Optimizing multiplications with vector instructions

Chitchanok Chuengsatiansup

INRIA and ENS de Lyon

4 June 2018

Introduction

- Current position:
 - Postdoc (INRIA and ENS de Lyon)
 - Supervisor: Damien Stehlé

Introduction

- Current position:
 - Postdoc (INRIA and ENS de Lyon)
 - Supervisor: Damien Stehlé
- Previous position:
 - PhD student at TU/Eindhoven, The Netherlands Cryptographic Implementations group
 - Thesis: "Optimizing Curve-Based Cryptography"
 - Supervisors: Daniel J. Bernstein and Tanja Lange

Introduction

- Current position:
 - Postdoc (INRIA and ENS de Lyon)
 - Supervisor: Damien Stehlé
- Previous position:
 - PhD student at TU/Eindhoven, The Netherlands Cryptographic Implementations group
 - Thesis: "Optimizing Curve-Based Cryptography"
 - Supervisors: Daniel J. Bernstein and Tanja Lange
- Experience
 - Software implementations
 - Optimizing cryptographic software and algorithms

Vectorization speedups

without vector

$$a + b$$

Vectorization speedups

without vector

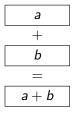
with vector

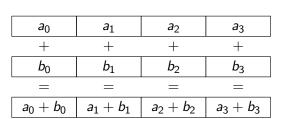
a_0	a_1	a ₂	a ₃
+	+	+	+
b_0	b_1	<i>b</i> ₂	<i>b</i> ₃
=	=	=	=
$a_0 + b_0$	$a_1 + b_1$	$a_2 + b_2$	$a_3 + b_3$

Vectorization speedups

without vector

with vector





• **single** instruction performing *n* **independent** operations on **aligned** inputs

Side-channel attacks

- Prevent software side-channel attacks:
 - constant-time
 - no input-dependent branch
 - no input-dependent array index

Side-channel attacks

- Prevent software side-channel attacks:
 - constant-time
 - no input-dependent branch
 - no input-dependent array index
- Constant-time table-lookup:
 - read entire table
 - select via arithmetic if c is 1, select tbl[i] if c is 0, ignore tbl[i] $t = (t \cdot (1-c)) + (tbl[i] \cdot (c))$ $t = (t \wedge (c-1)) \vee (tbl[i] \wedge (-c))$

Curve41417

Design of Curve41417

- High-security elliptic curve (security level above 2²⁰⁰)
- Defined over prime field \mathbb{F}_p where $p = 2^{414} 17$
- In Edwards curve form

$$x^2 + y^2 = 1 + 3617x^2y^2$$

Design of Curve41417

- High-security elliptic curve (security level above 2²⁰⁰)
- Defined over prime field \mathbb{F}_p where $p = 2^{414} 17$
- In Edwards curve form

$$x^2 + y^2 = 1 + 3617x^2y^2$$

- Large prime-order subgroup (cofactor 8)
- IEEE P1363 criteria (large embedding degree, etc.)
- Twist secure, i.e., twist of Curve41417 also secure

ECC arithmetic

- Mixed-coordinate systems:
 - doubling: projective X, Y, Z
 - addition: extended X, Y, Z, T

```
(See https://hyperelliptic.org/EFD/)
```

ECC arithmetic

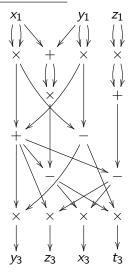
- Mixed-coordinate systems:
 - doubling: projective X, Y, Z
 - addition: extended X, Y, Z, T

```
(See https://hyperelliptic.org/EFD/)
```

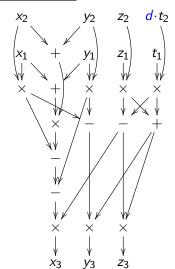
- Scalar multiplication:
 - signed fixed windows of width w = 5
 - precompute $0P, 1P, 2P, \dots, 16P$ also multiply d = 3617 to T coordinate
 - special first doubling
 - compute T only before addition

Point operations

Point doubling



Point addition



ARM Cortex-A8 vector unit

- 128-bit vector registers
- Arithmetic and load/store unit can perform in parallel
- Operate in parallel on vectors of four 32-bit integers or two 64-bit integers

ARM Cortex-A8 vector unit

- 128-bit vector registers
- Arithmetic and load/store unit can perform in parallel
- Operate in parallel on vectors of four 32-bit integers or two 64-bit integers
- Each cycle produces:
 four 32-bit integer additions: a₀+b₀, a₁+b₁, a₂+b₂, a₃+b₃
 or
 two 64-bit integer additions: c₀+d₀, c₁+d₁
 or
 one multiply-add instruction: a₀b₀ + c₀
 where a_i, b_i are 32- and c_i, d_i are 64-bit integers

Redundant representation

- Use **non-integer** radix $2^{414/16} = 2^{25.875}$
- Decompose integer f modulo $2^{414} 17$ into 16 integer pieces
- Write f as

$$f_0 + 2^{26} f_1 + 2^{52} f_2 + 2^{78} f_3 + 2^{104} f_4 + 2^{130} f_5 + 2^{156} f_6 + 2^{182} f_7 + 2^{207} f_8 + 2^{233} f_9 + 2^{259} f_{10} + 2^{285} f_{11} + 2^{311} f_{12} + 2^{337} f_{13} + 2^{363} f_{14} + 2^{389} f_{15}$$

