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Introduction

@ Current position:
o Postdoc (INRIA and ENS de Lyon)

o Supervisor: Damien Stehlé

@ Previous position:
o PhD student at TU/Eindhoven, The Netherlands
Cryptographic Implementations group

o Thesis: “Optimizing Curve-Based Cryptography”

e Supervisors: Daniel J. Bernstein and Tanja Lange

o Experience
e Software implementations

o Optimizing cryptographic software and algorithms
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Vectorization speedups

without vector

at+b
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Vectorization speedups

without vector with vector
R e T T T N
=+ + + + =+
b [ bk | b | b | b
’ a+b ‘ ’ao+b0|31+b1 |32+b2|a3+b3‘
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Vectorization speedups

without vector with vector
R e T T T N
=+ + + + =+
b [ bk | b | b | b
’ a+b ‘ ’ao+b0|31+b1 |32+b2|a3+b3‘

@ single instruction performing n independent operations on
aligned inputs
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Side-channel attacks

@ Prevent software side-channel attacks:
e constant-time
e no input-dependent branch

e no input-dependent array index
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Side-channel attacks

@ Prevent software side-channel attacks:
e constant-time
e no input-dependent branch

e no input-dependent array index

@ Constant-time table-lookup:
e read entire table
o select via arithmetic
if ¢ is 1, select tbl[i]
if c is 0, ignore tbl[i]

t=(t  (1-c)+ (thl[i] - (c))
t=(tA(c—1))V (thl[i] A (=c))
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Curved1417
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Design of Curve41417

e High-security elliptic curve (security level above 2200)
@ Defined over prime field IF, where p = M4 _ 17
@ In Edwards curve form

x2+y? =1+43617x%y?
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Design of Curve41417

e High-security elliptic curve (security level above 2200)
@ Defined over prime field IF, where p = M4 _ 17
@ In Edwards curve form

x2+y? =1+43617x%y?

Large prime-order subgroup (cofactor 8)

IEEE P1363 criteria (large embedding degree, etc.)

Twist secure, i.e., twist of Curve41417 also secure
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ECC arithmetic

@ Mixed-coordinate systems:
e doubling: projective X, Y, Z
e addition: extended X,Y,Z, T

(See https://hyperelliptic.org/EFD/)
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ECC arithmetic

@ Mixed-coordinate systems:

doubling: projective X, Y,Z
addition: extended X, Y,Z, T

(See https://hyperelliptic.org/EFD/)

@ Scalar multiplication:

signed fixed windows of width w =5

precompute 0P, 1P, 2P, ... 16P
also multiply d = 3617 to T coordinate

special first doubling

compute T only before addition
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Point operations

Point doubling
71

N/

Point addition

z> d-t

21> t1>
W

Y
- 4

X2 Y2

NE

X1+ oy
PN WV
X 4+ x
b
'

b
i
:

X X
b
Y3 3

Optimizing multiplications with vector i

Chitchanok Chuengsatiansup



ARM Cortex-A8 vector unit

@ 128-bit vector registers
@ Arithmetic and load/store unit can perform in parallel

@ Operate in parallel on vectors of four 32-bit integers or
two 64-bit integers
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ARM Cortex-A8 vector unit

@ 128-bit vector registers
@ Arithmetic and load/store unit can perform in parallel

@ Operate in parallel on vectors of four 32-bit integers or
two 64-bit integers

@ Each cycle produces:
four 32-bit integer additions: ag+bg, a1+b1, ax+bo, az+bs
or
two 64-bit integer additions: cy+dp, c1+d1
or
one multiply-add instruction: agbg + ¢p
where a;, b; are 32- and ¢;, d; are 64-bit integers
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Redundant representation

o Use non-integer radix 2414/16 — 225875

o Decompose integer f modulo 2414 — 17 into 16 integer pieces
o Write f as

o+ 2%+ 2¥%Hh+ 20 f+4
2104,;4 + 213Of5 + 21567‘—6 + 2182,:7 +
2207f8 + 2233]:9 + 2259f10+ 2285f11+
2311 fiot+ 2337 f13+ 2363f14+ 2389f15
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Carries

