Computing Gröbner Bases - a short overview

Christian Eder, Jean-Charles Faugère, Fayssal Martani, John Perry and Bjarke Hammersholt Roune

Seminar of the CARAMEL Team in Nancy, France
September 11, 2014

Preliminaries

Conventions

- $\mathscr{R}=\mathscr{K}\left[x_{1}, \ldots, x_{n}\right], \mathscr{K}$ field, $<$ well-ordering on $\operatorname{Mon}\left(x_{1}, \ldots, x_{n}\right)$
- $f \in \mathscr{R}$ can be represented in a unique way by $<$. \Rightarrow Definitions as $\operatorname{Ic}(f), \operatorname{Im}(f)$, and $\operatorname{It}(f)$ make sense.
- An ideal I in \mathscr{R} is an additive subgroup of \mathscr{R} such that for $f \in I$, $g \in \mathscr{R}$ it holds that $f g \in I$.
$\vee G=\left\{g_{1}, \ldots, g_{s}\right\} \subset \mathscr{R}$ is a Gröbner basis for $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$ w.r.t. $<$

$$
G \subset I \text { and } L_{<}(G)=L_{<}(I)
$$

Buchberger's criterion

S-polynomials
Let $f \neq 0, g \neq 0 \in \mathscr{R}$ and let $\lambda=\operatorname{lcm}(\operatorname{lt}(f), \operatorname{lt}(g))$ be the least common multiple of $\operatorname{lt}(f)$ and $\operatorname{It}(g)$. The S-polynomial between f and g is given by

$$
\operatorname{spol}(f, g):=\frac{\lambda}{\operatorname{lt}(f)} f-\frac{\lambda}{\operatorname{lt}(g)} g .
$$

Buchberger's criterion

S-polynomials
Let $f \neq 0, g \neq 0 \in \mathscr{R}$ and $\operatorname{let} \lambda=\operatorname{lcm}(\operatorname{lt}(f), \operatorname{lt}(g))$ be the least common multiple of $\operatorname{lt}(f)$ and $\operatorname{It}(g)$. The S-polynomial between f and g is given by

$$
\operatorname{spol}(f, g):=\frac{\lambda}{\operatorname{lt}(f)} f-\frac{\lambda}{\operatorname{lt}(g)} g .
$$

Buchberger's criterion [5]
Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$ be an ideal in \mathscr{R}. A finite subset $G \subset \mathscr{R}$ is a Gröbner basis for l if $G \subset I$ and for all $f, g \in G: \operatorname{spol}(f, g) \xrightarrow{G} 0$.

Buchberger's algorithm

Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner basis G for I

1. $G \leftarrow \emptyset$
2. $G \leftarrow G \cup\left\{f_{i}\right\}$ for all $i \in\{1, \ldots, m\}$
3. Set $P \leftarrow\left\{\operatorname{spol}\left(f_{i}, f_{j}\right) \mid f_{i}, f_{j} \in G, i>j\right\}$

Buchberger's algorithm

Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner basis G for I

1. $G \leftarrow \emptyset$
2. $G \leftarrow G \cup\left\{f_{i}\right\}$ for all $i \in\{1, \ldots, m\}$
3. Set $P \leftarrow\left\{\operatorname{spol}\left(f_{i}, f_{j}\right) \mid f_{i}, f_{j} \in G, i>j\right\}$
4. Choose $p \in P, P \leftarrow P \backslash\{p\}$

Buchberger's algorithm

Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner basis G for I

1. $G \leftarrow \emptyset$
2. $G \leftarrow G \cup\left\{f_{i}\right\}$ for all $i \in\{1, \ldots, m\}$
3. Set $P \leftarrow\left\{\operatorname{spol}\left(f_{i}, f_{j}\right) \mid f_{i}, f_{j} \in G, i>j\right\}$
4. Choose $p \in P, P \leftarrow P \backslash\{p\}$
(a) If $p \xrightarrow{G} 0 \leadsto$ no new information Go on with the next element in P.
(b) If $p \xrightarrow{G} q \neq 0 \longmapsto$ new information

Build new S-pair with q and add them to P.
Add q to G.
Go on with the next element in P.
5. When $P=\emptyset$ we are done and G is a Gröbner basis for I.

How to improve computations?

- Modular computations (modStd et al.)
- Predict zero reductions (Buchberger, Gebauer-Möller, Möller-Mora-Traverso, Faugère.)
- Sort pair set (Buchberger, Giovini et al., Möller et al.)
- Homogenize: d-Gröbner bases
- Change of ordering (FGLM, Gröbner Walk)
- Linear Algebra: Gaussian Elimination (Lazard, Faugère)
- Sparse Gröbner Bases: Use sparsity and exploit Newton polygons (Faugère, Spaenlehauer, Svartz)

How to improve computations?

- Predict zero reductions (Buchberger, Gebauer-Möller, Möller-Mora-Traverso, Faugère.)
- Linear Algebra: Gaussian Elimination (Lazard, Faugère)

Predicting zero reductions

Fast linear algebra for computing Gröbner bases

How to detect zero reductions in advance?
Let $I=\left\langle g_{1}, g_{2}\right\rangle \in \mathbb{Q}[x, y, z]$ and let $<$ denote the reverse lexicographical ordering. Let

$$
g_{1}=x y-z^{2}, \quad g_{2}=y^{2}-z^{2}
$$

How to detect zero reductions in advance?
Let $I=\left\langle g_{1}, g_{2}\right\rangle \in \mathbb{Q}[x, y, z]$ and let $<$ denote the reverse lexicographical ordering. Let

$$
\begin{aligned}
\mathbf{g}_{1} & =\mathbf{x y}-\mathbf{z}^{2}, \quad \mathbf{g}_{2}=\mathbf{y}^{2}-\mathbf{z}^{2} \\
\operatorname{spol}\left(g_{2}, g_{1}\right) & =x g_{2}-y g_{1}=\mathbf{x} \mathbf{y}^{2}-x z^{2}-\mathbf{x} \mathbf{y}^{2}+y z^{2} \\
& =-x z^{2}+y z^{2} . \\
& \Longrightarrow \mathbf{g}_{3}=\mathbf{x z ^ { 2 }}-\mathbf{y z} \mathbf{z}^{2} .
\end{aligned}
$$

