
1/18

POST-SIEVING ON GPUs

Andrea Miele1,
Joppe W. Bos2,

Thorsten Kleinjung1,
Arjen K. Lenstra1

1LACAL, EPFL, Lausanne, Switzerland
2NXP Semiconductors, Leuven, Belgium

NUMBER FIELD SIEVE (NFS)

•  Asymptotically fastest known factoring algorithm

•  RSA 768-bit modulus factored with NFS in 2010

•  Idea: to factor an odd composite n, find solutions

•  Two main steps: ���
RELATION COLLECTION: find smooth integers ≈90%T���
LINEAR ALGEBRA STEP: find solutions (x,y) ≈10%T

2/18

\,] : \� �]� mod R ERH \ �� ±] mod R

NFS RELATIONS

•  Two positive integer smoothness bounds: Br , Ba

•  Irreducible fr(X), fa(X) of degree 1 and d small (d=5,6)

•  Relation: (a,b) with a,b coprime integers (b>0) such that

1.  bfr(a/b) is Br-smooth except ≤ 3 primes > Br and ≤ BL

2.  bdfa(a/b) is Ba-smooth except ≤ 4 primes > Ba and ≤ BL

3/18

COLLECT RELATIONS
SIEVING: find pairs (a,b) s.t. bfr(a/b) (bdfa(a/b)) is product of���
Br - smooth (Ba - smooth) part and “small” cofactor ≤ BL

3 (BL
4)

POST SIEVING (NORMALLY 12-17% OF THE TOTAL TIME): ���
1 Compute bfr(a/b) and bdfa(a/b) ���
2 Remove small factors pair-by-pair (or re-sieve) ���
3 Factor cofactors pair-by-pair (COFACTORING) ���

EMBARRASSINGLY PARALLEL!���
���
���
��� 4/18

FASTER NFS WITH GPUs?
•  SIEVING: memory hungry, done on CPUs

•  PREVIOUSLY: offload ECM to GPUs or FPGAs

• IDEA: offload ALL POST SIEVING TO GPUs���

SIEVING

2 CPUs + 1 GPU

... ...

TIME

TIME

PS SIEVING PS SIEVING PS

SIEVING PS SIEVING PS SIEVING PS

2 CPUs

SIEVING
... ...

SIEVING

PS

SIEVING

SIEVING

PS

SIEVING

SIEVING

SIEVING

SIEVING

...

PS PS

5/18

GPUs, NOT ONLY GAMING…

CORE CORE CORE CORE

CORE CORE CORE CORE

CORE CORE CORE CORE

64 KB Shared Memory / L1 Cache

Register File (32-bit)

64 KB Uniform Cache

Instruction Cache

Warp Sched

Dispatch Unit

.

.

.

Streaming multiprocessor (SM)

NVIDIA FERMI
 (GTX 500 family)

NVIDIA KEPLER (GTX
700 family)

Cores Up to 512 Up to 2880

SMs Up to 16 Up to 48

Freq Up to 1544 MHz Up to 980 MHz

DRAM Up to 3GB (192 GB/s) Up to 6 GB (336 GB/s)

L2 Cache

...

HOST IF

SCHED

DRAM

SM

SM SM

SM

SM

SM

...

LD/ST

LD/ST

SFU

SFU

LD/ST SFU

Warp Sched

Dispatch Unit

Warp Sched

Dispatch Unit

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Kernel Function Thread Block (up to 1024
threads)

Thread Warp (32
threads) ���

...

...

DRAM

DRAM

DRAM

.

.

..
.
.

DRAM

DRAM

Massively parallel 32-bit many-core, GPGPU, transistors mainly used for arith
One integer or floating point instruction/clock cycle per thread/core���

We usually run thousands of threads…���

6/18

COFACTORING ON
GPUs OUTLOOK

•  Input: The set of candidate pairs (a,b) output by the sieve, the
coefficients of the two polynomials

•  Output: Indices of pairs (a,b) that are relations (or factors found)

•  Two CUDA Kernels run sequentially:

1. Rational side: check bfr(a/b) for BL-smoothness (discard bad)

2. Algebraic side: check bdfa(a/b) for BL-smoothness (output rels)

7/18

DESIGN STRATEGY

Each thread processes one or more pairs (a,b) (task parallelism!)