@ Goal: Bring each limb down to 26 or 25 bits
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Carries

@ Goal: Bring each limb down to 26 or 25 bits

@ Typical carry chain:
mo — my — My — -+ — M4 — Mi5 — Mgy — My
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Carries

@ Goal: Bring each limb down to 26 or 25 bits

@ Typical carry chain:
mo — my — My — -+ — M4 — Mi5 — Mgy — My

@ Increase throughput:
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Carries

@ Goal: Bring each limb down to 26 or 25 bits

@ Typical carry chain:
mo — my — My — -+ — M4 — Mi5 — Mgy — My

@ Increase throughput:
mo—my
mg— Mg
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Carries

@ Goal: Bring each limb down to 26 or 25 bits

@ Typical carry chain:
mo — my — My — -+ — M4 — Mi5 — Mgy — My

@ Increase throughput:
mo—my —my
mg—mg —Mio

Chitchanok Chuengsatiansup Optimizing multiplications with vector instructions



Carries

@ Goal: Bring each limb down to 26 or 25 bits

@ Typical carry chain:
mo — my — My — -+ — M4 — Mi5 — Mgy — My

@ Increase throughput:
mo—my —Mmy —m3 —Mg —Ms — Mg — M7 —Mg—rMg
mg—mg — Mg —M11—>M12—>M13—>M14—>Mi5—>My—r M1
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Carries

@ Goal: Bring each limb down to 26 or 25 bits

@ Typical carry chain:
mo — my — My — -+ — M4 — Mi5 — Mgy — My

@ Increase throughput:
mo—my —Mmy —m3 —Mg —Ms — Mg — M7 —Mg—rMg
mg—mg — Mg —M11—>M12—>M13—>M14—>Mi5—>My—r M1

@ Decrease latency:
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Carries

@ Goal: Bring each limb down to 26 or 25 bits

@ Typical carry chain:
mo — my — My — -+ — M4 — Mi5 — Mgy — My

@ Increase throughput:
mo—my —Mmy —m3 —Mg —Ms — Mg — M7 —Mg—rMg
mg—mg — Mg —M11—>M12—>M13—>M14—>Mi5—>My—r M1

@ Decrease latency:
mo — ma
mg — Mg
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Carries

@ Goal: Bring each limb down to 26 or 25 bits

@ Typical carry chain:
mo — my — My — -+ — M4 — Mi5 — Mgy — My

@ Increase throughput:
mo—my —Mmy —m3 —Mg —Ms — Mg — M7 —Mg—rMg
mg—mg — Mg —M11—>M12—>M13—>M14—>Mi5—>My—r M1

@ Decrease latency:
mo — ma
mg — Mg
mag — Mms
mi> — mi3
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Carries

@ Goal: Bring each limb down to 26 or 25 bits

@ Typical carry chain:
mo — my — My — -+ — M4 — Mi5 — Mgy — My

@ Increase throughput:
mo—my —Mmy —m3 —Mg —Ms — Mg — M7 —Mg—rMg
mg—mg — Mg —M11—>M12—>M13—>M14—>Mi5—>My—r M1

@ Decrease latency:
mo — mp — my
mg — Mg — M1ig

mag — Mms
miz — mi3
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Carries

@ Goal: Bring each limb down to 26 or 25 bits

@ Typical carry chain:
mo — my — My — -+ — M4 — Mi5 — Mgy — My

@ Increase throughput:
mo—my —Mmy —m3 —Mg —Ms — Mg — M7 —Mg—rMg
mg—mg — Mg —M11—>M12—>M13—>M14—>Mi5—>My—r M1

@ Decrease latency:

mo — mp — my

mg — Mg — M1ig
mg — ms — Mg
mi2 — mi3 — Mg
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Carries