How to detect zero reductions in advance?
Let $I=\left\langle g_{1}, g_{2}\right\rangle \in \mathbb{Q}[x, y, z]$ and let $<$ denote the reverse lexicographical ordering. Let

$$
\begin{gathered}
\mathbf{g}_{1}=\mathbf{x} \mathbf{y}-\mathbf{z}^{2}, \quad \mathbf{g}_{\mathbf{2}}=\mathbf{y}^{2}-\mathbf{z}^{2} \\
\operatorname{spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1}=\mathbf{x} \mathbf{y}^{2}-x z^{2}-\mathbf{x} \mathbf{y}^{2}+y z^{2} \\
= \\
\\
\Longrightarrow \mathbf{x z}^{2}+y z^{2} . \\
\operatorname{spol}\left(g_{3}, g_{1}\right)=\mathbf{x} \mathbf{z}^{2}-\mathbf{y} \mathbf{z}^{2}
\end{gathered}
$$

How to detect zero reductions in advance?
Let $I=\left\langle g_{1}, g_{2}\right\rangle \in \mathbb{Q}[x, y, z]$ and let $<$ denote the reverse lexicographical ordering. Let

$$
\mathrm{g}_{1}=\mathrm{x} y-\mathbf{z}^{2}, \quad \mathrm{~g}_{2}=\mathrm{y}^{2}-\mathbf{z}^{2}
$$

$$
\begin{aligned}
\operatorname{spol}\left(g_{2}, g_{1}\right) & =x g_{2}-y g_{1}=\mathbf{x} y^{2}-x z^{2}-\mathbf{x} y^{2}+y z^{2} \\
& =-x z^{2}+y z^{2} .
\end{aligned}
$$

$$
\Longrightarrow g_{3}=x z^{2}-y z^{2} .
$$

$$
\operatorname{spol}\left(g_{3}, g_{1}\right)=\mathbf{x y z} z^{2}-y^{2} z^{2}-\mathbf{x y z} z^{2}+z^{4}=-y^{2} z^{2}+z^{4} .
$$

We can reduce further using $z^{2} g_{2}$:

$$
-y^{2} z^{2}+z^{4}+y^{2} z^{2}-z^{4}=0 .
$$

How to detect zero reductions in advance?

Can we see something? How are the generators of the S-polynomials related to each other?

How to detect zero reductions in advance?

Can we see something? How are the generators of the S-polynomials related to each other?

$$
\begin{aligned}
\operatorname{spol}\left(g_{3}, g_{2}\right) & =\mathbf{y}^{2}\left(x z^{2}-y z^{2}\right)-x z^{2}\left(y^{2}-z^{2}\right) \\
& =\operatorname{It}\left(\mathbf{g}_{2}\right) g_{3}-\operatorname{It}\left(\mathbf{g}_{3}\right) g_{2} \\
& =\operatorname{It}\left(\mathbf{g}_{2}\right) \operatorname{lot}\left(g_{3}\right)-\operatorname{It}\left(\mathbf{g}_{3}\right) \operatorname{lot}\left(g_{2}\right)
\end{aligned}
$$

How to detect zero reductions in advance?

Can we see something? How are the generators of the S-polynomials related to each other?

$$
\begin{aligned}
\operatorname{spol}\left(g_{3}, g_{2}\right) & =y^{2}\left(x z^{2}-y z^{2}\right)-x z^{2}\left(y^{2}-z^{2}\right) \\
& =\operatorname{It}\left(\mathbf{g}_{2}\right) g_{3}-\operatorname{It}\left(\mathbf{g}_{3}\right) g_{2} \\
& =\operatorname{It}\left(\mathbf{g}_{2}\right) \operatorname{lot}\left(g_{3}\right)-\operatorname{It}\left(g_{3}\right) \operatorname{lot}\left(g_{2}\right)
\end{aligned}
$$

For all $u \in \operatorname{support}\left(\operatorname{lot}\left(g_{3}\right)\right)$ we can reduce with $u g_{2}$:

$$
\begin{aligned}
& \Longrightarrow \operatorname{It}\left(g_{2}\right) \operatorname{lot}\left(g_{3}\right)-\mathbf{g}_{2} \operatorname{lot}\left(g_{3}\right)-\operatorname{lt}\left(g_{3}\right) \operatorname{lot}\left(g_{2}\right) \\
& =-\operatorname{lot}\left(g_{2}\right) \operatorname{lot}\left(g_{3}\right)-\operatorname{It}\left(g_{3}\right) \operatorname{lot}\left(g_{2}\right) \\
& =-g_{3} \operatorname{lot}\left(g_{2}\right) .
\end{aligned}
$$

How to detect zero reductions in advance?

Can we see something? How are the generators of the S-polynomials related to each other?

$$
\begin{aligned}
\operatorname{spol}\left(g_{3}, g_{2}\right) & =y^{2}\left(x z^{2}-y z^{2}\right)-x z^{2}\left(y^{2}-z^{2}\right) \\
& =\operatorname{It}\left(\mathbf{g}_{2}\right) g_{3}-\operatorname{It}\left(\mathbf{g}_{3}\right) g_{2} \\
& =\operatorname{It}\left(\mathbf{g}_{2}\right) \operatorname{lot}\left(g_{3}\right)-\operatorname{It}\left(g_{3}\right) \operatorname{lot}\left(g_{2}\right)
\end{aligned}
$$

For all $u \in \operatorname{support}\left(\operatorname{lot}\left(g_{3}\right)\right)$ we can reduce with $u g_{2}$:

$$
\begin{aligned}
& \Longrightarrow \operatorname{It}\left(g_{2}\right) \operatorname{lot}\left(g_{3}\right)-\mathbf{g}_{2} \operatorname{lot}\left(g_{3}\right)-\operatorname{It}\left(g_{3}\right) \operatorname{lot}\left(g_{2}\right) \\
& =-\operatorname{lot}\left(g_{2}\right) \operatorname{lot}\left(g_{3}\right)-\operatorname{It}\left(g_{3}\right) \operatorname{lot}\left(g_{2}\right) \\
& =-g_{3} \operatorname{lot}\left(g_{2}\right) .
\end{aligned}
$$

So we can reduce this to zero by $v g_{3}$ for all $v \in \operatorname{support}\left(\operatorname{lot}\left(g_{2}\right)\right)$.