• Goal: Bring each limb down to 26 or 25 bits

- Goal: Bring each limb down to 26 or 25 bits
- Typical carry chain:

$$m_0 \rightarrow m_1 \rightarrow m_2 \rightarrow \cdots \rightarrow m_{14} \rightarrow m_{15} \rightarrow m_0 \rightarrow m_1$$

- Goal: Bring each limb down to 26 or 25 bits
- Typical carry chain:

$$m_0 \rightarrow m_1 \rightarrow m_2 \rightarrow \cdots \rightarrow m_{14} \rightarrow m_{15} \rightarrow m_0 \rightarrow m_1$$

• Increase throughput:

- Goal: Bring each limb down to 26 or 25 bits
- Typical carry chain:

$$m_0 \rightarrow m_1 \rightarrow m_2 \rightarrow \cdots \rightarrow m_{14} \rightarrow m_{15} \rightarrow m_0 \rightarrow m_1$$

• Increase throughput:

$$m_0 \rightarrow m_1$$

$$m_8 \rightarrow m_9$$

- Goal: Bring each limb down to 26 or 25 bits
- Typical carry chain:

$$m_0 \rightarrow m_1 \rightarrow m_2 \rightarrow \cdots \rightarrow m_{14} \rightarrow m_{15} \rightarrow m_0 \rightarrow m_1$$

• Increase throughput:

$$m_0 \rightarrow m_1 \rightarrow m_2$$

$$m_8 \rightarrow m_9 \rightarrow m_{10}$$

- Goal: Bring each limb down to 26 or 25 bits
- Typical carry chain: $m_0 \rightarrow m_1 \rightarrow m_2 \rightarrow \cdots \rightarrow m_{14} \rightarrow m_{15} \rightarrow m_0 \rightarrow m_1$
- Increase throughput:

$$m_0 \rightarrow m_1 \rightarrow m_2 \rightarrow m_3 \rightarrow m_4 \rightarrow m_5 \rightarrow m_6 \rightarrow m_7 \rightarrow m_8 \rightarrow m_9 m_8 \rightarrow m_9 \rightarrow m_{10} \rightarrow m_{11} \rightarrow m_{12} \rightarrow m_{13} \rightarrow m_{14} \rightarrow m_{15} \rightarrow m_0 \rightarrow m_1$$

- Goal: Bring each limb down to 26 or 25 bits
- Typical carry chain: $m_0 \rightarrow m_1 \rightarrow m_2 \rightarrow \cdots \rightarrow m_{14} \rightarrow m_{15} \rightarrow m_0 \rightarrow m_1$
- Increase throughput: $m_0 \rightarrow m_1 \rightarrow m_2 \rightarrow m_3 \rightarrow m_4 \rightarrow m_5 \rightarrow m_6 \rightarrow m_7 \rightarrow m_8 \rightarrow m_9$ $m_8 \rightarrow m_9 \rightarrow m_{10} \rightarrow m_{11} \rightarrow m_{12} \rightarrow m_{13} \rightarrow m_{14} \rightarrow m_{15} \rightarrow m_0 \rightarrow m_1$
- Decrease latency:

- Goal: Bring each limb down to 26 or 25 bits
- Typical carry chain: $m_0 \rightarrow m_1 \rightarrow m_2 \rightarrow \cdots \rightarrow m_{14} \rightarrow m_{15} \rightarrow m_0 \rightarrow m_1$
- Increase throughput:

$$m_0 \rightarrow m_1 \rightarrow m_2 \rightarrow m_3 \rightarrow m_4 \rightarrow m_5 \rightarrow m_6 \rightarrow m_7 \rightarrow m_8 \rightarrow m_9 m_8 \rightarrow m_9 \rightarrow m_{10} \rightarrow m_{11} \rightarrow m_{12} \rightarrow m_{13} \rightarrow m_{14} \rightarrow m_{15} \rightarrow m_0 \rightarrow m_1$$

$$m_0 \rightarrow m_1$$

 $m_8 \rightarrow m_9$

- Goal: Bring each limb down to 26 or 25 bits
- Typical carry chain:

$$m_0 \rightarrow m_1 \rightarrow m_2 \rightarrow \cdots \rightarrow m_{14} \rightarrow m_{15} \rightarrow m_0 \rightarrow m_1$$

• Increase throughput:

$$m_0 \rightarrow m_1 \rightarrow m_2 \rightarrow m_3 \rightarrow m_4 \rightarrow m_5 \rightarrow m_6 \rightarrow m_7 \rightarrow m_8 \rightarrow m_9 m_8 \rightarrow m_9 \rightarrow m_{10} \rightarrow m_{11} \rightarrow m_{12} \rightarrow m_{13} \rightarrow m_{14} \rightarrow m_{15} \rightarrow m_0 \rightarrow m_1$$

$$m_0
ightarrow m_1 \ m_8
ightarrow m_9 \ m_4
ightarrow m_5 \ m_{12}
ightarrow m_{13}$$

- Goal: Bring each limb down to 26 or 25 bits
- Typical carry chain:

$$m_0 \rightarrow m_1 \rightarrow m_2 \rightarrow \cdots \rightarrow m_{14} \rightarrow m_{15} \rightarrow m_0 \rightarrow m_1$$

