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Introduction

Algebraic curves

Let X be a smooth projective algebraic curve of genus g over some finite
field Fq with q = pn.

Example (Projective line, g = 0)

X = P1
Fq

.

Example (Elliptic curve, g = 1)

X = {(x : y : z) ∈ P2
Fq

: y2z = x3 + axz2 + bz3}
where p 6= 2 (and 4a3 + 27b2 6= 0).

Example (Non-hyperelliptic curve, g = 4)

X = {(x : y : z : w) ∈ P3
Fq
} : S2(x , y , z ,w) = S3(x , y , z ,w) = 0}

where S2, S3 ∈ Fq[x , y , z ,w ] are a quadric and a cubic, respectively (and
some smoothness condition is satisfied).
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Introduction

Zeta functions

Let |X (Fqi )| denote the number of points of X with values in Fqi (the
number of solutions of the equations for X in this field).

Recall that the zeta function of X is defined as

Z (X ,T ) = exp

( ∞∑
i=1

|X (Fqi )|
T i

i

)
.

It follows from the Weil conjectures that Z (X ,T ) is of the form

χ(T )

(1− T )(1− qT )
,

where χ(T ) ∈ Z[T ] of degree 2g , with inverse roots that

have complex absolute value q
1
2

are permuted by the map x → q/x .
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Introduction

Example: the projective line

Let us do an easy example.

We have

|P1(Fqi )| = qi + 1

so that

Z (P1
Fq
,T ) = exp

( ∞∑
i=1

(qi + 1)
T i

i

)

= exp

( ∞∑
i=1

T i

i

)
exp

( ∞∑
i=1

(qT )i

i

)

=
1

(1− T )(1− qT )
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Introduction

The problem

Problem

Compute Z (X ,T ), or equivalently χ(T ), in an efficient way.

Remark

This problem is often referred to as ’counting points’.

Remark

Let JX denote the Jacobian variety of X . Then

|JX (Fq)| = χ(1).

Computing |JX (Fq)| is important for the Discrete Logarithm Problem on
JX (Fq). If this order only has small prime factors then the DLP is easy.
However, in cryptography only curves of genus ≤ 2 are used, and for those
curves good algorithms for counting points already exist.
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p-adic cohomology

Constructing p-adic cohomology

To compute zeta functions, we will use so called p-adic cohomology.

We are going to explain the construction of construction of p-adic
cohomology only in the case of a smooth affine curve:

U = {(x1, . . . , xm) ∈ Am
Fq

: f1(x1, . . . , xm) = . . . = f`(x1, . . . , xm) = 0}

where the fi (x1, . . . , xm) are all elements of Fq[x1, . . . , xm] (and some
smoothness condition is satisfied).

We denote
R = Fq[x1, . . . , xm]/(f1, . . . , f`),

so that U = Spec(R). First we need to lift to characteristic 0.
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p-adic cohomology

Lifting to characteristic 0

Let Qq denote the unique unramified extension of Qp of degree n and Zq

the ring of integers of Qq.

Let f1, . . . , f` ∈ Zq[x1, . . . , xm] denote lifts of f1, . . . , f` (for which the
smoothness condition is still satisfied).

We denote

U = {(x1, . . . , xm) ∈ Am
Zq

: f1(x1, . . . , xm) = . . . = f`(x1, . . . , xm) = 0}

and again
R = Zq[x1, . . . , xm]/(f1, . . . , f`),

so that U = Spec(R).

Jan Tuitman, KU Leuven Counting points on curves: the general case October 14, 2015 7 / 26



p-adic cohomology

Weak completion

Consider the ring of power series over Zq in m variables that converge
p-adically on a disk of radius strictly greater than 1:

Zq〈x1, . . . , xm〉† = {
∑

aI x
I : aI ∈ Zq and ∃ρ > 1 s.t. lim

|I |→∞
|aI |ρ|I | = 0}

where I = (i1, . . . , im) and |I | = i1 + . . .+ im.

We then define the weak completion of R as

R† = Zq〈x1, . . . , xm〉†/(f1, . . . , f`).

This is also called an overconvergent or dagger algebra.
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p-adic cohomology

p-adic cohomology

Now we define the overconvergent 1-forms

Ω1
R† = (R†dx1 ⊕ . . .⊕R†dxm)/(df1, . . . , df`)

and the overconvergent De Rham complex:

0 −−−−→ R† d−−−−→ Ω1
R† −−−−→ 0

where d is defined by dg = ∂g
∂x1

dx1 + . . .+ ∂g
∂xm

dxm. The p-adic (or rigid)
cohomology spaces of U are then defined as

H0
rig(U) = ker d ⊗Qq H1

rig(U) = coker d ⊗Qq.

It can be shown that these are finite dimensional vector spaces over Qq

that do not depend on any of the choices made in their construction.
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p-adic cohomology

Lefschetz formula

The map Fq that sends each xi to xq
i defines a map from U to itself, or

equivalently a homomorphism from R to itself.

One can show that Fq can be lifted to the weak completion R†, i.e. that
there exists a homomorphism Fq from R† to itself, such that Fq reduces
to Fq modulo p.