@ Goal: Bring each limb down to 26 or 25 bits

@ Typical carry chain:
mo — my — My — -+ — M4 — Mi5 — Mgy — My

@ Increase throughput:
mo—my —Mmy —m3 —Mg —Ms — Mg — M7 —Mg—rMg
mg—mg — Mg —M11—>M12—>M13—>M14—>Mi5—>My—r M1

@ Decrease latency:
mo — My — My — M3 — Mg — Ms
mg — Mg — Mipg — M1 — M2 — M13
mg — ms — Mg — M7 — Mg — Mg
mip — mMmi3 — M4 — M5 — My — My
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Polynomial multiplication

@ Goal: Compute P = AB
given A= ap9+ a1t” and B = by + by t"

@ Method 1: schoolbook
P = agbo + (aobl + albo)t” + a1b; t2n

e Method 2: Karatsuba (8n—4 additions)
P = agbo+((ao+a1)(bo+b1)—aobo—a1 by )t"+a1 by t>"

@ Method 3: refined Karatsuba (7n—3 additions)
P = (aobg — alblt”)(l — t”) + (ao + 31)(1)0 + bl)t"
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Polynomial multiplication mod

@ Goal: Compute P = AB modQ@
given A= ap9+ a1t” and B = by + by t"

@ Method 1: schoolbook
P = agbo + (aobl + albo)t” + ai1by 2" mod Q

e Method 2: Karatsuba (8n—4 additions)
P= aobo+((ao+al)(bg+b1)—aobo—alb1)t”+alb1t2” mod @

@ Method 3: refined Karatsuba (7n—3 additions)
P = (agbo — a1b1t")(1 — t") + (ap + a1)(bo + b1)t" modQ
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Polynomial multiplication mod

Goal: Compute P = AB mod Q@
given A= ap9+ a1t” and B = by + by t"

Method 1: schoolbook
P = agbo + (aobl + albo)t” + ai1by 2" mod Q

e Method 2: Karatsuba (8n—4 additions)
P= aobo+((ao+al)(bg+b1)—aobo—alb1)t”+alb1t2” mod @

Method 3: refined Karatsuba (7n—3 additions)
P = (agbo — a1b1t")(1 — t") + (ap + a1)(bo + b1)t" modQ

Method 4: reduced refined Karatsuba (6n—2 additions) (new)
P:(aobo—alblt" mod Q)(l—t”)+(ao—|—al)(bo+b1)t” mod @
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Reduced refined Karatsuba

aobo (TTTTTITTITTI I ]
aiby (TTTTTITTITTI I ]
subtract (T T T T I T I I I I T I T I T I T T]

reduce L rrrrr ey

aobo — t"a1by (TTTTTTTITTITITIITT ]
aobg — t"a1by (TTTTTTTITTITITIITT ]
subtract (T I T T I I T I I T I T I I I IrrTl

(t—tYaobo—tarby) [T T TTTTITTTTTTITTITITTITTITITTT]

(a0 + a1)(bo + b1) (TTTTTTTITTITITITIT]
add (T I T T I I T I I T I T I I I IrrTl
reduce (TTTTTTTITTITITIITT ]
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Level of Karatsuba

e Karatsuba splits 1 (2n x 2n) into 3 (n x n)
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Level of Karatsuba

e Karatsuba splits 1 (2n x 2n) into 3 (n x n)

@ Zero-level Karatsuba (Schoolbook)
e.g. for 16 limbs: 16 x 16 = 256
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Level of Karatsuba

e Karatsuba splits 1 (2n x 2n) into 3 (n x n)

@ Zero-level Karatsuba (Schoolbook)
e.g. for 16 limbs: 16 x 16 = 256

@ One-level Karatsuba
e.g.. 16 x 16 — 3- (8 x 8) + some additions
= 192 + some additions
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Level of Karatsuba

e Karatsuba splits 1 (2n x 2n) into 3 (n x n)