• Increase throughput:

$$m_0 \rightarrow m_1 \rightarrow m_2 \rightarrow m_3 \rightarrow m_4 \rightarrow m_5 \rightarrow m_6 \rightarrow m_7 \rightarrow m_8 \rightarrow m_9 m_8 \rightarrow m_9 \rightarrow m_{10} \rightarrow m_{11} \rightarrow m_{12} \rightarrow m_{13} \rightarrow m_{14} \rightarrow m_{15} \rightarrow m_0 \rightarrow m_1$$

$$m_0 \rightarrow m_1 \rightarrow m_2$$
 $m_8 \rightarrow m_9 \rightarrow m_{10}$
 $m_4 \rightarrow m_5$
 $m_{12} \rightarrow m_{13}$

- Goal: Bring each limb down to 26 or 25 bits
- Typical carry chain:

$$m_0 \rightarrow m_1 \rightarrow m_2 \rightarrow \cdots \rightarrow m_{14} \rightarrow m_{15} \rightarrow m_0 \rightarrow m_1$$

• Increase throughput:

$$m_0 \rightarrow m_1 \rightarrow m_2 \rightarrow m_3 \rightarrow m_4 \rightarrow m_5 \rightarrow m_6 \rightarrow m_7 \rightarrow m_8 \rightarrow m_9 m_8 \rightarrow m_9 \rightarrow m_{10} \rightarrow m_{11} \rightarrow m_{12} \rightarrow m_{13} \rightarrow m_{14} \rightarrow m_{15} \rightarrow m_0 \rightarrow m_1$$

$$m_0 o m_1 o m_2 \ m_8 o m_9 o m_{10} \ m_4 o m_5 o m_6 \ m_{12} o m_{13} o m_{14}$$

- Goal: Bring each limb down to 26 or 25 bits
- Typical carry chain: $m_0 \rightarrow m_1 \rightarrow m_2 \rightarrow \cdots \rightarrow m_{14} \rightarrow m_{15} \rightarrow m_0 \rightarrow m_1$
- Increase throughput:

$$m_0 \rightarrow m_1 \rightarrow m_2 \rightarrow m_3 \rightarrow m_4 \rightarrow m_5 \rightarrow m_6 \rightarrow m_7 \rightarrow m_8 \rightarrow m_9 m_8 \rightarrow m_9 \rightarrow m_{10} \rightarrow m_{11} \rightarrow m_{12} \rightarrow m_{13} \rightarrow m_{14} \rightarrow m_{15} \rightarrow m_0 \rightarrow m_1$$

$$m_0 o m_1 o m_2 o m_3 o m_4 o m_5 \ m_8 o m_9 o m_{10} o m_{11} o m_{12} o m_{13} \ m_4 o m_5 o m_6 o m_7 o m_8 o m_9 \ m_{12} o m_{13} o m_{14} o m_{15} o m_0 o m_1$$

Polynomial multiplication

- Goal: Compute P = ABgiven $A = a_0 + a_1t^n$ and $B = b_0 + b_1t^n$
- Method 1: schoolbook $P = a_0b_0 + (a_0b_1 + a_1b_0)t^n + a_1b_1t^{2n}$
- Method 2: Karatsuba (8n-4 additions) $P = a_0b_0 + ((a_0+a_1)(b_0+b_1) - a_0b_0 - a_1b_1)t^n + a_1b_1t^{2n}$
- Method 3: refined Karatsuba (7n-3 additions) $P = (a_0b_0 - a_1b_1t^n)(1-t^n) + (a_0+a_1)(b_0+b_1)t^n$

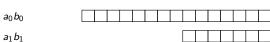
Polynomial multiplication mod Q

- Goal: Compute $P = AB \mod Q$ given $A = a_0 + a_1t^n$ and $B = b_0 + b_1t^n$
- Method 1: schoolbook $P = a_0b_0 + (a_0b_1 + a_1b_0)t^n + a_1b_1t^{2n} \mod Q$
- Method 2: Karatsuba (8n-4 additions) $P = a_0b_0 + ((a_0+a_1)(b_0+b_1) - a_0b_0 - a_1b_1)t^n + a_1b_1t^{2n} \mod Q$
- Method 3: refined Karatsuba (7n-3 additions) $P = (a_0b_0 - a_1b_1t^n)(1-t^n) + (a_0+a_1)(b_0+b_1)t^n \mod Q$

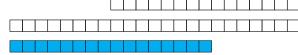
Polynomial multiplication mod Q

- Goal: Compute $P = AB \mod Q$ given $A = a_0 + a_1t^n$ and $B = b_0 + b_1t^n$
- Method 1: schoolbook $P = a_0b_0 + (a_0b_1 + a_1b_0)t^n + a_1b_1t^{2n} \mod Q$
- Method 2: Karatsuba (8n-4 additions) $P = a_0b_0 + ((a_0+a_1)(b_0+b_1) - a_0b_0 - a_1b_1)t^n + a_1b_1t^{2n} \mod Q$
- Method 3: refined Karatsuba (7n-3 additions) $P = (a_0b_0 - a_1b_1t^n)(1-t^n) + (a_0+a_1)(b_0+b_1)t^n \mod Q$
- Method 4: reduced refined Karatsuba (6n-2 additions) (new) $P = (a_0b_0 a_1b_1t^n \mod Q)(1-t^n) + (a_0+a_1)(b_0+b_1)t^n \mod Q$

