A New Family of Pairing-Friendly Elliptic Curves

Michael Scott and Aurore Guillevic

MIRACL.com
Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

WAIFI 2018, Bergen, Norway, June 14-16

Pairings in cryptography

$\left(\mathbb{G}_{1},+\right),\left(\mathbb{G}_{2},+\right),\left(\mathbb{G}_{T}, \cdot\right)$ three cyclic groups of large prime order r A pairing is a map $e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}$

1. bilinear: $e\left(P_{1}+P_{2}, Q\right)=e\left(P_{1}, Q\right) \cdot e\left(P_{2}, Q\right)$,

$$
e\left(P, Q_{1}+Q_{2}\right)=e\left(P, Q_{1}\right) \cdot e\left(P, Q_{2}\right)
$$

2. non-degenerate: $e\left(G_{1}, G_{2}\right) \neq 1$ for $\left\langle G_{1}\right\rangle=\mathbb{G}_{1},\left\langle G_{2}\right\rangle=\mathbb{G}_{2}$
3. efficiently computable.

Mostly used in practice:

$$
e([a] P,[b] Q)=e([b] P,[a] Q)=e(P, Q)^{a b}
$$

Many applications in asymmetric cryptography.

Pairing-Friendly Curves - PFCs

ordinary curve $E / \mathbb{F}_{p}: y^{2}=x^{3}+a x+b$

- $r \mid \# E\left(\mathbb{F}_{p}\right)=p+1-t, \mathbb{G}_{1}=E\left(\mathbb{F}_{p}\right)[r]$ (points of order r)
- $r \mid p^{k}-1$, for some reasonably small integer "embedding degree" k
- $\mathbb{G}_{2} \subset E\left(\mathbb{F}_{p^{k}}\right)[r], \mathbb{G}_{T}=\left\{x \in \mathbb{F}_{p^{k}}^{*}: x^{r}=1\right\}$
- E as secure and efficient as for ECC.
- DL problem hard in $E\left(\mathbb{F}_{p}\right)$ and in $\mathbb{F}_{p^{k}}$
- Hasse bound: $\# E\left(\mathbb{F}_{p}\right)=p+1-t,|t| \leq 2 \sqrt{p}$
- Parameter size efficiency: ratio $\rho=\log _{2} p / \log _{2} r \geq 1$ small, ideally $\rho=1$.
- E with sextic twists for efficient pairings $(\Rightarrow 6 \mid k$ and a CM discriminant of $\left.D=3\left(j(E)=0, E / \mathbb{F}_{p}: y^{2}=x^{3}+b\right)\right)$
- $k=2^{i} 3^{j}$ for efficient implementation of $\mathbb{F}_{p^{k}}$ arithmetic

The candidates

- Candidate curves and curve families are described in the Freeman, Scott, Teske taxonomy paper [FST10]
- Non-parameterised Cocks-Pinch curves, easy to find for any k, but $\rho=2$
- Parameterised curves, where p and r have a simple polynomial description
- For example MNT curves [MNT01], $p=x^{2}+1$, $r=x^{2}-x+1, k=6, \rho=1$ Pell equation and CM method needed
- But very rare, $D \neq 3$, lacks a fortuitous match between size of r and size of p^{k} for ECC and DL security resp.
- Most popular PFCs are small discriminant parameterised families ([BN06], [BLS02], [KSS08])

BN curves

- Embedding degree of $k=12, \rho=1$.
- For 128-bit security, an r of 256 bits as required for ECC security matches p^{k} of 3072 bits as (apparently) required for DL security!
- A match made in heaven!
- That 3072-bit value derives from extensive historical analysis of RSA security, and the assumption that finite field DL problem is if anything harder.
- But murmurings from the background - surely the parameterised form of p might make the DL problem easier (Schirokauer [Sch06])? First weakness found by Joux-Pierrot [JP13].
- And anyhow how about 192 and 256-bit security. Here BN curves are not such a good match.
- Maybe BLS or KSS curves might be a better fit for these.

New DL results

- Schirokauer was right! Kim and Barbulescu [KB16] attack, analysed by Menezes-Sarkar-Singh [MSS16], Barbulescu and Duquesne [BD18]
- However low discriminant parameterised families are still optimal. We just need to revise upwards the size of p^{k}

DL Algorithm complexity	2^{128}	2^{192}	2^{256}
NFS $\left(L_{p^{k}}[1 / 3,1.923]\right)$	3072	7680	15360
Tower $^{2} F S$ medium $\left(L_{p^{k}}[1 / 3,1.747]\right)$	3618	9241	18480
S pecial $T_{\text {ower }} N F S$ medium $\left(L_{p^{k}}[1 / 3,1.526]\right)$	5004	12871	27410

Table: Recommended extension field sizes (rough estimate) $L_{p^{k}}=\exp \left(c\left(\log p^{k}\right)\left(\log \log p^{k}\right)^{2 / 3}\right)$

Practicality and performances of TNFS, SNFS and STNFS depends on k and the PFC family.