Buchberger's criteria

Product criterion [6, 7]

If $\operatorname{lcm}(\operatorname{lt}(f), \operatorname{lt}(g))=\operatorname{lt}(f) \operatorname{lt}(g)$ then $\operatorname{spol}(f, g) \xrightarrow{\{f, g\}} 0$.

Buchberger's criteria

Product criterion [6, 7]
 $\operatorname{If} \operatorname{lcm}(\operatorname{It}(f), \operatorname{It}(g))=\operatorname{lt}(f) \operatorname{lt}(g)$ then $\operatorname{spol}(f, g) \xrightarrow{\{f, g\}} 0$.

Couldn't we remove spol $\left(g_{3}, g_{2}\right)$ in a different way?

Buchberger's criteria

Product criterion [6, 7]

$\operatorname{If} \operatorname{lcm}(\operatorname{It}(f), \operatorname{It}(g))=\operatorname{lt}(f) \operatorname{lt}(g)$ then $\operatorname{spol}(f, g) \xrightarrow{\{f, g\}} 0$.

Couldn't we remove spol $\left(g_{3}, g_{2}\right)$ in a different way?

$$
\operatorname{lt}\left(g_{1}\right)=x y \mid x y^{2} z^{2}=\operatorname{lcm}\left(\operatorname{lt}\left(g_{3}\right), \operatorname{lt}\left(g_{2}\right)\right)
$$

Buchberger's criteria

Product criterion [6, 7]

If $\operatorname{lcm}(\operatorname{lt}(f), \operatorname{lt}(g))=\operatorname{lt}(f) \operatorname{lt}(g)$ then $\operatorname{spol}(f, g) \xrightarrow{\{f, g\}} 0$.

Couldn't we remove spol $\left(g_{3}, g_{2}\right)$ in a different way?

$$
\operatorname{lt}\left(g_{1}\right)=x y \mid x y^{2} z^{2}=\operatorname{Icm}\left(\operatorname{It}\left(g_{3}\right), \operatorname{lt}\left(g_{2}\right)\right)
$$

\Longrightarrow We can rewrite $\operatorname{spol}\left(g_{3}, g_{2}\right)$:
$\operatorname{spol}\left(g_{3}, g_{2}\right)=y \underbrace{\operatorname{spol}\left(g_{3}, g_{1}\right.}_{G_{\rightarrow}})-z^{2} \underbrace{\operatorname{spol}\left(g_{2}, g_{1}\right)}_{\underset{\rightarrow}{G}-g_{3}}=y\left(y g_{3}-z^{2} g_{1}\right)-z^{2}\left(x g_{2}-y g_{1}\right)$

Buchberger's criteria

Product criterion [6, 7]

If $\operatorname{lcm}(\operatorname{lt}(f), \operatorname{lt}(g))=\operatorname{lt}(f) \operatorname{lt}(g)$ then $\operatorname{spol}(f, g) \xrightarrow{\{f, g\}} 0$.

Couldn't we remove spol $\left(g_{3}, g_{2}\right)$ in a different way?

$$
\operatorname{lt}\left(g_{1}\right)=x y \mid x y^{2} z^{2}=\operatorname{Icm}\left(\operatorname{It}\left(g_{3}\right), \operatorname{lt}\left(g_{2}\right)\right)
$$

\Longrightarrow We can rewrite $\operatorname{spol}\left(g_{3}, g_{2}\right)$:
$\operatorname{spol}\left(g_{3}, g_{2}\right)=y \underbrace{\operatorname{spol}\left(g_{3}, g_{1}\right)}_{G_{\rightarrow 0}}-z^{2} \underbrace{\operatorname{spol}\left(g_{2}, g_{1}\right)}_{G_{-}-g_{3}}=y\left(y g_{3}-z^{2} g_{1}\right)-z^{2}\left(x g_{2}-y g_{1}\right)$

Standard representations of spol $\left(g_{2}, g_{1}\right)$ and $\operatorname{spol}\left(g_{3}, g_{1}\right)$
\Longrightarrow Standard representation of spol $\left(g_{3}, g_{2}\right)$.

Buchberger's criteria

Chain criterion [8]
Let $f, g, h \in \mathscr{R}, G \subset \mathscr{R}$ finite. If

1. $\operatorname{It}(h) \mid \operatorname{lcm}(\operatorname{lt}(f), \operatorname{lt}(g))$, and
2. $\operatorname{spol}(f, h)$ and $\operatorname{spol}(h, g)$ have a standard representation w.r.t. G respectively,
then $\operatorname{spol}(f, g)$ has a standard representation w.r.t. G.

Buchberger's criteria

Chain criterion [8]
Let $f, g, h \in \mathscr{R}, G \subset \mathscr{R}$ finite. If

1. It $(h) \mid \operatorname{lcm}(\operatorname{lt}(f), \operatorname{It}(g))$, and
2. $\operatorname{spol}(f, h)$ and $\operatorname{spol}(h, g)$ have a standard representation w.r.t. G respectively,
then $\operatorname{spol}(f, g)$ has a standard representation w.r.t. G.

Note

Do not remove too much information! If $\lambda=1$ and

$$
\operatorname{spol}(f, g)=\lambda \operatorname{spol}(f, h)+\sigma \operatorname{spol}(h, g),
$$

then we can remove spol (f, g) or spol (f, h) but not both!

Buchberger's criteria

Chain criterion [8]
Let $f, g, h \in \mathscr{R}, G \subset \mathscr{R}$ finite. If

1. It $(h) \mid \operatorname{lcm}(\operatorname{lt}(f), \operatorname{It}(g))$, and
2. $\operatorname{spol}(f, h)$ and $\operatorname{spol}(h, g)$ have a standard representation w.r.t. G respectively,
then $\operatorname{spol}(f, g)$ has a standard representation w.r.t. G.

Note

Do not remove too much information! If $\lambda=1$ and

$$
\operatorname{spol}(f, g)=\lambda \operatorname{spol}(f, h)+\sigma \operatorname{spol}(h, g),
$$

then we can remove spol (f, g) or spol (f, h) but not both!

How to combine Product and Chain criterion?

Gebauer-Möller installation [32]

We add a new element h to G and generate new pairs $P^{\prime}:=\{(f, h) \mid f \in G\}$.