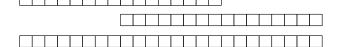
Reduced refined Karatsuba



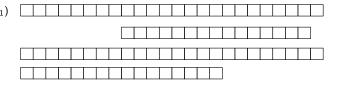
subtract reduce



$$a_0b_0 - t^n a_1 b_1$$
$$a_0b_0 - t^n a_1 b_1$$
subtract



$$(1-t^n)(a_0b_0-t^na_1b_1)$$
 $(a_0+a_1)(b_0+b_1)$ add reduce



Level of Karatsuba

• Karatsuba splits 1 $(2n \times 2n)$ into 3 $(n \times n)$

Level of Karatsuba

- Karatsuba splits 1 $(2n \times 2n)$ into 3 $(n \times n)$
- Zero-level Karatsuba (Schoolbook) e.g. for 16 limbs: $16 \times 16 = 256$

Level of Karatsuba

- Karatsuba splits 1 $(2n \times 2n)$ into 3 $(n \times n)$
- Zero-level Karatsuba (Schoolbook) e.g. for 16 limbs: $16 \times 16 = 256$
- One-level Karatsuba e.g.: $16 \times 16 \rightarrow 3 \cdot (8 \times 8) + \text{some additions}$

= 192 + some additions

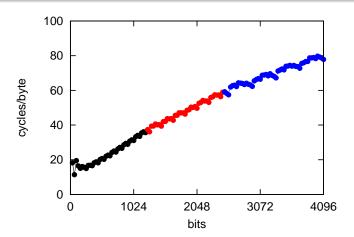
Chitchanok Chuengsatiansup

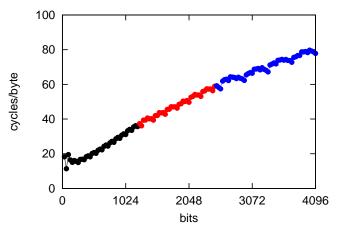
Level of Karatsuba

- Karatsuba splits 1 $(2n \times 2n)$ into 3 $(n \times n)$
- Zero-level Karatsuba (Schoolbook) e.g. for 16 limbs: $16 \times 16 = 256$
- One-level Karatsuba e.g.: $16 \times 16 \rightarrow 3 \cdot (8 \times 8) + \text{some additions}$ = 192 + some additions
- Two-level Karatsuba e.g.: $3 \cdot (8 \times 8) \rightarrow 3 \cdot (3 \cdot (4 \times 4)) + \text{even more additions}$ = 144 + even more additions

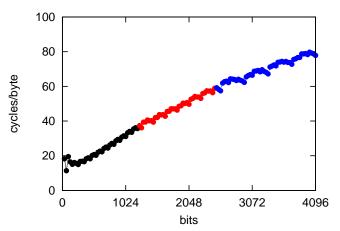
Level of Karatsuba

- Karatsuba splits 1 $(2n \times 2n)$ into 3 $(n \times n)$
- Zero-level Karatsuba (Schoolbook) e.g. for 16 limbs: $16 \times 16 = 256$
- One-level Karatsuba e.g.: $16 \times 16 \rightarrow 3 \cdot (8 \times 8) + \text{some additions}$ = 192 + some additions
- Two-level Karatsuba e.g.: $3 \cdot (8 \times 8) \rightarrow 3 \cdot (3 \cdot (4 \times 4)) + \text{even more additions}$ = 144 + even more additions
- What is the zero-level/one-level cutoff for number of limbs?

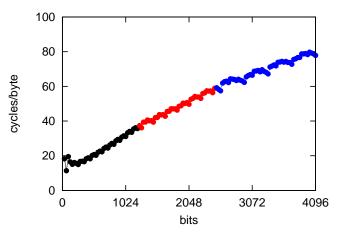




• GMP 6.0.0a library chooses 1248 bits on ARM Cortex-A8



- GMP 6.0.0a library chooses 1248 bits on ARM Cortex-A8
- We reduce cutoff via improvements to Karatsuba



- GMP 6.0.0a library chooses 1248 bits on ARM Cortex-A8
- We reduce cutoff via improvements to Karatsuba
- We reduce cutoff via redundant representation

Cost comparison (Karatsuba)

Level	Mult.	Add		Cost	
		64-bit	32-bit		
0-level	256	15	0	256+8+0=264	
1-level	192	59	16	192+30+4=226	
2-level	144	119	40	144+60+10=214	
3-level	108	191	76	108+96+19=223	

Note: use multiply-add instructions

Recall:

- 1 cycle per multiplication
- 0.5 cycle per 64-bit addition
- 0.25 cycle per 32-bit addition

Cost comparison (refined Karatsuba)

Level	Mult.	Add		Cost	
		64-bit	32-bit		
0-level	256	15	0	256+8+0=264	
1-level	192	52	16	192+26+ 4 = 222	
2-level	144	103	40	144+52+10=206	
3-level	108	166	76	108 + 83 + 19 = 210	

Note: use multiply-add instructions

Recall:

- 1 cycle per multiplication
- 0.5 cycle per 64-bit addition
- 0.25 cycle per 32-bit addition

Cost comparison (reduced refined Karatsuba)

Level	Mult	Add		Cost	
		64-bit	32-bit	3333	
0-level	256	15	0	256+8+0=264	
1-level	192	45	16	192+23+4=219	
2-level	144	96	40	144 + 48 + 10 = 202	
3-level	108	159	76	108 + 80 + 19 = 207	

