POST-SIEVING ON GPUs

Andrea Miele!,

Joppe W. Bos?,

Thorsten Kleinjung',
Arjen K. Lenstra/

ILACAL, EPFL, Lausanne, Switzerland
2NXP Semiconductors, Leuven, Belgium

/18

NUMBER FIELD SIEVE (NFS)

Asymptotically fastest known factoring algorithm
® RSA 768-bit modulus factored with NFS in 2010

|dea: to factor an odd composite n, find solutions

X,y : x* =y* mod nand x # £y mod n

Two main steps:

RELATION COLLECTION: find smooth integers =90%T
LINEAR ALGEBRA STEP: find solutions (x,y) =10%T

2/18

NFS RELATIONS

® Two positive integer smoothness bounds: B_, B,

® lIrreducible f (X), f.(X) of degree | and d small (d=5,6)

® Relation: (a,b) with a,b coprime integers (b>0) such that
| bf (a/b) is B -smooth except < 3 primes > B_and < B,

2. bdf_(a/b) is B.-smooth except < 4 primes > B_and < B,

3/18

COLLECT RELATIONS

SIEVING: find pairs (a,b) s.t. bf (a/b) (bf,(a/b)) is product of
B_- smooth (B, - smooth) part and “small” cofactor < B 3 (B, %)

POST SIEVING (NORMALLY 12-17% OF THE TOTAL TIME):
| Compute bf (a/b) and bf (a/b)

2 Remove small factors pair-by-pair (or re-sieve)
3 Factor cofactors pair-by-pair (COFACTORING)

EMBARRASSINGLY PARALLEL!

4/18

FASTER NFS WITH GPUs?

® SIEVING: memory hungry, done on CPUs
® PREVIOUSLY: offload ECM to GPUs or FPGAs

®IDEA: offload ALL POST SIEVING TO GPUs

2 CPUs

SIEVING “ PS | SIEVING | PS || SIEVING I PS
SIEVING “ PS | SIEVING | PS || SIEVING I PS

TIME
2 CPUs + | GPU
SIEVING || SIEVING “ SIEVING || SIEVING
SIEVING SIEVING SIEVING SIEVING
PS || PS " PS || PS
TIME

5/18

GPUs, NOT ONLY GAMING...

Massively parallel 32-bit many-core, GPGPU, transistors mainly used for arith
One integer or floating point instruction/clock cycle per thread/core

We usually run thousands of threads...

Streaming multiprocessor (SM)

INStRUCtionNeachHe!

YVARPISGHEd YYANPISGHEY

Dispatch Unit I Dispatch Unit Dispatch Unit
............ NEZISLERIIEN(©2E01t)

CORE

Thread Block (up to 1024
threads)

Kernel Function

NVIDIA FERMI NVIDIA KEPLER (GTX| Thread Warp (32
(GTX 500 family) 700 family) th reads) ; |
Cores Up to 512 Up to 2880 GAREISHarediMemory YA Neache
SMs Up to 16 Up to 48 it nifarn Cicis
Freq Up to 1544 MHz Up to 980 MHz
DRAM [Up to 3GB (192 GB/s) |Up to 6 GB (336 GB/s)

6/18

COFACTORING ON
GPUs OUTLOOK

Input: The set of candidate pairs (a,b) output by the sieve, the
coefficients of the two polynomials

Output: Indices of pairs (a,b) that are relations (or factors found)
Two CUDA Kernels run sequentially:
. Rational side: check bf (a/b) for B,-smoothness (discard bad)

. Algebraic side: check b¥f (a/b) for B -smoothness (output rels)

7/18

DESIGN STRATEGY

Each thread processes one or more pairs (a,b) (task parallelism!)

Each thread runs a fixed sequence of steps to determine if the
polynomial value is B (B,)-smooth except at most 3 (4) primes < B,

+ No thread synchronization, high computing/mem access ratio

- High register usage (and memory spilling...), high latency

8/18

ARITHMETIC DESIGN

Sequential Radix 232 Montgomery arithmetic
PTX level optimized code (heavy use of MAD instructions!)