Each thread runs a fixed sequence of steps to determine if the
polynomial value is Br (Ba)-smooth except at most 3 (4) primes < BL

+ No thread synchronization, high computing/mem access ratio

- High register usage (and memory spilling…), high latency

8/18

ARITHMETIC DESIGN
Sequential Radix 232 Montgomery arithmetic���
PTX level optimized code (heavy use of MAD instructions!)

���

9/18

…

32-bit unsigned integer:
Multi-precision integer: …

…

X0

Y0

…

…

X1

Y1

…

…

…

…

XM-1

YM-1

… … … …
Z0 Z1 ZM-1

Thread0 Thread1 ThreadM-1

Zi=OP(Xi ,Yi)

GLOBAL MEM ACCESS:
COALESCING

10/18

KERNEL ANATOMY

COFACTOR FACTORIZATION: REPEAT K TIMES

1.  Group records in “buckets” according to #digits of value (distributed)

2.  Factoring attempt: Pollard p-1 or ECM (unrolled code for bucket)

3.  If factor found, divide out + pseudo primality (unrolled code for bucket)

4.  Discard prime values > BL (or cut-off), put aside smooth values ≤	
 BL

11/18

PREAMBLE
1.  Read pair (a,b) from global memory and evaluate polynomial
2.  Remove small factors: trial division
From now threads work on records: (value, index)

KERNEL WORKFLOW

160-bit
Poly eval

+���
TD

64-bit���
Bucket

96-bit���
Bucket

128-bit���
Bucket

160-bit���
Bucket

GOOD���
Bucket

(a,b)

96-bit P-1

Group

 96-bit ECM

 64-bit ECM

 128-bit ECM

 160-bit ECM

 128-bit P-1

 160-bit P-1

Group

STEPS

Group …

12/18

ABOUT THE
ALGORITHMS…

•  Bivariate polynomial evaluation: ���
naive, no Horner

•  Trial Division: ���
prime table in CMEM, divisibility test (Horner/Montgomery), exact div

•  Pseudo primality test (Montgomery arithmetic): ���
Selfridge-Rabin-Miller

•  Pollard P-1 (Montgomery arithmetic): ���
left-to-right modular exponentiation for stage 1, optimized BSGS stage 2

•  ECM (Montgomery arithmetic): ���
Twisted Edwards curves, add chains for stage 1[BK2012], opt. BSGS stage 2

13/18

INTEGRATION WITH
RSA-768 SOFTWARE

14/18

Finding good parameters for GPU kernels is hard!
•  Preliminary experiments: rule out bad configurations
•  We have run many experiments on RSA-768 datasets
What to optimize for?
•  We have fixed the yield, and looked for fastest configurations
•  Focus on two cases: 95% and 99% yield
•  Theoretical analysis confirmed experimental results

RSA 768: CHOICE OF
PARAMETERS

•  Values less than 2256 and BL=237

•  Trial division with 100-200 primes (algebraic side)

•  One run of Pollard p-1: B1 ≈	
 210 , B2 ≈ 214

•  8-20 ECM runs: B1 = [28 , 210], B2 = [212 , 215]

15/18

CPU vs GPU

16/18

Large
primes

Input pairs Tot time Sieve
time

PS-cof
time

Relations
found

≤ 3 ≈ 5x105 29.6s 25.6s 4.0s 125

≤ 4 ≈ 106 32.0s 25.9s 6.1s 137

CPU: INTEL I7-3770K 4 cores 3.5 GHz 16GB RAM

GPU: NVIDIA GTX 580 512 CORES 1544 MHz 1.5 GB RAM

Large
primes

Input
pairs

Desired
yield

CPU/GPU
Ratio

Time Relations
found

≤ 3 ≈ 5x105 95% 9.8 2.6s 132

99% 6.9 3.7s 136

≤ 4 ≈ 106 95% 4.0 6.5s 159

99% 2.7 9.6s 165

1CPU vs 1CPU + 1GPU

17/18

Large
primes

Input
pairs

Setting Total time # Relations
found

Relations/sec

≤ 3 ≈ 5x107 No GPU 2961s 12523 4.23
With GPU 2564s 13761 5.37

≤ 4 ≈ 5x107 No GPU 1602s 6855 4.28
With GPU 1300s 8302 6.39

Large primes ≤ 3: 24% GAIN
Large primes ≤ 4: 45% GAIN

CONCLUSIONS AND
FUTURE WORK

18/18

•  GPUs are a good accelerator for post sieving
•  Their use can reduce overall NFS factoring time
•  We will make the code available

•  Optimize for NVIDIA Kepler GPUs (AMD?)
•  Get actual figures for RSA 1024-bit