Gebauer-Möller installation [32]

We add a new element h to G and generate new pairs $P^{\prime}:=\{(f, h) \mid f \in G\}$. We update the pairs in 4 steps:

Gebauer-Möller installation [32]

We add a new element h to G and generate new pairs $P^{\prime}:=\{(f, h) \mid f \in G\}$. We update the pairs in 4 steps:

1. If $(f, g) \in P$ s.t.
$\triangleright \operatorname{It}(h) \mid \operatorname{lcm}(\mathrm{It}(f), \operatorname{lt}(\mathrm{g}))$,
$\triangleright \operatorname{lcm}(\operatorname{It}(f), \operatorname{It}(h)) \neq \operatorname{lcm}(\operatorname{lt}(f), \operatorname{It}(g))$,
$\triangleright \operatorname{lcm}(\mathrm{It}(g), \operatorname{lt}(h)) \neq \operatorname{lcm}(\mathrm{It}(f), \operatorname{lt}(g))$
\Longrightarrow Remove (f, g) from P. [P done]

Gebauer-Möller installation [32]

We add a new element h to G and generate new pairs $P^{\prime}:=\{(f, h) \mid f \in G\}$. We update the pairs in 4 steps:

1. If $(f, g) \in P$ s.t.
$\triangleright \operatorname{lt}(h) \mid \operatorname{lcm}(\mathrm{It}(f), \mathrm{It}(\mathrm{g}))$,
$\triangleright \operatorname{lcm}(\operatorname{It}(f), \operatorname{It}(h)) \neq \operatorname{lcm}(\operatorname{lt}(f), \operatorname{It}(g))$,
$\triangleright \operatorname{lcm}(\mathrm{It}(g), \operatorname{lt}(h)) \neq \operatorname{lcm}(\mathrm{It}(f), \operatorname{lt}(g))$
\Longrightarrow Remove (f, g) from P. [P done]
2. Fix $(f, h) \in P^{\prime}$. If $(g, h) \in P^{\prime} \backslash\{(f, h)\}$ s.t.
$\triangleright \exists \lambda>1$ and $\operatorname{lcm}(\operatorname{lt}(f), \operatorname{lt}(h))=\lambda \operatorname{lcm}(\operatorname{lt}(g), \operatorname{lt}(h))$
\Longrightarrow Remove (g, h) from P^{\prime}.

Gebauer-Möller installation [32]

We add a new element h to G and generate new pairs $P^{\prime}:=\{(f, h) \mid f \in G\}$. We update the pairs in 4 steps:

1. If $(f, g) \in P$ s.t.
$\triangleright \operatorname{lt}(h) \mid \operatorname{lcm}(\mathrm{It}(f), \mathrm{It}(g))$,
$\triangleright \operatorname{lcm}(\operatorname{It}(f), \operatorname{It}(h)) \neq \operatorname{lcm}(\operatorname{lt}(f), \operatorname{It}(g))$,
$\triangleright \operatorname{lcm}(\mathrm{It}(g), \operatorname{lt}(h)) \neq \operatorname{lcm}(\mathrm{It}(f), \operatorname{lt}(g))$
\Longrightarrow Remove (f, g) from P. [P done]
2. $\operatorname{Fix}(f, h) \in P^{\prime}$. If $(g, h) \in P^{\prime} \backslash\{(f, h)\}$ s.t.
$\triangleright \exists \lambda>1$ and $\operatorname{lcm}(\operatorname{lt}(f), \operatorname{lt}(h))=\lambda \mathrm{lcm}(\operatorname{lt}(g), \operatorname{lt}(h))$
\Longrightarrow Remove (g, h) from P^{\prime}.
3. Fix $(f, h) \in P^{\prime}$. If $(g, h) \in P^{\prime} \backslash\{(f, h)\}$ s.t.
$\triangleright \operatorname{lcm}(\operatorname{lt}(f), \operatorname{It}(h))=\operatorname{lcm}(\operatorname{lt}(g), \operatorname{lt}(h))$
\Longrightarrow Remove (g, h) from P^{\prime}. [Chain criterion done]

Gebauer-Möller installation [32]

We add a new element h to G and generate new pairs $P^{\prime}:=\{(f, h) \mid f \in G\}$. We update the pairs in 4 steps:

1. If $(f, g) \in P$ s.t.
$\triangleright \operatorname{lt}(h) \mid \operatorname{lcm}(\mathrm{It}(f), \mathrm{It}(g))$,
$\triangleright \operatorname{lcm}(\operatorname{lt}(f), \operatorname{lt}(h)) \neq \operatorname{lcm}(\mathrm{It}(f), \mathrm{It}(\mathrm{g}))$,
$\triangleright \operatorname{lcm}(\mathrm{It}(g), \operatorname{lt}(h)) \neq \operatorname{lcm}(\mathrm{It}(f), \operatorname{lt}(g))$
\Longrightarrow Remove (f, g) from P. [P done]
2. $\operatorname{Fix}(f, h) \in P^{\prime}$. If $(g, h) \in P^{\prime} \backslash\{(f, h)\}$ s.t.
$\triangleright \exists \lambda>1$ and $\operatorname{lcm}(\operatorname{lt}(f), \operatorname{lt}(h))=\lambda \mathrm{lcm}(\operatorname{lt}(g), \operatorname{lt}(h))$
\Longrightarrow Remove (g, h) from P^{\prime}.
3. $\operatorname{Fix}(f, h) \in P^{\prime}$. If $(g, h) \in P^{\prime} \backslash\{(f, h)\}$ s.t.
$\triangleright \operatorname{lcm}(\operatorname{lt}(f), \operatorname{It}(h))=\operatorname{lcm}(\operatorname{lt}(g), \operatorname{lt}(h))$
\Longrightarrow Remove (g, h) from P^{\prime}. [Chain criterion done]
4. If $(f, h) \in P^{\prime}$ s.t. $\operatorname{Icm}(\operatorname{It}(f), \operatorname{It}(h))=\operatorname{It}(f) \operatorname{lt}(h)$
\Longrightarrow Remove (f, h) from P^{\prime}. [Product criterion done]

Can we do even better?

In our example we still need to consider

$$
\operatorname{spol}\left(g_{3}, g_{1}\right) \xrightarrow{G} 0
$$

Can we do even better?

In our example we still need to consider

$$
\operatorname{spol}\left(g_{3}, g_{1}\right) \xrightarrow{G} 0
$$

How to get rid of this useless computation?

