leq 3 relatively prime with $X^8 + X^2 + 1$ and $X^8 + X^6 + 1$.

On 4 bits: Not relatively prime with $X^4 + X^3 + 1$ but all relatively prime with $X^4 + X + 1$. $\alpha = A_4 \Rightarrow$ MDS matrix over \mathbb{F}_{2^4} .

Introduction	Lightweight 00000	Our approach		Formal Results			Instantiation ○○○○○●	Conclusio o
	Exam	ple of Inst	an	tia	tio	n:	M ^{8,4}	
The factors	s of the minc	ors of $M^{8,4}_{4,4} =$	5 4 1 1	7 6 3 1	1 1 5 4	3 1 7 6]	are	

{
$$X, X + 1, X^3 + X + 1, X^2 + X + 1, X^3 + X^2 + 1, X^4 + X^3 + 1$$
}

Factors of degree \leq 3 relatively prime with $X^8 + X^2 + 1$ and $X^8 + X^6 + 1$.

On 4 bits: Not relatively prime with $X^4 + X^3 + 1$ but all relatively prime with $X^4 + X + 1$. $\alpha = A_4 \Rightarrow$ MDS matrix over \mathbb{F}_{2^4} .

On 8 bits: Not relatively prime with $X^8 + X^6 + 1$ but all relatively prime with $X^8 + X^2 + 1$. $\alpha = A_8 \Rightarrow$ MDS matrix over \mathbb{F}_{28} .

Introduction	Lightweight	Our approach	Formal Results	Instantiation	Conclusion •

Comparison With Existing MDS Matrices

				Cost		
Size	Ring	Matrix	Naive	Best	Depth	Ref
$M_4(M_8(\mathbb{F}_2))$	GL(8, 𝔽₂)	Circulant	106			(Li Wang 2016)
	$GL(8, \mathbb{F}_2)$	Hadamard		72	6	(Kranz <i>et al.</i> 2018)
	$\mathbb{F}_{2}[\alpha]$	$M_{4,6}^{8,3}$		67	6	$lpha=A_8$ or A_8^{-1}
	$\mathbb{F}_2[\alpha]$	$M_{4,5}^{8,3}$		68	5	$\alpha = \mathbf{A_8}, \beta = \mathbf{A_8^{-1}}, \gamma = \mathbf{A_8^{-2}}$
	$\mathbb{F}_{2}[\alpha]$	$M_{4,4}^{8,4}$		70	4	$\alpha = A_8$
	$\mathbb{F}_2[\alpha]$	$M_{4,3}^{9,5}$		77	3	$lpha=A_8$ or A_8^{-1}
$M_4(M_4(\mathbb{F}_2))$	$GF(2^{4})$	$M_{4,n,4}$	58	58	3	(Jean Peyrin Sim 2017)
	$GF(2^4)$	Toeplitz	58	58	3	(Sarkar Syed 2016)
	$GL(4, \mathbb{F}_2)$	Subfield		36	6	(Kranz <i>et al.</i> 2018)
	$\mathbb{F}_2[\alpha]$	$M_{4,6}^{8,3}$		35	6	$lpha=A_4$ or A_4^{-1}
	$\mathbb{F}_2[\alpha]$	$M_{4,5}^{8,3^{-1}}$		36	5	$lpha={\it A}_4,eta={\it A}_4^{-1},\gamma={\it A}_4^{-2}$
	$\mathbb{F}_2[\alpha]$	$M_{4,4}^{8,4}$		38	4	$\alpha = A_4$
	$\mathbb{F}_2[\alpha]$	M ^{9,5} 4,3		41	3	$lpha=A_4$ or A_4^{-1}