Note: use multiply-add instructions

Recall:

- 1 cycle per multiplication
- 0.5 cycle per 64-bit addition
- 0.25 cycle per 32-bit addition

Performance comparison

OpenSSL

curve	# cycle on i.MX515	# cycle on Sitara
secp160r1	pprox 2.1 million	pprox 2.1 million
nistp192	pprox 2.9 million	pprox 2.8 million
nistp224	pprox 4.0 million	pprox 3.9 million
nistp256	pprox 4.0 million	pprox 3.9 million
nistp384	pprox 13.3 million	pprox 13.2 million
nistp521	pprox 29.7 million	pprox 29.7 million

- Curve41417 (security level above 2²⁰⁰)
 - ullet pprox 1.6 million cycles on FreeScale i.MX515
 - ullet pprox 1.8 million cycles on TI Sitara

NTRU Prime

NTRU Prime

- High-security prime-degree large-Galois-group inert-modulus ideal-lattice-based cryptography
- System parameters (p, q, t)
 - p, q are prime
 - $p \ge \max\{2t, 3\}$
 - $q \ge 32t + 1$
 - $x^p x 1$ is irreducible in polynomial ring $(\mathbb{Z}/q)[x]$
- Fields of the form $(\mathbb{Z}/q)[x]/(x^p-x-1)$

NTRU Prime

- High-security prime-degree large-Galois-group inert-modulus ideal-lattice-based cryptography
- System parameters (p, q, t)
 - p, q are prime
 - $p \ge \max\{2t, 3\}$
 - $q \ge 32t + 1$
 - $x^p x 1$ is irreducible in polynomial ring $(\mathbb{Z}/q)[x]$
- Fields of the form $(\mathbb{Z}/q)[x]/(x^p-x-1)$
- Abbreviation:
 - ring $\mathbb{Z}[x]/(x^p-x-1)$ as \mathcal{R}
 - ring $(\mathbb{Z}/3)[x]/(x^p x 1)$ as $\mathbb{R}/3$
 - field $(\mathbb{Z}/q)[x]/(x^p-x-1)$ as \mathbb{R}/q

Streamlined NTRU Prime: private and public key

ullet Pick $g \in \mathcal{R}$

$$g = g_0 + \dots + g_{p-1}x^{p-1}$$
 with $g_i \in \{-1, 0, 1\}$

g is required to be invertible in $\mathcal{R}/3$

• Pick $f \in \mathcal{R}$

$$f = f_0 + \dots + f_{p-1}x^{p-1}$$
 with $f_i \in \{-1, 0, 1\}$ and $\sum |f_i| = 2t$

f is nonzero and hence invertible in \mathcal{R}/q

- Public key: h = g/(3f) in \mathcal{R}/q
- Private keys: f in $\mathcal R$ and 1/g in $\mathcal R/3$

Streamlined NTRU Prime: KEM/DEM

- Use Key Encapsulation Mechanism (KEM) combined with Data Encapsulation Mechanism (DEM)
- KEM:
 - look up public key h
 - pick $r \in \mathcal{R}$ (i.e., $r_i \in \{-1, 0, 1\}, \sum |r_i| = 2t$)
 - compute hr in \mathcal{R}/q
 - round each coefficient (viewed as $\mathbb{Z} \cap [-(q-1)/2, (q-1)/2]$) to the nearest multiple of 3 to get c
 - compute $\operatorname{Hash}(r) = (C|K)$
 - send (C|c), use session key K for DEM

Streamlined NTRU Prime: decapsulation

- To decrypt (C|c)
 - (reminder: h = g/(3f) in \mathcal{R}/q)
 - compute 3fc = 3f(hr + m) = gr + 3fm in \mathcal{R}/q
 - reduce the coefficients modulo 3 to get $a=gr\in \mathcal{R}/3$
 - compute $r' = a/g \in \mathcal{R}/3$, lift r' to \mathcal{R}
 - compute $\operatorname{Hash}(r') = (C'|K')$ and c' as rounding of hr'
 - verify that c' = c and C' = C
- If all verifications are ok, then K = K' is the session key

Streamlined NTRU Prime 4591⁷⁶¹

- Field $(\mathbb{Z}/4591)[x]/(x^{761}-x-1)$
- Parameters:
 - p = 761
 - q = 4591
 - *t* = 143
- Security: 2²⁴⁸ (pre-quantum)
 - considered hybrid lattice-reduction and meet-in-the-middle attack

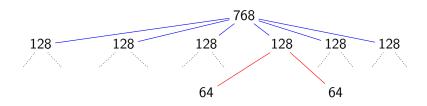
Polynomial multiplication

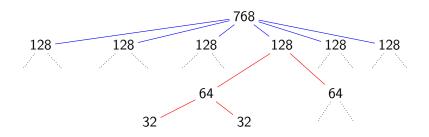
- Main bottleneck is polynomial multiplication
- Multiplication algorithms considered:
 - Toom (3–6)
 - refined Karatsuba
 - arbitrary degree variant of Karatsuba (3–6)