Can we do even better?

In our example we still need to consider

$$
\operatorname{spol}\left(g_{3}, g_{1}\right) \xrightarrow{G} 0
$$

How to get rid of this useless computation?

Use more structure of $I \Longrightarrow$ Signatures

Signatures

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle \subset \mathscr{R}$.
Idea: Give each $f \in I$ a bit more structure:

Signatures

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle \subset \mathscr{R}$.
Idea: Give each $f \in /$ a bit more structure:

1. Let \mathscr{R}^{m} be generated by $\epsilon_{1}, \ldots, e_{m}$ and let \prec be a compatible monomial order on the monomials of \mathscr{R}^{m}.

Signatures

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle \subset \mathscr{R}$.
Idea: Give each $f \in I$ a bit more structure:

1. Let \mathscr{R}^{m} be generated by $\epsilon_{1}, \ldots, \epsilon_{m}$ and let \prec be a compatible monomial order on the monomials of \mathscr{R}^{m}.
2. Let $\alpha \mapsto \bar{\alpha}: \mathscr{R}^{m} \rightarrow \mathscr{R}$ such that $\bar{e}_{i}=f_{i}$ for all i.

Signatures

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle \subset \mathscr{R}$.
Idea: Give each $f \in I$ a bit more structure:

1. Let \mathscr{R}^{m} be generated by $\epsilon_{1}, \ldots, e_{m}$ and let \prec be a compatible monomial order on the monomials of \mathscr{R}^{m}.
2. Let $\alpha \mapsto \bar{\alpha}: \mathscr{R}^{m} \rightarrow \mathscr{R}$ such that $\bar{e}_{i}=f_{i}$ for all i.
3. Each $f \in I$ can be represented via some $\alpha \in \mathscr{R}^{m}: f=\bar{\alpha}$

Signatures

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle \subset \mathscr{R}$.
Idea: Give each $f \in /$ a bit more structure:

1. Let \mathscr{R}^{m} be generated by $\epsilon_{1}, \ldots, e_{m}$ and let \prec be a compatible monomial order on the monomials of \mathscr{R}^{m}.
2. Let $\alpha \mapsto \bar{\alpha}: \mathscr{R}^{m} \rightarrow \mathscr{R}$ such that $\bar{e}_{i}=f_{i}$ for all i.
3. Each $f \in I$ can be represented via some $\alpha \in \mathscr{R}^{m}: f=\bar{\alpha}$
4. A signature of f is given by $\mathfrak{s}(f)=\mathrm{It}_{\prec}(\alpha)$ where $f=\bar{\alpha}$.

Signatures

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle \subset \mathscr{R}$.
Idea: Give each $f \in I$ a bit more structure:

1. Let \mathscr{R}^{m} be generated by $\epsilon_{1}, \ldots, e_{m}$ and let \prec be a compatible monomial order on the monomials of \mathscr{R}^{m}.
2. Let $\alpha \mapsto \bar{\alpha}: \mathscr{R}^{m} \rightarrow \mathscr{R}$ such that $\bar{e}_{i}=f_{i}$ for all i.
3. Each $f \in I$ can be represented via some $\alpha \in \mathscr{R}^{m}: f=\bar{\alpha}$
4. A signature of f is given by $\mathfrak{s}(f)=\mathrm{It}_{\prec}(\alpha)$ where $f=\bar{\alpha}$.
5. An element $\alpha \in \mathscr{R}^{m}$ such that $\bar{\alpha}=0$ is called a syzygy.

Our example again - with signatures and $\prec_{\text {pot }}$

$$
\begin{aligned}
& g_{1}=x y-z^{2}, \mathfrak{s}\left(g_{1}\right)=e_{1}, \\
& g_{2}=y^{2}-z^{2}, \mathfrak{s}\left(g_{2}\right)=e_{2} .
\end{aligned}
$$

Our example again - with signatures and \prec pot

$$
\begin{aligned}
& g_{1}=x y-z^{2}, \mathfrak{s}\left(g_{1}\right)=e_{1}, \\
& g_{2}=y^{2}-z^{2}, \mathfrak{s}\left(g_{2}\right)=e_{2} .
\end{aligned}
$$

$$
\begin{aligned}
g_{3} & =\operatorname{spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1} \\
& \Rightarrow \mathfrak{s}\left(g_{3}\right)=x \mathfrak{s}\left(g_{2}\right)=x e_{2}
\end{aligned}
$$

Our example again - with signatures and \prec pot

$$
\begin{gathered}
g_{1}=x y-z^{2}, \mathfrak{s}\left(g_{1}\right)=e_{1} \\
g_{2}=y^{2}-z^{2}, \mathfrak{s}\left(g_{2}\right)=e_{2} \\
g_{3}=\operatorname{spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1} \\
\Rightarrow \mathfrak{s}\left(g_{3}\right)=x \mathfrak{s}\left(g_{2}\right)=x e_{2} . \\
\\
\Rightarrow \mathfrak{s p o l}\left(g_{3}, g_{1}\right)=y g_{3}-z^{2} g_{1} \\
\left.\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=y \mathfrak{s}\left(g_{3}\right)=x y e_{2} .
\end{gathered}
$$

Our example again - with signatures and \prec pot

$$
\begin{gathered}
g_{1}=x y-z^{2}, \mathfrak{s}\left(g_{1}\right)=e_{1} \\
g_{2}=y^{2}-z^{2}, \mathfrak{s}\left(g_{2}\right)=e_{2} \\
g_{3}=\operatorname{spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1} \\
\Rightarrow \mathfrak{s}\left(g_{3}\right)=x \mathfrak{s}\left(g_{2}\right)=x e_{2} . \\
\\
\Rightarrow \mathfrak{s p o l}\left(g_{3}, g_{1}\right)=y g_{3}-z^{2} g_{1} \\
\left.\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=y \mathfrak{s}\left(g_{3}\right)=x y e_{2} .
\end{gathered}
$$

Note that $\mathfrak{s}\left(\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=x y \epsilon_{2}$ and $\operatorname{Im}\left(g_{1}\right)=x y$.