The response

- Recently Kiyomura et al. [KIK ${ }^{+}$17] considered 256 -bit security and, responding to our new understanding, suggested that a $k=48$ BLS curve might be optimal.
- The FST taxonomy only considered embedding degrees up to $k=50$!
- Might be appropriate to go back and have another look...
- BLS are a family of families of PFCs, which supports for example the implementation-friendly values of $k=12,24,48 . .$, but not $k=18,36$
- The ρ value is $(k+6) / k$
- KSS curves are "sporadics" which happily fill in the gaps for $k=18,36$, and feature the same ρ formula.
- but maybe we should look at the next one up, $k=54$?

The Discovery

- A new discovery is one of the most pleasing outcomes of research
- but its often more accident than design
- We re-ran our old KSS discovery code for values of $k>50$
- and out popped a new solution for $k=54$ almost immediately. At first we ignored it, hoping to find a BN-like solution with $\rho=1$
- It didn't look like a typical KSS curve, for example KSS $\mathrm{k}=18$
- $p=\left(x^{8}+5 x^{7}+7 x^{6}+37 x^{5}+188 x^{4}+259 x^{3}+343 x^{2}+\right.$ $1763 x+2401) / 21$

A new family of PFCs

$$
\begin{align*}
p & =1+3 u+3 u^{2}+3^{5} u^{9}+3^{5} u^{10}+3^{6} u^{10}+3^{6} u^{11} \\
& +3^{9} u^{18}+3^{10} u^{19}+3^{10} u^{20} \\
r & =1+3^{5} u^{9}+3^{9} u^{18} \tag{1}\\
t & =1+3^{5} u^{10} \\
c & =1+3 u+3 u^{2}, \quad r \cdot c=p+1-t
\end{align*}
$$

What exactly have we got here?

- Its pretty!
- The ρ value is $10 / 9$, which is again $(k+6) / k$
- But it doesn't have the look and feel of a typical KSS curve
- But then again the KSS method also finds the BN curves.
- Is it a sporadic family of curves, or a member of a larger family of families?

A similar pattern: supersingular curves over $\mathrm{GF}\left(3^{\ell}\right)$

Pairings in 2001-2014: ℓ odd,

$$
E / \mathbb{F}_{3^{\ell} \ell}: y^{2}=x^{3}-x+b, \quad b= \pm 1
$$

$\# E\left(\mathbb{F}_{3^{\ell}}\right)=p+1-t$ where $p=3^{\ell}, t= \pm 3^{(\ell+1) / 2}$
Embedding degree: smallest k s.t. $r \mid \Phi_{k}(p)$

- $t=-3^{(\ell+1) / 2}, \# E\left(\mathbb{F}_{3^{\ell}}\right)=\left(3^{\ell}+3^{(\ell+1) / 2}+1\right)$, $\# E\left(\mathbb{F}_{3} \ell\right) \mid \Phi_{3}(p), k=3$
- $t=3^{(\ell+1) / 2}, \# E\left(\mathbb{F}_{3^{\ell}}\right)=\left(3^{\ell}-3^{(\ell+1) / 2}+1\right)$, $\# E\left(\mathbb{F}_{3^{\ell}}\right) \mid \Phi_{6}(p), k=6$

Factorisation pattern

$$
\begin{aligned}
& \Phi_{3}\left(-3 u^{2}\right)=\Phi_{6}\left(3 u^{2}\right)=\left(3 u^{2}+3 u+1\right)\left(3 u^{2}-3 u+1\right) \\
& p=3^{2 m+1}=3 u^{2}, r=3 u^{2}+3 u+1, t=3 u
\end{aligned}
$$

Factorisation patterns in pairing-friendly curves

Galbraith, McKee and Valença patterns [GMV07]:

- $\Phi_{12}\left(6 u^{2}\right)=r(u) r(-u), r(u)=36 u^{4}+36 u^{3}+18 u^{2}+6 u+1$
\rightarrow Barreto-Naehrig curves
- $\Phi_{12}\left(2 u^{2}\right)=r(u) r(-u), r(u)=4 u^{4}+4 u^{3}+2 u^{2}+2 u+1$
- $\Phi_{5}\left(5 u^{2}\right)=\Phi_{10}\left(-5 u^{2}\right)=r(u) r(-u)$,
$r(u)=25 u^{4}+25 u^{3}+15 u^{2}+5 u+1$
\rightarrow Freeman curves