@ Zero-level Karatsuba (Schoolbook)
e.g. for 16 limbs: 16 x 16 = 256

@ One-level Karatsuba
e.g.. 16 x 16 — 3- (8 x 8) + some additions
= 192 + some additions

@ Two-level Karatsuba
eg.: 3:(8x8)—3-(3-(4x4))+ even more additions
= 144 + even more additions
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Level of Karatsuba

Karatsuba splits 1 (2n x 2n) into 3 (n x n)

Zero-level Karatsuba (Schoolbook)
e.g. for 16 limbs: 16 x 16 = 256

One-level Karatsuba
e.g.. 16 x 16 — 3- (8 x 8) + some additions
= 192 + some additions

Two-level Karatsuba
eg.: 3:(8x8)—3-(3-(4x4))+ even more additions
= 144 + even more additions

What is the zero-level /one-level cutoff for number of limbs?
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GMP’s cutoffs for Karatsuba

100 T T T
80 M;
g ﬁ'
B 60 b
Keo)
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Q
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0 1 1 1
0 1024 2048 3072 4096
bits
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GMP’s cutoffs for Karatsuba

100 : . .
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bits
@ GMP 6.0.0a library chooses 1248 bits on ARM Cortex-A8
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GMP’s cutoffs for Karatsuba
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0 1024 2048 3072 4096

bits
@ GMP 6.0.0a library chooses 1248 bits on ARM Cortex-A8
@ We reduce cutoff via improvements to Karatsuba

Chitchanok Chuengsatiansup Optimizing multiplications with vector instructions



GMP’s cutoffs for Karatsuba

100 : . .

80 M.
g o
S 60 -
Keo)
7
2
S 40} -
o

20 -

0 | | |

0 1024 2048 3072 4096

bits
@ GMP 6.0.0a library chooses 1248 bits on ARM Cortex-A8
@ We reduce cutoff via improvements to Karatsuba

@ We reduce cutoff via redundant representation
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Cost comparison (Karatsuba)

Level Mult. Add Cost

64-bit  32-bit
O-level 256 15 0 256+ 8+ 0 = 264
1-level 192 59 16 192430+ 4 = 226
2-level 144 119 40 144460410 = 214
3-level 108 191 76 108+96+19 = 223

Note: use multiply-add instructions

Recall:
1 cycle per multiplication
0.5 cycle per 64-bit addition
0.25 cycle per 32-bit addition
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Cost comparison (refined Karatsuba)

Level Mult. Add Cost

64-bit  32-bit
O-level 256 15 0 256+ 8+ 0 = 264
1-level 192 52 16 192426+ 4 = 222
2-level 144 103 40 144+52+10 = 206
3-level 108 166 76 108+83+19 = 210

Note: use multiply-add instructions

Recall:
1 cycle per multiplication
0.5 cycle per 64-bit addition
0.25 cycle per 32-bit addition
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Cost comparison (reduced refined Karatsuba)

Level Mult. Add Cost

64-bit  32-bit
O-level 256 15 0 256+ 8+ 0 = 264
1-level 192 45 16 192423+ 4 = 219
2-level 144 96 40 144+48+10 = 202
3-level 108 159 76 108+80+19 = 207

Note: use multiply-add instructions

Recall:
1 cycle per multiplication
0.5 cycle per 64-bit addition
0.25 cycle per 32-bit addition
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Performance comparison

@ OpenSSL
curve # cycle on i.MX515  # cycle on Sitara
secpl60rl ~ 2.1 million ~ 2.1 million
nistp192 ~ 2.9 million ~ 2.8 million
nistp224 ~ 4.0 million ~ 3.9 million
nistp256 ~ 4.0 million ~ 3.9 million
nistp384 ~ 13.3 million ~ 13.2 million
nistpb21 ~ 29.7 million ~ 29.7 million

o Curve41417 (security level above 22%0)

e ~ 1.6 million cycles on FreeScale i.MX515
e =2 1.8 million cycles on Tl Sitara
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NTRU Prime
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NTRU Prime