Think in the module

$\alpha \in \mathscr{R}^{m} \Longrightarrow$ polynomial $\bar{\alpha}$ with $\operatorname{It}(\bar{\alpha})$, signature $\mathfrak{s}(\alpha)=\operatorname{It}(\alpha)$

Think in the module

$\alpha \in \mathscr{R}^{m} \Longrightarrow$ polynomial $\bar{\alpha}$ with $\operatorname{It}(\bar{\alpha})$, signature $\mathfrak{s}(\alpha)=\operatorname{It}(\alpha)$

S-pairs/S-polynomials:

$$
\text { spol }(\bar{\alpha}, \bar{\beta})=a \bar{\alpha}-b \bar{\beta} \Longrightarrow \operatorname{spair}(\alpha, \beta)=a \alpha-b \beta
$$

Think in the module

$\alpha \in \mathscr{R}^{m} \Longrightarrow$ polynomial $\bar{\alpha}$ with $\operatorname{It}(\bar{\alpha})$, signature $\mathfrak{s}(\alpha)=\operatorname{It}(\alpha)$

S-pairs/S-polynomials:

$$
\text { spol }(\bar{\alpha}, \bar{\beta})=a \bar{\alpha}-b \bar{\beta} \Longrightarrow \operatorname{spair}(\alpha, \beta)=a \alpha-b \beta
$$

s-reductions:

$$
\bar{\gamma}-d \bar{\delta} \Longrightarrow \gamma-d \delta
$$

Think in the module

$$
\alpha \in \mathscr{R}^{m} \Longrightarrow \text { polynomial } \bar{\alpha} \text { with } \operatorname{lt}(\bar{\alpha}) \text {, signature } \mathfrak{s}(\alpha)=\operatorname{lt}(\alpha)
$$

S-pairs/S-polynomials:

$$
\text { spol }(\bar{\alpha}, \bar{\beta})=a \bar{\alpha}-b \bar{\beta} \Longrightarrow \text { spair }(\alpha, \beta)=a \alpha-b \beta
$$

\mathfrak{s}-reductions:

$$
\bar{\gamma}-d \bar{\delta} \Longrightarrow \gamma-d \delta
$$

Remark

In the following we need one detail from signature-based Gröbner Basis computations:

We pick from P by increasing signature.

Signature-based criteria

$$
\mathfrak{s}(\alpha)=\mathfrak{s}(\beta) \Longrightarrow \text { Compute 1, remove } 1 .
$$

Signature-based criteria

$$
\mathfrak{s}(\alpha)=\mathfrak{s}(\beta) \Longrightarrow \text { Compute 1, remove } 1 .
$$

Sketch of proof

1. $\mathfrak{s}(\alpha-\beta) \prec \mathfrak{s}(\alpha), \mathfrak{s}(\beta)$.
2. All S-pairs are handled by increasing signature.
\Rightarrow All relatons $\prec \mathfrak{s}(\alpha)$ are known:

$$
\alpha=\beta+\text { elements of smaller signature }
$$

Signature-based criteria

S-pairs in signature T

Signature-based criteria

S-pairs in signature T

Signature-based criteria

S-pairs in signature T

Signature-based criteria

S-pairs in signature T

Special cases

$$
\mathfrak{R}_{T}=\{a \alpha \mid \alpha \text { handled by the algorithm and } \mathfrak{s}(a \alpha)=T\}
$$

Special cases

$$
\mathfrak{R}_{T}=\{a \alpha \mid \alpha \text { handled by the algorithm and } \mathfrak{s}(a \alpha)=T\}
$$

Choose $b \beta$ to be an element of \mathfrak{R}_{T} maximal w.r.t. an order \unlhd.

Special cases

$$
\Re_{T}=\{a \alpha \mid \alpha \text { handled by the algorithm and } \mathfrak{s}(a \alpha)=T\}
$$

Choose $b \beta$ to be an element of \mathfrak{R}_{T} maximal w.r.t. an order \leq.

1. If $b \beta$ is a syzygy $\quad \Longrightarrow$ Go on to next signature.

Special cases

$$
\mathfrak{R}_{T}=\{a \alpha \mid \alpha \text { handled by the algorithm and } \mathfrak{s}(a \alpha)=T\}
$$

Choose $b \beta$ to be an element of \mathfrak{R}_{T} maximal w.r.t. an order \leq.

1. If $b \beta$ is a syzygy $\quad \Longrightarrow$ Go on to next signature.
2. If $b \beta$ is not part of an S-pair $\Longrightarrow G$ Go on to next signature.

Special cases

$$
\mathfrak{R}_{T}=\{a \alpha \mid \alpha \text { handled by the algorithm and } \mathfrak{s}(a \alpha)=T\}
$$

Choose $b \beta$ to be an element of \mathfrak{R}_{T} maximal w.r.t. an order \leq.

1. If $b \beta$ is a syzygy $\quad \Longrightarrow G o$ on to next signature.
2. If $b \beta$ is not part of an S-pair $\Longrightarrow G$ Go on to next signature.

Revisiting our example with \prec pot

$$
\left.\left.\begin{array}{l}
g_{1}=x y-z^{2} \\
g_{2}=y^{2}-z^{2}
\end{array}\right\} \Rightarrow \operatorname{spol}\left(g_{3}, g_{1}\right)\right)=x y z\left(g_{2}, g_{1}\right)=g_{1} e_{2}-g_{2} e_{1}=x y e_{2}+\ldots
$$

Modifications not specific to signature-based Gröbner basis algorithms

\# zero reductions (Singular-4-0-0, \mathbb{F}_{32003})

Benchmark	STD	SBA $\prec_{\text {pot }}$	SBA $\prec_{\text {d-pot }}$	SBA \prec_{lt}
cyclic-8	4,284	243	243	671
cyclic-8-h	5,843	243	243	671
eco-11	3,476	0	749	749
eco-11-h	5,429	502	502	749
katsura-11	3,933	0	0	348
katsura-11-h	3,933	0	0	348
noon-9	25,508	0	0	682
noon-9-h	25,508	0	0	682
Random(11,2,2)	6,292	0	0	590
HRandom(11,2,2)	6,292	0	0	590
Random(12,2,2)	13,576	0	0	1,083
HRandom(12,2,2)	13,576	0	0	1,083

Time in seconds (Singular-4-0-0, \mathbb{F}_{32003})

Benchmark	STD	SBA $\prec_{\text {pot }}$	SBA $\prec_{\text {d-pot }}$	SBA \prec_{lt}
cyclic-8	32.480	44.310	100.780	38.120
cyclic-8-h	38.300	35.770	98.440	32.640
eco-11	28.450	3.450	27.360	13.270
eco-11-h	20.630	11.600	14.840	7.960
katsura-11	54.780	35.720	31.010	11.790
katsura-11-h	51.260	34.080	32.590	17.230
noon-9	29.730	12.940	14.620	15.220
noon-9-h	34.410	17.850	20.090	20.510
Random(11,2,2)	267.810	77.430	130.400	28.640
HRandom(11,2,2)	22.970	14.060	39.320	3.540
Random(12,2,2)	$2,069.890$	537.340	$1,062.390$	176.920
HRandom(12,2,2)	172.910	112.420	331.680	22.060

Can we combine both attempts?