This homomorphism is called a Frobenius lift. It acts naturally on the
p-adic cohomology spaces and the following formula holds:

Z (U,T ) =
det(1− (qF−1q )T |H1

rig(U))

(1− qT )

assuming that U is connected.

Jan Tuitman, KU Leuven Counting points on curves: the general case October 14, 2015 10 / 26



p-adic cohomology

Example: the affine line minus zero

In this simple case no weak completion is needed

R = Fq[x , 1/x ] U = Spec(R)

R = Zq[x , 1/x ] Ω1
R = Zq[x , 1/x ]dx

H0
rig(U) = Qq H1

rig(U) = Qq
dx

x

Fq(x) = xq Fq

(
dx

x

)
=

d(xq)

xq
= q

dx

x

and we check that the Lefschetz formula gives the correct zeta function

Z (U,T ) =
(1− T )

(1− qT )
= exp

( ∞∑
i=1

(qi − 1)
T i

i

)
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p-adic cohomology

Some remarks

For X smooth projective (so not affine), the Lefschetz formula becomes

Z (X ,T ) =
det(1− (qF−1q )T |H1

rig(X ))

(1− T )(1− qT )
.

Here one may also replace qF−1q by Fq (by Poincaré duality).

Actually, one never computes directly with Fq, but instead with Fp.
However, Fp is only σ-semilinear, where σ is the unique lift of the p-th
power map from Fq to Zq.

All of this is not very important for the rest of this talk.
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Kedlaya’s algorithm

Hyperelliptic curves

Kedlaya (2001) applied p-adic cohomology to the computation of zeta
functions of hyperelliptic curves in odd characteristic.

Let Fq be a finite field with q = pn and p an odd prime. Moreover, let X
be the projective nonsingular curve of genus g with affine equation

y2 = Q(x)

with Q(x) ∈ Fq[x ] monic and separable of degree 2g + 1.

Take out all of the ramification points of the map x : X → P1
Fq

from the
curve and consider the open affine subset

U = {(x , y) ∈ A2
Fq

: y2 = Q(x) and y 6= 0}

of X with coordinate ring

R = Fq[x , y , 1/y ]/(y2 − Q(x)).
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Kedlaya’s algorithm

Frobenius lift and cohomology

Let Q ∈ Zq[x ] be any monic lift of Q and define

R = Zq[x , y , 1/y ]/(y2 −Q(x)) R† = Zq〈x , y , 1/y〉†/(y2 −Q(x)).

We construct a Frobenius lift Fp on R† by setting

Fp(x) = xp

Fp(y) = Qσ(xp)
1
2 = yp

(
1 +
Qσ(xp)−Q(x)p

y2p

) 1
2
.

Theorem (Kedlaya)

A basis for H1
rig(U) is given by

[x0 dx

y
, . . . , x2g−1 dx

y
, x0 dx

y2
, . . . , x2g dx

y2
]

and the first 2g vectors form a basis for the subspace H1
rig(X ).
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Kedlaya’s algorithm

Kedlaya’s algorithm

Algorithm

Apply Fp to the basis [x0 dx
y , . . . , x

2g−1 dx
y ] of H1

rig(X ).

Reduce resulting elements of Ω1
R† back to this basis by substracting

df with f ∈ R† and read off the matrix Φp of Fp on H1
rig(X ).

Compute the matrix Φq = Φσn−1

p . . .Φσ
pΦp of Fq on H1

rig(X ).

Determine χ(T ) = det(1− ΦqT ) numerator of Z (X ,T ).

Theorem (Kedlaya)

This algorithm runs in

time: Õ(pg4n3) space: Õ(pg3n3)

Remark

Implemented in MAGMA by M. Harrison, quite practical.
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Kedlaya’s algorithm

Extensions of Kedlaya’s algorithm

Kedlaya’s algorithm was extended in various ways by various people, here
are a few of them:

Gaudry and Gurel (2001), superelliptic curves

Vercauteren (2002), hyperelliptic curves in characteristic 2

Denef and Vercauteren (2006), Cab curves

Castryck, Denef and Vercauteren (2006), nondegenerate curves

The first two algorithms in this list are small adaptations of Kedlaya’s
algorithm and equally practical. The third and especially the fourth are
much more general, but partial implementations have shown them to be
unpractical. Therefore, complete implementations do not exist, as far as
we know.
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Our algorithm

General curves

We let X/Fq denote the smooth projective curve birational to

Q(x , y) = ydx + Qdx−1(x)ydx−1 + . . .+ Q0 = 0,

where Q(x , y) is irreducible separable and Qi (x) ∈ Fq[x ] for all
0 ≤ i ≤ dx − 1.

We let Q ∈ Zq[x ] denote a lift of Q that is monic of degree dx in y .

∆(x) ∈ Zq[x ] denotes the resultant of Q and ∂Q
∂y with respect to the

variable y and r(x) ∈ Zq[x ] the squarefree polynomial

r(x) = ∆/

(
gcd

(
∆,

d∆

dx

))
.
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Our algorithm

Lift to characteristic 0

We take out r(x) = 0 from X and define

U = {(x , y) ∈ A2
Zq

: Q(x , y) = 0 and r(x) 6= 0}

with coordinate ring

R = Zq[x , 1/r(x), y ]/(Q).