Cunningham project ${ }^{1}$

Aim: factor large integers $b^{n} \pm 1$, where
$b \in\{2,3,5,6,7,10,11,12\}$

- algebraic factorisation: $b^{n}-1=\prod_{d \mid n} \Phi_{d}(b)$
- Aurifeuillean factorisation for matching b, n

Aurifeuillean factorisation Aurifeuille, Schinzel, Brent, Stevenhagen $k>1$ integer, $\Phi_{k}(u) k$-th cyclotomic polynomial. Let a be a square-free integer and u an integer. Then $\Phi_{k}\left(a u^{2}\right)$ will factor if

- $a \equiv 1(\bmod 4)$ and $k \equiv a(\bmod 2 a)$
- or $a \equiv 2,3(\bmod 4)$ and $k \equiv 2 a(\bmod 4 a)$.

[^0]
Brezing-Weng construction [BW05]

Input: Embedding degree k, square-free $D>0$ s.t. $-D$ square in $\mathbb{Q}\left(\zeta_{k}\right)$
$r(u) \leftarrow \Phi_{k}(u)$
$s(u) \leftarrow \sqrt{-D} \bmod r(u)$, i.e. $1 / s^{2}(u)=-D \bmod r(u)$
for e in $1, \ldots, k-1, \operatorname{gcd}(e, k)=1$ do
$t(u)=u^{e}+1 \bmod r(u)$
$y(u)=(t(u)-2) / s(u) \bmod r(u)$
$p(u)=\left(t^{2}(u)+D y^{2}(u)\right) / 4$
if $p(u)$ represents primes and leading coeff $(r)>0$ then return k, D, r, t, y, p
end
end

Issues:

- very small choice of D
- $p(u)$ not irreducible, or never takes prime integer values

Aurifeuillean pairing-friendly curves

Modification of Brezing-Weng construction:
Look for $a \in\{-2 k,-2 k-1, \ldots, 2 k\}$ s.t. $\Phi_{k}\left(a u^{2}\right)=r(u) r(-u)$ has Aurifeuillean factorisation, continue with $r(u)$ and $t(u)=\left(a u^{2}\right)^{e}+1 \bmod r(u), \operatorname{gcd}(e, k)=1$.
Example: $k=9$
$\Phi_{9}\left(-3 u^{2}\right)=r(u) r(-u)$ where $r(u)=27 u^{6}+9 u^{3}+1$
Take $D=3$: three families:

$$
\begin{aligned}
& t=\left(-3 u^{2}\right)^{2}+1,\left(-3 u^{2}\right)^{5}+1,\left(-3 u^{2}\right)^{8}+1 \bmod r(u) \\
& t_{1}(u)=-18 u^{4}-3 u+1=\left(-3 u^{2}\right)^{5}+1 \bmod r(u) \\
& y_{1}(u)=-6 u^{3}+u-1 \\
& p_{1}(u)=81 u^{8}+27 u^{6}+27 u^{5}-18 u^{4}+9 u^{3}+3 u^{2}-3 u+1
\end{aligned}
$$

And $\rho=\operatorname{deg} p / \operatorname{deg} r=4 / 3$ as good as former construction.

Our construction for $k=2 \cdot 3^{j}$

$$
\Phi_{2 \cdot 3^{j}}(u)=\Phi_{3 i}(-u)=u^{m}-u^{m / 2}+1, \text { where } m=k / 3 .
$$

Take $a=3$:

$$
\Phi_{2 \cdot 3 j}\left(3 u^{2}\right)=\Phi_{3 j}\left(-3 u^{2}\right)=r(u) r(-u)
$$

where $r(u)=3^{m / 2} u^{m}+3^{(m+2) / 4} u^{m / 2}+1$.
Take $D=3: 1 \sqrt{-3}=2 \cdot 3^{(m-2) / 4} u^{m / 2}+1 \bmod r(u)$.
Continue Brezing-Weng with r, D
\rightarrow minimise $\max (\operatorname{deg} t(u), \operatorname{deg} y(u))$.
Odd j :
$e \in\{(m+2) / 4, m+(m+2) / 4,2 m+(m+2) / 4\}$
$\rho=(m+2) / m=(k+6) / k$
Any j :
$e \in\{1,1+m, 1+2 m\}$
$\rho=(m+4) / m=(k+12) / k$

And so for $k=54 \ldots$

$$
\Phi_{54}\left(3 u^{2}\right)=\left(1+3^{5} u^{9}+3^{9} u^{18}\right)\left(1-3^{5} u^{9}+3^{9} u^{18}\right)
$$