@ High-security prime-degree large-Galois-group inert-modulus
ideal-lattice-based cryptography

e System parameters (p, g, t)
e p,q are prime
p > max{2t,3}
qg>32t+1
xP — x — 1 is irreducible in polynomial ring (Z/q)[x]

o Fields of the form (Z/q)[x]/(xP — x — 1)
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NTRU Prime

@ High-security prime-degree large-Galois-group inert-modulus
ideal-lattice-based cryptography

e System parameters (p, g, t)
e p,q are prime
p > max{2t,3}
qg>32t+1
xP — x — 1 is irreducible in polynomial ring (Z/q)[x]

o Fields of the form (Z/q)[x]/(xP — x — 1)

@ Abbreviation:
o ring Z[x]/(x* —x —1) as R
o ring (Z/3)[x]/(x? —x —1) as R/3
o field (Z/q)[x]/(x? —x —1) as R/q
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Streamlined NTRU Prime: private and public key

o PickgeR
g=g0+ - —|-gp_1xp71 with g; € {-1,0,1}

g is required to be invertible in R/3

@ Pick f e R
f=f+ - +fhaxP twith € {~1,0,1} and ) || =2t
f is nonzero and hence invertible in R/q

e Public key: h=g/(3f) in R/q

@ Private keys: f in R and 1/g in R/3
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Streamlined NTRU Prime: KEM/DEM

@ Use Key Encapsulation Mechanism (KEM) combined with
Data Encapsulation Mechanism (DEM)

o KEM:
e look up public key h
o pick re R (i.e, i € {—1,0,1},> " |ri| = 2t)
e compute hr in R/q

e round each coefficient (viewed as ZN[—(q —1)/2,(g — 1)/2])
to the nearest multiple of 3 to get ¢

e compute Hash(r) = (C|K)
e send (C|c), use session key K for DEM
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Streamlined NTRU Prime: decapsulation

e To decrypt (C|c)
o (reminder: h=g/(3f) in R/q)

o compute 3fc = 3f(hr + m) = gr +3fmin R/q

o reduce the coefficients modulo 3 to get a = gr € R/3
e compute r' = a/g € R/3, lift r to R

e compute Hash(r") = (C'|K’) and ¢’ as rounding of hr’
o verify that ¢ =cand C'=C

o If all verifications are ok, then K = K’ is the session key
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Streamlined NTRU Prime 459176!

o Field (Z/4591)[x]/(x™® — x — 1)

@ Parameters:

e p=1761
e g =4591
o t =143

o Security: 22% (pre-quantum)

e considered hybrid lattice-reduction and meet-in-the-middle
attack
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Polynomial multiplication

@ Main bottleneck is polynomial multiplication

@ Multiplication algorithms considered:
e Toom (3-6)
o refined Karatsuba
o arbitrary degree variant of Karatsuba (3-6)

Chitchanok Chuengsatiansup Optimizing multiplications with vector instructions



Polynomial multiplication

@ Main bottleneck is polynomial multiplication

@ Multiplication algorithms considered:
e Toom (3-6)
o refined Karatsuba
o arbitrary degree variant of Karatsuba (3-6)

@ Best operation count found so far for 768 x 768:
o 5-level refined Karatsuba up to 128 x 128
e Toom6: evaluated at 0, +1, 42, +3,+4,5, 00
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Combination of Toom and Karatsuba

768

Blue = Toom
Red = Karatsuba
Green = Schoolbook
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Combination of Toom and Karatsuba

768
// \\
128 128 128 } 128 128

Blue = Toom
Red = Karatsuba
Green = Schoolbook
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Combination of Toom and Karatsuba

128 // \128\128

Blue = Toom
Red = Karatsuba
Green = Schoolbook
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Combination of Toom and Karatsuba

128 // \128\128

/\

Blue = Toom
Red = Karatsuba
Green = Schoolbook
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Combination of Toom and Karatsuba