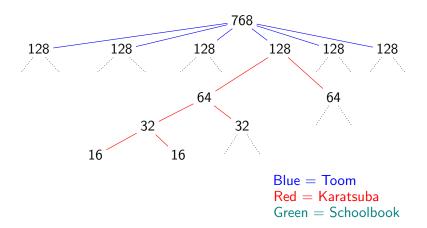
Polynomial multiplication

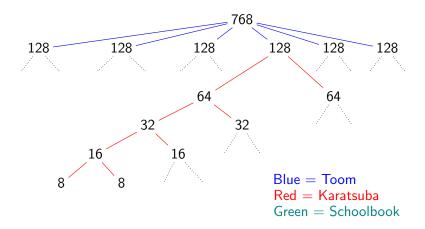
- Main bottleneck is polynomial multiplication
- Multiplication algorithms considered:
 - Toom (3–6)
 - refined Karatsuba
 - arbitrary degree variant of Karatsuba (3–6)
- Best operation count found so far for 768×768 :
 - ullet 5-level refined Karatsuba up to 128 imes 128
 - Toom6: evaluated at $0, \pm 1, \pm 2, \pm 3, \pm 4, 5, \infty$

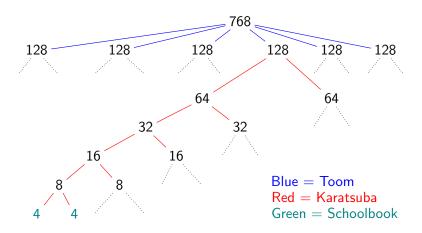
768











Toom: decomposition

• Decompose
$$a(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{767}x^{767}$$
 into $a(x,y) = A_0(x) + A_1(x)y + A_2(x)y^2 + A_3(x)y^3 + A_4(x)y^4 + A_5(x)y^5$ where $y = x^{128}$ and
$$A_0(x) = a_0 + a_1 + a_2 + x^2 + \cdots + a_{127}x^{127}$$

$$A_1(x) = a_{128} + a_{129}x + a_{130}x^2 + \cdots + a_{255}x^{127}$$

$$A_2(x) = a_{256} + a_{257}x + a_{258}x^2 + \cdots + a_{383}x^{127}$$

$$A_3(x) = a_{384} + a_{385}x + a_{386}x^2 + \cdots + a_{511}x^{127}$$

$$A_4(x) = a_{512} + a_{513}x + a_{514}x^2 + \cdots + a_{639}x^{127}$$

$$A_5(x) = a_{640} + a_{641}x + a_{642}x^2 + \cdots + a_{767}x^{127}$$

Toom: decomposition

• Decompose
$$a(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{767}x^{767}$$
 into $a(x,y) = A_0(x) + A_1(x)y + A_2(x)y^2 + A_3(x)y^3 + A_4(x)y^4 + A_5(x)y^5$ where $y = x^{128}$ and
$$A_0(x) = a_0 + a_1 + x + a_2 + x^2 + \cdots + a_{127}x^{127}$$

$$A_1(x) = a_{128} + a_{129}x + a_{130}x^2 + \cdots + a_{255}x^{127}$$

$$A_2(x) = a_{256} + a_{257}x + a_{258}x^2 + \cdots + a_{383}x^{127}$$

$$A_3(x) = a_{384} + a_{385}x + a_{386}x^2 + \cdots + a_{511}x^{127}$$

$$A_4(x) = a_{512} + a_{513}x + a_{514}x^2 + \cdots + a_{639}x^{127}$$

$$A_5(x) = a_{640} + a_{641}x + a_{642}x^2 + \cdots + a_{767}x^{127}$$

• Similarly for b(x), then

$$ab = C_0 + C_1 y + C_2 y^2 + C_3 y^3 + C_4 y^4 + C_5 y^5$$
$$C_6 y^6 + C_7 y^7 + C_8 y^8 + C_9 y^9 + C_{10} y^{10}$$

Toom: evaluation

$$(F_0 + t^n F_1)(G_0 + t^n G_1) = (1 - t^n)(F_0 G_0 - t^n F_1 G_1) + t^n(F_0 + F_1)(G_0 + G_1)$$

$$(F_0+t^nF_1)(G_0+t^nG_1)=(1-t^n)(F_0G_0-t^nF_1G_1)+t^n(F_0+F_1)(G_0+G_1)$$

• Level 1:

$$F_{0} = f_{0} + f_{1} x + f_{2} x^{2} + \dots + f_{63} x^{63}; F_{1} = f_{64} + f_{65} x + f_{66} x^{2} + \dots + f_{127} x^{63}; G_{0} = g_{0} + g_{1} x + g_{2} x^{2} + \dots + g_{63} x^{63}; G_{1} = g_{64} + g_{65} x + g_{66} x^{2} + \dots + g_{127} x^{63}; f_{66} = (1 - x^{64})(F_{0} G_{0} - x^{64} F_{1} G_{1}) + x^{64}(F_{0} + F_{1})(G_{0} + G_{1})$$

$$(F_0+t^nF_1)(G_0+t^nG_1)=(1-t^n)(F_0G_0-t^nF_1G_1)+t^n(F_0+F_1)(G_0+G_1)$$

Level 1:

$$\begin{split} F_0 = & f_0 + f_1 \ x + f_2 \ x^2 + \ldots + f_{63} \ x^{63}; & F_1 = f_{64} + f_{65} \ x + f_{66} \ x^2 + \ldots + f_{127} \ x^{63}; \\ G_0 = & g_0 + g_1 x + g_2 x^2 + \ldots + g_{63} x^{63}; & G_1 = g_{64} + g_{65} x + g_{66} x^2 + \ldots + g_{127} x^{63}; \\ fg = & (1 - x^{64}) \big(F_0 G_0 - x^{64} F_1 G_1 \big) + x^{64} \big(F_0 + F_1 \big) \big(G_0 + G_1 \big) \end{split}$$