- Choose $r(u)=1+3^{5} u^{9}+3^{9} u^{18}$
- $D=3$
- $m=2 k / 3=18$
- $e=(m+2) / 4=5$
- So $t(u)=1+\left(3 u^{2}\right)^{5}=1+3^{5} u^{10}$
- $y(u)=3^{5} u^{10}+2 \cdot 3^{4} \cdot u^{9}+2 u+1$
- $p(u)=\left(t(u)^{2}+3 y(u)^{2}\right) / 4=1+3 u+3 u^{2}+3^{5} u^{9}+3^{5} u^{10}+$ $3^{6} u^{10}+3^{6} u^{11}+3^{9} u^{18}+3^{10} u^{19}+3^{10} u^{20}$
- $\rho=(k+6) / k=10 / 9$

Conclusion

- Mystery solved!
- So our new discovery was indeed just one member of a family of families of PFCs
- New families with competitive ρ for $k \in$ $\{9,15,21,30,33,39,42,45,51,54,57,66,69,75,78,81,87,90,93\}$
- Not applicable for $8 \mid k$ (no Aurifeuillean factorisation)
- The new $k=54$ case could be of future use for 256 -bit security (maybe better than BLS-48?)
- Nice alternate construction for $k=9$

References I

Razvan Barbulescu and Sylvain Duquesne.
Updating key size estimations for pairings.
Journal of Cryptology, Jan 2018.
嗇 P. S. L. M. Barreto, B. Lynn, and M. Scott.
Constructing elliptic curves with prescribed embedding degrees.
In Security in Communication Networks - SCN'2002, volume 2576
of LNCS, pages 263-273. Springer-Verlag, 2002.
P. P.S.L.M. Barreto and M. Naehrig.

Pairing-friendly elliptic curves of prime order.
In Selected Areas in Cryptography - SAC'2005, volume 3897 of
LNCS, pages 319-331. Springer-Verlag, 2006.

References II

俥
Friederike Brezing and Annegret Weng.
Elliptic curves suitable for pairing based cryptography.
Des. Codes Cryptography, 37(1):133-141, 2005.
https://eprint.iacr.org/2003/143.
國
D. Freeman, M. Scott, and E. Teske.

A taxonomy of pairing-friendly elliptic curves.
Journal of Cryptology, 23(2):224-280, 2010.
http://eprint.iacr.org/2006/372.
R S.D. Galbraith, J.F. McKee, and P.C. Valença.
Ordinary abelian varieties having small embedding degree.
Finite Fields and Their Applications, 13(4):800-814, 2007.
https://eprint.iacr.org/2004/365.

References III

(Andrew Granville and Peter Pleasants.
Aurifeuillian factorization.
Math. Comp., 75(253):497-508, 2006.
https://doi.org/10.1090/S0025-5718-05-01766-7.
(R. Antoine Joux and Cécile Pierrot.

The special number field sieve in $\mathbb{F}_{p^{n}}$ - application to pairing-friendly constructions.
In Zhenfu Cao and Fangguo Zhang, editors, Pairing-Based
Cryptography - Pairing 2013 - 6th International Conference, Beijing, China, November 22-24, 2013, Revised Selected Papers, volume 8365 of LNCS, pages 45-61. Springer, 2013.
https://eprint.iacr.org/2013/582.

References IV

(T. Kim and R. Barbulescu.
The extended tower number field sieve: A new complexity for the medium prime case.
In Crypto 2016, volume 9814 of LNCS, pages 543-571.
Springer-Verlag, 2016.
圊 Y. Kiyomura, A. Inoue, Y. Kawahara, M. Yasuda, T. Takagi, and T. Kobayashi.

Secure and efficient pairing at 256-bit security level.
In ACNS 2017, volume 10355 of LNCS, pages 59-79.
Springer-Verlag, 2017.
固 E. Kachisa, E.F. Schaefer, and M. Scott.
Constructing Brezing-Weng pairing friendly elliptic curves using elements in the cyclotomic field.
In Pairing 2008, volume 5209 of LNCS, pages 126-135.
Springer-Verlag, 2008.

References V

N. El Mrabet and M. Joye, editors.

Guide to Pairing-Based Cryptography.
Chapman and Hall/CRC, 2016.
冨 A. Miyaji, M. Nakabayashi, and S. Takano.
New explicit conditions of elliptic curve traces for FR-reduction.
IEICE Transactions on Fundamentals, E84-A(5):1234-1243, 2001.
圊
A. Menezes, P. Sarkar, and S. Singh.

Challenges with assessing the impact of NFS advances on the security of pairing-based cryptography.
In Mycrypt 2016, volume 10311 of LNCS, pages 83-108.
Springer-Verlag, 2016.

References VI

O. Schirokauer.

The number field sieve for integers of low weight.
Cryptography ePrint Archive, Report 2006/107, 2006.
http://eprint.iacr.org/2006/107.

[^0]: ${ }^{1}$ http://www.cerias.purdue.edu/homes/ssw/cun/index.html