128 // \128\128

/ \
\ o<
16 / 16
Blue = Toom

Red = Karatsuba
Green = Schoolbook
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Combination of Toom and Karatsuba

128 // \128\128

/ \
\ e
16 / 16
8 7N 8 Blue = Toom

Red = Karatsuba
Green = Schoolbook
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Combination of Toom and Karatsuba

// \128\128

/ \
2. 32
16 7 16

8 / N 8 : . Blue = Toom
/7 \ Red = Karatsuba
4 4 - Green = Schoolbook
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Toom: decomposition

@ Decompose a(x) = ag + a1x + axx? + - - - + aze7x"%" into

a(x, y) = Ao(x) + Ar(x)y + Az(x)y? + As(x)y> + As(x)y* + As(x)y®

128

where y = x*<¢ and

2 127
=3y +a X+a X +---4aprx

2 127
A1(x) = a1zs + a120x + a130x” + - - - + axmsx

27
_ 2 127
= azgsq + asgsX + azgeX” + -+ aAs11X

27

(x)
(x)

Ax(x) = azse + aos7x + apsgx? + - + azgax!
(x)

As(x) = as12 + as13x + as14x? + -+ apzox’
(x)

2 127
As(x) = asa0 + aps1 X + apaoXx” + - - - + arerX
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Toom: decomposition

@ Decompose a(x) = ag + a1x + axx? + - - - + aze7x"%" into

a(x, y) = Ao(x) + Ar(x)y + Az(x)y? + As(x)y> + As(x)y* + As(x)y®

where y = x1% and
Ao(X) a +a x4+ a X2—|—-~'+3127X127
A1(x) = arog + a120X + a130x> + - - - + apss x>
Ao(x) = anse + aps7x + apsgx” + -+ + azgax'
As(x) = ases + azgsx + azgex” + -+ + asx'
As(x) = as12 + as13x + as1ax® + -+ + 30X
As(x) = aea0 + 361X + agaax> + -+ - + azerx’

@ Similarly for b(x), then
ab= Co+ Gy + Gy* + Gy® + Gy* + Gy®
Coy® + Gry” + Coy® + Coy® + Cioy™
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Toom: evaluation

0:
(Aot A+ A+ A+ Ast+ As)-
(Ao— A+ Ar—
:(AoH2A142° A +2° As 42" Ay +2° As) -
(Ao—2A14+22 A —22 A3 420 A —2° As) -
: (Ao+3A1+32 A +32 As+3" A +3%As) -
(Ao—3A1+3°A—3 A3 +3'A—3%As) -
: (Ao+4AL+4% A4 As+4" Ay +4° As) -
: (Ag—4A1+4° A — 4 As+4" A —4° As) -
- (Ao+5A1+5°Ar+5° A3 +5' Ay +5° As) -
A5 .

Ao

As+  As—

Chitchanok Chuengsatiansup

As) -

- B
(Bo+ Bi+ B+ Bs+ Bst+ Bs)
(Bo— Bi+ Bx— Bs+ Bs— Bs)
(Bo+2B1+2° By+2° B3 +2* B4+2° Bs)
(Bo—2B142°B,—2° B3+2* B4 —2°Bs)
(Bo+3B1+3°By+3°B3+3" B4 +3°Bs)
(Bo—3B1+3°B,—3°B3+3"B,—3°Bs)
(Bo+4B1+4° By 44> B3 +4" B4+4° Bs)
(Bo—4B1+4° B,—4> B3+4" B, —4° Bs)
(Bo+5B1+45°B,+5> B3+5* B4+5°Bs)

Bs
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(Fo + tnFl)(Go —+ t"Gl) = (1 — t")(FoGo —t"F Gl) + t”(Fo =+ Fl)(Go =+ G1)
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(Fo+t"F)(Go+t"G1) = (1 = t")(FoGo — t"F1G1) + t"(Fo + F1)(Go + G1)
@ Level 1:

Fo=fo+f x+fx 4. 43 xP; Fi=fo +fis x-+fos x>+ .. +fiar x*;
Go=go+gix+gx°+. .. +863x**;  Gi=ges+gesx+goox"+. . . +8127x%%;

fg = (1 — X64)(F0G0 — X64F1G1) + X64(Fo + F1)(Go + Gl)
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(Fo+ t"F)(Go+t"G1) = (1 — t")(FoGo — t"F1G1) + t"(Fo + F1)(Go + G1)
@ Level 1:
Fo=fo +fix+f X 4. +fos X%, Fi=foa +fos x+fos x>+ .. +Fiar x*;
Go=go+g1x+8x°+... +863x*;  Gi=goa+gesx+Lo6X"+. .. +g127x";
fg = (1 —x**)(FoGo — x**F1G1) + x**(Fo + F1)(Go + G1)
@ Level 2:

Foo=fo +fi x+f x>+ +x’s Fu=fo+fax+hal+.. 4+ x*
Fro=foa+fosx+foex*+. .. +fosx®;  Fri=fos+forx+fosx’+. .. +harx’";
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(Fo+t"F)(Go+t"G1) = (1 = t")(FoGo — t"F1G1) + t"(Fo + F1)(Go + G1)
@ Level 1:

Fo=fo+f x+fx 4. 43 xP; Fi=fo +fis x-+fos x>+ .. +fiar x*;
Go=go+gix+gx°+. .. +863x**;  Gi=ges+gesx+goox"+. . . +8127x%%;

fg = (1 — X64)(F0G0 — X64F1G1) + X64(Fo + F1)(Go + Gl)
@ Level 2:

Foo=fo +fi x+f X°+... +fax®t;  Fou=fatfix+fax+. .+ X
Flo=fas+fosx+foox+. .. +fosx™;  Fru=fos-+forx+Fipx®+... +fiarx;
let Fo = Fo+ F1 = Foo + x?Fa
Fao=(fo +foa)+(fi +fas )t (fy o)X+ .. +(Fiatos I

Faor=(fsa+fo )+ (fas+for )x+(faa+fog)x°+. . . +(foa+fiar) x>
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(Fo+t"F)(Go+t"G1) = (1 = t")(FoGo — t"F1G1) + t"(Fo + F1)(Go + G1)
@ Level 1:

Fo=fo+f x+fx 4. 43 xP; Fi=fo +fis x-+fos x>+ .. +fiar x*;
Go=go+gix+gx°+. .. +863x**;  Gi=ges+gesx+goox"+. . . +8127x%%;

fg = (1 — X64)(F0G0 — X64F1G1) + X64(Fo + F1)(Go + Gl)
@ Level 2:

Foo=fo +fi x+f x>+ +x’s Fu=fo+fax+hal+.. 4+ x*
Fro=foa+fosx+foex*+. .. +fosx®;  Fri=fos+forx+fosx’+. .. +harx’";
let F, = Fo4+ F1 = Foo + x**Fx
Foo=(fo +foa)+(fi +fos)x+(fo +fo6)x*+. .. +(Frr+fos )x*;
Faor=(fsa+fo )+ (fas+for )x+(faa+fog)x°+. . . +(foa+fiar) x>

(
(
FoGo=(1 — x**)(Foo Goo-x*2 Fo1 Go1 ) +x*( Foo-+Fo1 ) ( Goo+ Go1 );
F1Gi=(1 — x**)(F10 G1o-x*2F11 G11 ) +x*(Fro-+F11)(Gio+Gu1);
F2Go=(1 — x**)(Fa0 G20-x*2 F21 Go1 ) +x3(Fa0+F21)(Gao+ Go1 );
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(Fo+t"F)(Go+t"G1) = (1 = t")(FoGo — t"F1G1) + t"(Fo + F1)(Go + G1)
@ Level 1:

Fo=fo+f x+fx 4. 43 xP; Fi=fo +fis x-+fos x>+ .. +fiar x*;
Go=go+gix+gx°+. .. +863x**;  Gi=ges+gesx+goox"+. . . +8127x%%;

fg = (1 — X64)(F0G0 — X64F1G1) + X64(Fo + F1)(Go + Gl)
@ Level 2:
Foo=fo +fi x+f x>+ +x’s Fu=fo+fax+hal+.. 4+ x*
Fro=foa+fosx+foex*+. .. +fosx®;  Fri=fos+forx+fosx’+. .. +harx’";
let Fo = Fo+ Fi = Fao + x*Fa1

Fao=(fo +foa)+(f +fos)x+(fa +fo6)x"+. .. +(F+fos )x>
Faor=(fsa+fo )+ (fas+for )x+(faa+fog)x°+. . . +(foa+fiar) x>

(
(
FoGo=(1 — x**)(Foo Goo-x*2 Fo1 Go1 ) +x*( Foo-+Fo1 ) ( Goo+ Go1 );
F1Gi=(1 — x**)(F10 G1o-x*2F11 G11 ) +x*(Fro-+F11)(Gio+Gu1);
F2Go=(1 — x**)(Fa0 G20-x*2 F21 Go1 ) +x3(Fa0+F21)(Gao+ Go1 );

@ Similarly for level 3, level 4 and level 5
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Schoolbook

@ Lowest-level multiplication of 4n x 4n
e.g., F00000 Gooooo

ho = fogo

h1 = fog1 + fi8o

hy = fog2 + fig1 + fgo

hs = fogs + fige + hg1 + f380
hy = f1g3 + hgx + f381

hs = gz + f8

he = 83
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Schoolbook

@ Lowest-level multiplication of 4n x 4n
e.g., F00000 Gooooo

ho = fogo

h1 = fog1 + fi8o

hy = fog2 + fig1 + fgo

hs = fogs + fige + hg1 + f380
hy = f1g3 + hgx + f381

hs = gz + f8

he = 83

@ Using 5-level Karatsuba, there are 3% = 243 of 4n x 4n
for one 128 x 128
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Haswell floating-point vector unit

@ 256-bit 4-way vectorization
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Haswell floating-point vector unit

@ 256-bit 4-way vectorization

e Two vectorized multiply-add units (port 0 and port 1)
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Haswell floating-point vector unit

@ 256-bit 4-way vectorization

e Two vectorized multiply-add units (port 0 and port 1)
Each cycle produces 8 independent multiply-add ab + ¢
for 64-bit double-precision inputs a, b, ¢
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Haswell floating-point vector unit

@ 256-bit 4-way vectorization

e Two vectorized multiply-add units (port 0 and port 1)
Each cycle produces 8 independent multiply-add ab + ¢
for 64-bit double-precision inputs a, b, ¢

@ One vectorized addition unit (port 1)
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Haswell floating-point vector unit

@ 256-bit 4-way vectorization

e Two vectorized multiply-add units (port 0 and port 1)
Each cycle produces 8 independent multiply-add ab + ¢
for 64-bit double-precision inputs a, b, ¢

@ One vectorized addition unit (port 1)
Each cycle produces 4 independent additions a + b
for 64-bit double-precision input a, b
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plEEEE —— EEEE
¢~ DI | [ | -

@ Toom & Karatsuba
e vectorize inside each limb

LT T T ]+ + [T 1T ]+ e
N - N - T -
@ Schoolbook

e transpose inputs
e vectorize across independent multiplications
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Performance

@ Theoretical lower bound
e 0.125 cycles per floating-point multiplication
@ 0.250 cycles per floating-point addition and shift

e permutation fully interleavable

mul con mult add shift ‘ total

op. 42768 9700 98548 6385 | 157401
cycles 5346 1213 24637 1597 | 32793

@ Actual implementation
e 46784 cycles

e possibly due to dependency, latency, scheduling issues
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Current projects

@ PRF from module lattices

Module-NTRU in QROM

Ring-signature from module lattices

Middle product and integer LWE
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