Buchberger's Product and Chain criterion can be combined with the Rewrite criterion [29, 33, 11]:

Can we combine both attempts?

Buchberger's Product and Chain criterion can be combined with the Rewrite criterion [29, 33, 11]:

Chain criterion is a special case of the Rewrite criterion \Rightarrow already included.

Can we combine both attempts?

Buchberger's Product and Chain criterion can be combined with the Rewrite criterion [29, 33, 11]:

Chain criterion is a special case of the Rewrite criterion \Rightarrow already included.

Product criterion is not always (but mostly) included.

Can we combine both attempts?

Buchberger's Product and Chain criterion can be combined with the Rewrite criterion [29, 33, 11]:

Chain criterion is a special case of the Rewrite criterion \Rightarrow already included.

Product criterion is not always (but mostly) included.

Can we combine both attempts?

Buchberger's Product and Chain criterion can be combined with the Rewrite criterion [29, 33, 11]:

Chain criterion is a special case of the Rewrite criterion \Rightarrow already included.

Product criterion is not always (but mostly) included.

Experimental results

Implementation done in Singular [9]

		Senchmark		STD
ZR	SBA $\prec_{\text {pot }}$ ZR	SBA		
ZR	ZR / PC			
cyclic-8	4284	243	671	$671 / 0$
cyclic-8-h	5843	243	671	$671 / 0$
eco-11	3476	0	749	$749 / 0$
eco-11-h	5429	502	749	$718 / 0$
katsura-11	3933	0	348	$304 / 0$
katsura-11-h	3933	0	348	$304 / 0$
noon-9	25508	0	682	$646 / 0$
noon-9-h	25508	0	682	$646 / 0$
binomial-6-2	21	6	15	$8 / 7$
binomial-6-3	20	13	15	$9 / 6$
binomial-7-3	27	24	21	$21 / 0$
binomial-7-4	41	16	19	$16 / 3$
binomial-8-3	53	23	27	$27 / 0$
binomial-8-4	40	31	26	$26 / 0$

And what's about SBA using $\prec_{\text {pot }}$?

Conjecture [11]

Every S-polynomial fulfilling the Product criterion is also detected by the Rewrite criterion in SBA using $\prec_{\text {pot }}$.

And what's about SBA using $\prec_{\text {pot }}$?

Conjecture [11]

Every S-polynomial fulfilling the Product criterion is also detected by the Rewrite criterion in SBA using $\prec_{\text {pot }}$.

- We checked several million examples, all fulfilling the conjecture.
- Until now we cannot prove this.

And what's about SBA using $\prec_{\text {pot }} ?$

Conjecture [11]

Every S-polynomial fulfilling the Product criterion is also detected by the Rewrite criterion in SBA using $\prec_{\text {pot }}$.

We checked several million examples, all fulfilling the conjecture.

- Until now we cannot prove this.

Ongoing work:

1. Describe in detail the connection between our conjecture and Moreno-Socías conjecture [36].
2. Try to exploit even more algebraic structures for predicting zero reductions.

Predicting zero reductions

Fast linear algebra for computing Gröbner bases

Buchberger's algorithm - revisited

Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner basis G for I

1. $G \leftarrow \emptyset$
2. $G \leftarrow G \cup\left\{f_{i}\right\}$ for all $i \in\{1, \ldots, m\}$
3. Set $P \leftarrow\left\{\operatorname{spol}\left(f_{i}, f_{j}\right) \mid f_{i}, f_{j} \in G, i>j\right\}$
4. Choose $p \in P, P \leftarrow P \backslash\{p\}$
(a) If $p \xrightarrow{G} 0 \leadsto$ no new information Go on with the next element in P.
(b) If $p \xrightarrow{G} q \neq 0 \leadsto$ new information

Build new S-pair with q and add them to P.
Add q to G.
Go on with the next element in P.
5. When $P=\emptyset$ we are done and G is a Gröbner basis for I.

Faugère's F4 algorithm

Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$ Output: Gröbner basis G for I

1. $G \leftarrow \emptyset$
2. $G \leftarrow G \cup\left\{f_{i}\right\}$ for all $i \in\{1, \ldots, m\}$
3. Set $P \leftarrow\{(a f, b g) \mid f, g \in G\}$
4. $d \leftarrow 0$
5. while $P \neq \emptyset$:

Faugère's F4 algorithm

Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner basis G for I

1. $G \leftarrow \emptyset$
2. $G \leftarrow G \cup\left\{f_{i}\right\}$ for all $i \in\{1, \ldots, m\}$
3. Set $P \leftarrow\{(a f, b g) \mid f, g \in G\}$
4. $d \leftarrow 0$
5. while $P \neq 0$:
(a) $d \leftarrow d+1$
(b) $P_{d} \leftarrow$ Select $(P), P \leftarrow P \backslash P_{d}$
(c) $L_{d} \leftarrow\left\{a f, b g \mid(a f, b g) \in P_{d}\right\}$
(d) $L_{d} \leftarrow$ Symbolic Preprocessing $\left(L_{d}, G\right)$
(e) $F_{d} \leftarrow$ Reduction $\left(L_{d}, G\right)$
(f) for $h \in F_{d}$:

- If It $(h) \notin L(G)$ (all other h are "useless"):
$\triangleright P \leftarrow P \cup\{$ new pairs with $h\}$
$\triangleright G \leftarrow G \cup\{h\}$

6. Return G

Differences to Buchberger

1. Select a subset P_{d} of P, not only one element.
2. Do a symbolic preprocessing: Search and store reducers, but do not reduce.
3. Do a full reduction of P_{d} at once:

Reduce a subset of \mathscr{R} by a subset of \mathscr{R}

Differences to Buchberger

1. Select a subset P_{d} of P, not only one element.
2. Do a symbolic preprocessing:

Search and store reducers, but do not reduce.
3. Do a full reduction of P_{d} at once:

Reduce a subset of \mathscr{R} by a subset of \mathscr{R}

If Select (P) selects only 1 pair F4 is just Buchberger's algorithm.
Usually one chooses the normal selection strategy,
i.e. all pairs of lowest degree.