ULEESs {limead) Thread,, 32-bit unsigned integer:

X X, XM.1 Multi-precision integer:
. Z=OP(X,.Y)

Yo oo LI LOTIED

Zo i Z, i Zy., i

9/18

GLOBAL MEM ACCESS:
COALESCING

Thread O Thread 1 Thread m-1

Contigous
global memory

« Threads in a warp access adjacent
memory addresses

« Single memory transaction for the whole
block

10/18

KERNEL ANATOMY

PREAMBLE

|. Read pair (a,b) from global memory and evaluate polynomial
2. Remove small factors: trial division
From now threads work on records: (value, index)

COFACTOR FACTORIZATION: REPEAT K TIMES

|. Group records in “buckets” according to #digits of value (distributed)
2. Factoring attempt: Pollard p-1 or ECM (unrolled code for bucket)

3. If factor found, divide out + pseudo primality (unrolled code for bucket)

4. Discard prime values > B, (or cut-off), put aside smooth values < B,

11/18

KERNEL WORKFLOW

] o]
1 u 1
i o !
| = |
' O !

STEPS

12/18

ABOUT THE
ALGORITHMS...

Bivariate polynomial evaluation:

naive, no Horner

Trial Division:

prime table in CMEM, divisibility test (Horner/Montgomery), exact div
Pseudo primality test (Montgomery arithmetic):

Selfridge-Rabin-Miller

Pollard P-1 (Montgomery arithmetic):

left-to-right modular exponentiation for stage |, optimized BSGS stage 2
ECM (Montgomery arithmetic):

Twisted Edwards curves, add chains for stage |[[BK2012], opt. BSGS stage 2

13/18

INTEGRATION WITH
RSA-768 SOFTWARE

Finding good parameters for GPU kernels is hard!

* Preliminary experiments: rule out bad configurations

* We have run many experiments on RSA-768 datasets

What to optimize for?

* We have fixed the yield, and looked for fastest configurations
* Focus on two cases: 95% and 99% yield

* Theoretical analysis confirmed experimental results

14/18

RSA 768: CHOICE OF
PARAMETERS

Values less than 22°¢ and B, =23/

Trial division with 100-200 primes (algebraic side)
One run of Pollard p-1: B, = 29, B, = 214

8-20 ECM runs: B, =28, 291, B, = [2'2, 2!°]

15/18

CPU vs GPU

CPU:INTEL 17-3770K 4 cores 3.5 GHz |6GB RAM

Large Input pairs | Tot time | Sieve PS-cof | Relations
primes time time found
<3 ~ 5x10° 29.6s 25.6s 4.0s 125

<4 ~ 106 32.0s 25.9s 6.1s 137

GPU: NVIDIA GTX 580 512 CORES 1544 MHz |.5 GB RAM

Large Input Desired | CPU/GPU [Time |Relations
primes pairs yield Ratio found
<3 ~ 5x10° |95% 9.8 2.6s 132
99% 6.9 3.7s 136
< 4 ~ |0° 95% 4.0 6.5s 159
99% 2.7 9.6s 165

16/18

|CPU vs ICPU + |GPU

Large # Input | Setting Total time |# Relations Relations/sec
primes pairs found
<3 ~ 5x10” |No GPU [2961s 12523 4.23
With GPU |2564s 13761 5.37
<4 ~ 5x10” |No GPU 1602s 6855 4.28
With GPU | 1300s 8302 6.39

Large primes £ 3. 24% GAIN
Large primes £ 4. 45% GAIN

17/18

CONCLUSIONS AND
FUTURE WORK

* GPUs are a good accelerator for post sieving
* Their use can reduce overall NFS factoring time
* We will make the code available

* Optimize for NVIDIA Kepler GPUs (AMD?)
* Get actual figures for RSA 1024-bit

18/18

