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NUMBER FIELD SIEVE (NFS)

•  Asymptotically fastest known factoring algorithm 

•  RSA 768-bit modulus factored with NFS in 2010

•  Idea: to factor an odd composite n, find solutions 

•  Two main steps: ���
RELATION COLLECTION: find smooth integers ≈90%T���
LINEAR ALGEBRA STEP: find solutions (x,y) ≈10%T
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NFS RELATIONS

•  Two positive integer smoothness bounds: Br , Ba

•  Irreducible fr(X), fa(X) of degree 1 and d small (d=5,6)

•  Relation: (a,b) with a,b coprime integers (b>0) such that

1.   bfr(a/b) is Br-smooth except ≤ 3 primes > Br and ≤ BL 

2.   bdfa(a/b) is Ba-smooth except ≤ 4 primes > Ba and ≤ BL 
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COLLECT RELATIONS
SIEVING: find pairs (a,b) s.t. bfr(a/b) (bdfa(a/b)) is product of���
Br - smooth (Ba - smooth) part and “small” cofactor ≤ BL

3 (BL
4)

POST SIEVING (NORMALLY 12-17% OF THE TOTAL TIME): ���
1 Compute bfr(a/b) and bdfa(a/b) ���
2 Remove small factors pair-by-pair (or re-sieve) ���
3 Factor cofactors pair-by-pair (COFACTORING) ���

EMBARRASSINGLY PARALLEL!���
���
���
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FASTER NFS WITH GPUs?
•  SIEVING: memory hungry, done on CPUs

•  PREVIOUSLY: offload ECM to GPUs or FPGAs 

• IDEA: offload ALL POST SIEVING TO GPUs���

SIEVING

2 CPUs + 1 GPU

... ...

TIME

TIME

PS SIEVING PS SIEVING PS

SIEVING PS SIEVING PS SIEVING PS

2 CPUs

SIEVING
... ...

SIEVING

PS

SIEVING

SIEVING

PS

SIEVING

SIEVING

SIEVING

SIEVING

...

PS PS

5/18



GPUs, NOT ONLY GAMING…
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Massively parallel 32-bit many-core, GPGPU, transistors mainly used for arith
One integer or floating point instruction/clock cycle per thread/core���

We usually run thousands of threads…���
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COFACTORING ON 
GPUs OUTLOOK

•  Input: The set of candidate pairs (a,b) output by the sieve, the 
coefficients of the two polynomials

•  Output: Indices of pairs (a,b) that are relations (or factors found)

•  Two CUDA Kernels run sequentially: 

1. Rational side: check bfr(a/b) for BL-smoothness (discard bad)

2. Algebraic side: check bdfa(a/b) for BL-smoothness (output rels)
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DESIGN STRATEGY

Each thread processes one or more pairs (a,b) (task parallelism!)

Each thread runs a fixed sequence of steps to determine if the 
polynomial value is Br (Ba)-smooth except at most 3 (4) primes < BL

+ No thread synchronization, high computing/mem access ratio

- High register usage (and memory spilling…), high latency
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ARITHMETIC DESIGN
Sequential Radix 232 Montgomery arithmetic���
PTX level optimized code (heavy use of MAD instructions!)

���
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32-bit unsigned integer:
Multi-precision integer: …
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GLOBAL MEM ACCESS: 
COALESCING 
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KERNEL ANATOMY

COFACTOR FACTORIZATION: REPEAT K TIMES

1.  Group records in “buckets” according to #digits of value (distributed)

2.  Factoring attempt: Pollard p-1 or ECM (unrolled code for bucket)

3.  If factor found, divide out + pseudo primality (unrolled code for bucket)

4.  Discard prime values > BL (or cut-off), put aside smooth values ≤	
 BL 
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PREAMBLE
1.  Read pair (a,b) from global memory and evaluate polynomial
2.  Remove small factors: trial division
From now threads work on records: (value, index)



KERNEL WORKFLOW
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ABOUT THE 
ALGORITHMS…

•  Bivariate polynomial evaluation: ���
naive, no Horner

•  Trial Division: ���
prime table in CMEM, divisibility test (Horner/Montgomery), exact div

•  Pseudo primality test (Montgomery arithmetic): ���
Selfridge-Rabin-Miller

•  Pollard P-1 (Montgomery arithmetic): ���
left-to-right modular exponentiation for stage 1, optimized BSGS stage 2

•  ECM (Montgomery arithmetic): ���
Twisted Edwards curves, add chains for stage 1[BK2012], opt. BSGS stage 2
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INTEGRATION WITH 
RSA-768 SOFTWARE
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Finding good parameters for GPU kernels is hard!
•  Preliminary experiments: rule out bad configurations
•  We have run many experiments on RSA-768 datasets
What to optimize for?
•  We have fixed the yield, and looked for fastest configurations 
•  Focus on two cases: 95% and 99% yield
•  Theoretical analysis confirmed experimental results



RSA 768: CHOICE OF 
PARAMETERS

•  Values less than 2256 and BL=237

•  Trial division with 100-200 primes (algebraic side)

•  One run of Pollard p-1: B1 ≈	
 210 , B2 ≈ 214 

•  8-20 ECM runs: B1 = [28 , 210], B2 =  [212 , 215]
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CPU vs GPU
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Large 
primes

Input pairs Tot time Sieve 
time

PS-cof
time

Relations 
found

≤ 3 ≈ 5x105 29.6s 25.6s 4.0s 125

≤ 4 ≈ 106 32.0s 25.9s 6.1s 137

CPU: INTEL I7-3770K 4 cores 3.5 GHz 16GB RAM

GPU: NVIDIA GTX 580 512 CORES 1544 MHz 1.5 GB RAM

Large 
primes

Input 
pairs

Desired 
yield

CPU/GPU
Ratio

Time Relations 
found

≤ 3 ≈ 5x105 95% 9.8 2.6s 132

99% 6.9 3.7s 136

≤ 4 ≈ 106 95% 4.0 6.5s 159

99% 2.7 9.6s 165



1CPU vs 1CPU + 1GPU
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Large 
primes

# Input 
pairs

Setting Total time # Relations 
found

Relations/sec

≤ 3 ≈ 5x107 No GPU 2961s 12523 4.23
With GPU 2564s 13761 5.37

≤ 4 ≈ 5x107 No GPU 1602s 6855 4.28
With GPU 1300s 8302 6.39

Large primes ≤ 3:  24% GAIN
Large primes ≤ 4:  45% GAIN



CONCLUSIONS AND 
FUTURE WORK
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•  GPUs are a good accelerator for post sieving
•  Their use can reduce overall NFS factoring time
•  We will make the code available

•  Optimize for NVIDIA Kepler GPUs (AMD?)
•  Get actual figures for RSA 1024-bit