Level 2:

$$F_{00} = f_0 + f_1 \times + f_2 \times^2 + \dots + f_{31} \times^{31}; \qquad F_{01} = f_{32} + f_{33} \times + f_{34} \times^2 + \dots + f_{63} \times^{31}; F_{10} = f_{64} + f_{65} \times + f_{66} \times^2 + \dots + f_{95} \times^{31}; \qquad F_{11} = f_{96} + f_{97} \times + f_{98} \times^2 + \dots + f_{127} \times^{31};$$

$$(F_0+t^nF_1)(G_0+t^nG_1)=(1-t^n)(F_0G_0-t^nF_1G_1)+t^n(F_0+F_1)(G_0+G_1)$$

Level 1:

$$\begin{split} F_0 = & f_0 + f_1 \, x + f_2 \, x^2 + \ldots + f_{63} \, x^{63}; & F_1 = f_{64} + f_{65} \, x + f_{66} \, x^2 + \ldots + f_{127} \, x^{63}; \\ G_0 = & g_0 + g_1 x + g_2 x^2 + \ldots + g_{63} x^{63}; & G_1 = g_{64} + g_{65} x + g_{66} x^2 + \ldots + g_{127} x^{63}; \\ fg = & (1 - x^{64}) \big(F_0 \, G_0 - x^{64} F_1 \, G_1 \big) + x^{64} \big(F_0 + F_1 \big) \big(G_0 + G_1 \big) \end{split}$$

Level 2:

$$F_{00} = f_0 + f_1 \times + f_2 \times^2 + \dots + f_{31} \times^{31}; F_{01} = f_{32} + f_{33} \times + f_{34} \times^2 + \dots + f_{63} \times^{31}; F_{10} = f_{64} + f_{65} \times + f_{66} \times^2 + \dots + f_{95} \times^{31}; F_{11} = f_{96} + f_{97} \times + f_{98} \times^2 + \dots + f_{127} \times^{31};$$
let $F_2 = F_0 + F_1 = F_{20} + X^{32} F_{21}$

$$F_{20} = (f_0 + f_{64}) + (f_1 + f_{65}) \times + (f_2 + f_{66}) \times^2 + \dots + (f_{31} + f_{95}) \times^{31}; F_{21} = (f_{32} + f_{96}) + (f_{33} + f_{97}) \times + (f_{34} + f_{98}) \times^2 + \dots + (f_{63} + f_{127}) \times^{31};$$

$$(F_0+t^nF_1)(G_0+t^nG_1)=(1-t^n)(F_0G_0-t^nF_1G_1)+t^n(F_0+F_1)(G_0+G_1)$$

Level 1:

$$\begin{split} F_0 = & f_0 + f_1 \, x + f_2 \, x^2 + \ldots + f_{63} \, x^{63}; & F_1 = f_{64} + f_{65} \, x + f_{66} \, x^2 + \ldots + f_{127} \, x^{63}; \\ G_0 = & g_0 + g_1 x + g_2 x^2 + \ldots + g_{63} x^{63}; & G_1 = g_{64} + g_{65} x + g_{66} x^2 + \ldots + g_{127} x^{63}; \\ fg = & (1 - x^{64}) \big(F_0 \, G_0 - x^{64} F_1 \, G_1 \big) + x^{64} \big(F_0 + F_1 \big) \big(G_0 + G_1 \big) \end{split}$$

• Level 2:

$$\begin{split} F_{00} = &f_0 + f_1 \ x + f_2 \ x^2 + \ldots + f_{31} x^{31}; \\ F_{10} = &f_{64} + f_{65} x + f_{66} x^2 + \ldots + f_{95} x^{31}; \\ F_{11} = &f_{96} + f_{97} x + f_{98} x^2 + \ldots + f_{127} x^{31}; \\ \text{let } F_2 = &F_0 + F_1 = F_{20} + x^{32} F_{21} \\ F_{20} = &(f_0 + f_{64}) + (f_1 + f_{65}) x + (f_2 + f_{66}) x^2 + \ldots + (f_{31} + f_{95}) x^{31}; \\ F_{21} = &(f_{32} + f_{96}) + (f_{33} + f_{97}) x + (f_{34} + f_{98}) x^2 + \ldots + (f_{63} + f_{127}) x^{31}; \\ F_0 G_0 = &(1 - x^{32}) (F_{00} G_{00} - x^{32} F_{01} G_{01}) + x^{32} (F_{00} + F_{01}) (G_{00} + G_{01}); \\ F_1 G_1 = &(1 - x^{32}) (F_{10} G_{10} - x^{32} F_{11} G_{11}) + x^{32} (F_{10} + F_{11}) (G_{10} + G_{11}); \\ F_2 G_2 = &(1 - x^{32}) (F_{20} G_{20} - x^{32} F_{21} G_{21}) + x^{32} (F_{20} + F_{21}) (G_{20} + G_{21}); \end{split}$$

$$(F_0+t^nF_1)(G_0+t^nG_1)=(1-t^n)(F_0G_0-t^nF_1G_1)+t^n(F_0+F_1)(G_0+G_1)$$

Level 1:

$$\begin{split} F_0 = & f_0 + f_1 \, x + f_2 \, x^2 + \ldots + f_{63} \, x^{63}; & F_1 = f_{64} + f_{65} \, x + f_{66} \, x^2 + \ldots + f_{127} \, x^{63}; \\ G_0 = & g_0 + g_1 x + g_2 x^2 + \ldots + g_{63} x^{63}; & G_1 = g_{64} + g_{65} x + g_{66} x^2 + \ldots + g_{127} x^{63}; \\ fg = & (1 - x^{64}) (F_0 \, G_0 - x^{64} F_1 \, G_1) + x^{64} (F_0 + F_1) (G_0 + G_1) \end{split}$$