For our algorithm to work we need the following condition.

Assumption

The polynomial r(x) is separable (no multiple roots) over Fq (so mod p).

If this is the case, we say that we have found a ‘good lift’ to
characteristic 0.
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Our algorithm

p-adic cohomology

We define

R† = Zq〈x , 1/r(x), y〉†/(Q).

Recall that

Ω1
R† =

R†dx ⊕ R†dy

dQ
and that if we denote d : R† → Ω1

R† , we have

H1
rig(U) = coker(d)⊗Qq.

Moreover, H1
rig(X ) is the subspace of H1

rig(U) defined by the vanishing of a
so called cohomological residue map.
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Our algorithm

Frobenius lift

To construct a Frobenius lift Fp from R† to itself, we set

Fp(x) = xp

and compute Fp(y) (to any desired precision) by Hensel lifting using the
equation

Qσ(xp,Fp(y)) = 0.

Note that this is possible because we have removed the zeros of ∂Q
∂y from

the curve X by removing the zeros of r(x).

After precomputing Fp(y), . . . ,Fp(ydx−1) and Fp(1/r) it is quite easy to
evaluate Fp on elements of R† and Ω1

R† .
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Our algorithm

Integral bases

Let

W 0 ∈ Gldx (Zq[x , 1/r ]) W∞ ∈ Gldx (Zq[x , 1/x , 1/r ])

be matrices such that, if we denote

b0
j =

dx−1∑
i=0

W 0
i+1,j+1y i b∞j =

dx−1∑
i=0

W∞
i+1,j+1y i

for all 0 ≤ j ≤ dx − 1, then:

[b0
0 , . . . , b

0
dx−1] is an integral basis for Qq(x , y) over Qq[x ],

[b∞0 , . . . , b
∞
dx−1] is an integral basis for Qq(x , y) over Qq[1/x ].

Remark

MAGMA can compute such matrices already!
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Our algorithm

Finite pole order reduction

Proposition

For all ` ∈ Z≥1 and every vector w ∈ Qq[x ]⊕dx , there exist vectors
u, v ∈ Qq[x ]⊕dx with deg(v) < deg(r), such that∑dx−1

i=0 wib
0
i

r `
dx

r
= d

(∑dx−1
i=0 vib

0
i

r `

)
+

∑dx−1
i=0 uib

0
i

r `−1
dx

r
.

Remark

By repeatedly applying this proposition, we can represent any cohomology
class ∈ H1

rig(U) by a 1-form that is logarithmic at all points P ∈ X \ U
with x(P) 6=∞. After a precomputation, each reduction step corresponds
to a matrix multiplication. One can play the same game at the points
P ∈ X \ U with x(P) =∞.
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Our algorithm

p-adic precision

We can only compute to finite p-adic precision (i.e. modulo some pN). It
follows from the Weil conjectures that if we know Z (X ,T ) to high enough
precision, then we know it exactly.

Every time we divide by p, we lose a digit of p-adic precision.

We need to bound this loss of p-adic precision at every step in the
algorithm. For example in the cohomological reductions.
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Our algorithm

p-adic precision: finite pole order reduction

Proposition

Let ω ∈ Ω1(U) be of the form

ω =

∑dx−1
i=0 wiy

i

r `
dx

r
,

with ` ∈ Z≥1, w ∈ Zq[x ]⊕dx and deg(w) < deg(r). We define

e = max{eP |P ∈ X \ U , x(P) 6=∞},

where eP denotes the ramification index of x at P.

If we represent the class of ω in H1
rig(U) by

(∑dx−1
i=0 uiy

i
)
dx
r , with

u ∈ Qq[x ]⊕dx , then

pblogp(`e)cu ∈ Zq[x ]⊕dx .
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Our algorithm

Our algorithm

We can now follow the same steps as in Kedlaya’s algorithm. Let dx be
the degree of Q(x , y) in y and dy the degree in x .

Theorem

Our algorithm runs in

time: Õ(pd6
x d4

y n3) space: Õ(pd4
x d3

y n3)

Remark

We have implemented this algorithm completely. MAGMA code (packages
pcc p and pcc q) can be found at:

https://perswww.kuleuven.be/jan tuitman/
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Current and future work

Projects

Short term (months):

With Wouter Castryck: construct models and lifts of curves of genus
at most 5 with dx as small as possible. This leads to faster point
counting (and is interesting in itself).

With Jennifer Balakrishnan: adapt the algorithm to apply it to the
problem of Coleman integration and the Chabauty method (finding
points on curves over number fields/proving they do not exist).

Long term (years):

Developing Õ(p1/2) and average polynomial time versions of the
algorithm, following the ideas of David Harvey (who has obtained
such improvements for hyperelliptic curves).

Jan Tuitman, KU Leuven Counting points on curves: the general case October 14, 2015 26 / 26


	Introduction
	p-adic cohomology
	Kedlaya's algorithm
	Our algorithm
	Current and future work