Level 2:

$$\begin{split} F_{00} = & f_0 + f_1 \times + f_2 \times^2 + \ldots + f_{31} x^{31}; & F_{01} = f_{32} + f_{33} x + f_{34} x^2 + \ldots + f_{63} \times^{31}; \\ F_{10} = & f_{64} + f_{65} x + f_{66} x^2 + \ldots + f_{95} x^{31}; & F_{11} = f_{96} + f_{97} x + f_{98} x^2 + \ldots + f_{127} x^{31}; \\ \text{let } F_2 = & F_0 + F_1 = F_{20} + x^{32} F_{21} \\ F_{20} = & (f_0 + f_{64}) + (f_1 + f_{65}) x + (f_2 + f_{66}) x^2 + \ldots + (f_{31} + f_{95}) x^{31}; \\ F_{21} = & (f_{32} + f_{96}) + (f_{33} + f_{97}) x + (f_{34} + f_{98}) x^2 + \ldots + (f_{63} + f_{127}) x^{31}; \\ F_0 G_0 = & (1 - x^{32}) (F_{00} G_{00} - x^{32} F_{01} G_{01}) + x^{32} (F_{00} + F_{01}) (G_{00} + G_{01}); \\ F_1 G_1 = & (1 - x^{32}) (F_{10} G_{10} - x^{32} F_{11} G_{11}) + x^{32} (F_{10} + F_{11}) (G_{10} + G_{11}); \\ F_2 G_2 = & (1 - x^{32}) (F_{20} G_{20} - x^{32} F_{21} G_{21}) + x^{32} (F_{20} + F_{21}) (G_{20} + G_{21}); \end{split}$$

Similarly for level 3, level 4 and level 5

Schoolbook

• Lowest-level multiplication of $4n \times 4n$ e.g., $F_{00000}G_{00000}$

$$h_0 = f_0g_0$$

$$h_1 = f_0g_1 + f_1g_0$$

$$h_2 = f_0g_2 + f_1g_1 + f_2g_0$$

$$h_3 = f_0g_3 + f_1g_2 + f_2g_1 + f_3g_0$$

$$h_4 = f_1g_3 + f_2g_2 + f_3g_1$$

$$h_5 = f_2g_3 + f_3g_2$$

$$h_6 = f_3g_3$$

Schoolbook

• Lowest-level multiplication of $4n \times 4n$ e.g., $F_{00000}G_{00000}$

$$h_0 = f_0g_0$$

$$h_1 = f_0g_1 + f_1g_0$$

$$h_2 = f_0g_2 + f_1g_1 + f_2g_0$$

$$h_3 = f_0g_3 + f_1g_2 + f_2g_1 + f_3g_0$$

$$h_4 = f_1g_3 + f_2g_2 + f_3g_1$$

$$h_5 = f_2g_3 + f_3g_2$$

$$h_6 = f_3g_3$$

• Using 5-level Karatsuba, there are $3^5=243$ of $4n\times 4n$ for one 128×128

• 256-bit 4-way vectorization

- 256-bit 4-way vectorization
- Two vectorized multiply-add units (port 0 and port 1)

- 256-bit 4-way vectorization
- Two vectorized multiply-add units (port 0 and port 1)
 Each cycle produces 8 independent multiply-add ab + c
 for 64-bit double-precision inputs a, b, c

- 256-bit 4-way vectorization
- Two vectorized multiply-add units (port 0 and port 1)
 Each cycle produces 8 independent multiply-add ab + c
 for 64-bit double-precision inputs a, b, c
- One vectorized addition unit (port 1)

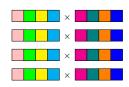
- 256-bit 4-way vectorization
- Two vectorized multiply-add units (port 0 and port 1)
 Each cycle produces 8 independent multiply-add ab + c
 for 64-bit double-precision inputs a, b, c
- One vectorized addition unit (port 1)
 Each cycle produces 4 independent additions a + b
 for 64-bit double-precision input a, b

Vectorization

- Toom & Karatsuba
 - vectorize inside each limb



- Schoolbook
 - transpose inputs
 - vectorize across independent multiplications



Performance

- Theoretical lower bound
 - 0.125 cycles per floating-point multiplication
 - 0.250 cycles per floating-point addition and shift
 - permutation fully interleavable

	mul	con mult	add	shift	total
op.	42768	9700	98548	6385	157401 32793
cycles	5346	1213	24637	1597	32793

- Actual implementation
 - 46784 cycles
 - possibly due to dependency, latency, scheduling issues

Current projects

- PRF from module lattices
- Module-NTRU in QROM
- Ring-signature from module lattices
- Middle product and integer LWE