Symbolic preprocessing

Input: L, G finite subsets of \mathscr{R}
Output: a finite subset of \mathscr{R}

1. $F \leftarrow L$
2. $D \leftarrow L(F)$ (S-pairs already reduce lead terms)
3. while $T(F) \neq D$:
(a) Choose $m \in T(F) \backslash D, D \leftarrow D \cup\{m\}$.
(b) If $m \in L(G) \Rightarrow \exists g \in G$ and $\lambda \in \mathscr{R}$ such that λ It $(g)=m$ $\triangleright F \leftarrow F \cup\{\lambda g\}$
4. Return F

Symbolic preprocessing

Input: L, G finite subsets of \mathscr{R}
Output: a finite subset of \mathscr{R}

1. $F \leftarrow L$
2. $D \leftarrow L(F)$ (S-pairs already reduce lead terms)
3. while $T(F) \neq D$:
(a) Choose $m \in T(F) \backslash D, D \leftarrow D \cup\{m\}$.
(b) If $m \in L(G) \Rightarrow \exists g \in G$ and $\lambda \in \mathscr{R}$ such that λ It $(g)=m$ $\triangleright F \leftarrow F \cup\{\lambda g\}$
4. Return F

We optimize this soon!

Reduction

Input: L, G finite subsets of \mathscr{R}
Output: a finite subset of \mathscr{R}

1. $M \leftarrow$ Macaulay matrix of L
2. $M \leftarrow$ Gaussian Elimination of M (Linear algebra)
3. $F \leftarrow$ polynomials from rows of M
4. Return F

Reduction

Input: L, G finite subsets of \mathscr{R}
Output: a finite subset of \mathscr{R}

1. $M \leftarrow$ Macaulay matrix of L
2. $M \leftarrow$ Gaussian Elimination of M (Linear algebra)
3. $F \leftarrow$ polynomials from rows of M
4. Return F

Macaulay matrix
columns $\hat{=}$ monomials (sorted by monomial order $<$)
rows $\hat{=}$ coeffs of polynomials in L

Example: Cyclic-4

$\mathscr{R}=\mathbb{Q}[a, b, c, d],<$ denotes DRL and we use the normal selection strategy for Select $(P) . I=\left\langle f_{1}, \ldots, f_{4}\right\rangle$, where

$$
\begin{aligned}
& f_{1}=a b c d-1 \\
& f_{2}=a b c+a b d+a c d+b c d, \\
& f_{3}=a b+b c+a d+c d, \\
& f_{4}=a+b+c+d .
\end{aligned}
$$

Example: Cyclic-4

$\mathscr{R}=\mathbb{Q}[a, b, c, d],<$ denotes DRL and we use the normal selection strategy for Select $(P) . I=\left\langle f_{1}, \ldots, f_{4}\right\rangle$, where

$$
\begin{aligned}
& f_{1}=a b c d-1, \\
& f_{2}=a b c+a b d+a c d+b c d, \\
& f_{3}=a b+b c+a d+c d, \\
& f_{4}=a+b+c+d .
\end{aligned}
$$

We start with $G=\left\{f_{4}\right\}$ and $P_{1}=\left\{\left(f_{3}, b f_{4}\right)\right\}$, thus $L_{1}=\left\{f_{3}, b f_{4}\right\}$.

Example: Cyclic-4

$\mathscr{R}=\mathbb{Q}[a, b, c, d],<$ denotes DRL and we use the normal selection strategy for Select $(P) . I=\left\langle f_{1}, \ldots, f_{4}\right\rangle$, where

$$
\begin{aligned}
& f_{1}=a b c d-1, \\
& f_{2}=a b c+a b d+a c d+b c d, \\
& f_{3}=a b+b c+a d+c d, \\
& f_{4}=a+b+c+d .
\end{aligned}
$$

We start with $G=\left\{f_{4}\right\}$ and $P_{1}=\left\{\left(f_{3}, b f_{4}\right)\right\}$, thus $L_{1}=\left\{f_{3}, b f_{4}\right\}$. Let us do symbolic preprocessing:

$$
\begin{aligned}
T\left(L_{1}\right) & =\left\{a b, b^{2}, b c, a d, b d, c d\right. \\
L_{1} & =\left\{f_{3}, b f_{4} \quad\right\}
\end{aligned}
$$

Example: Cyclic-4

$\mathscr{R}=\mathbb{Q}[a, b, c, d],<$ denotes DRL and we use the normal selection strategy for Select $(P) . I=\left\langle f_{1}, \ldots, f_{4}\right\rangle$, where

$$
\begin{aligned}
& f_{1}=a b c d-1, \\
& f_{2}=a b c+a b d+a c d+b c d, \\
& f_{3}=a b+b c+a d+c d, \\
& f_{4}=a+b+c+d .
\end{aligned}
$$

We start with $G=\left\{f_{4}\right\}$ and $P_{1}=\left\{\left(f_{3}, b f_{4}\right)\right\}$, thus $L_{1}=\left\{f_{3}, b f_{4}\right\}$. Let us do symbolic preprocessing:

$$
\begin{aligned}
T\left(L_{1}\right) & =\left\{a b, b^{2}, b c, a d, b d, c d\right. \\
L_{1} & =\left\{f_{3}, b f_{4} \quad\right\}
\end{aligned}
$$

$b^{2} \notin L(G)$,

Example: Cyclic-4

$\mathscr{R}=\mathbb{Q}[a, b, c, d],<$ denotes DRL and we use the normal selection strategy for Select $(P) . I=\left\langle f_{1}, \ldots, f_{4}\right\rangle$, where

$$
\begin{aligned}
& f_{1}=a b c d-1, \\
& f_{2}=a b c+a b d+a c d+b c d, \\
& f_{3}=a b+b c+a d+c d, \\
& f_{4}=a+b+c+d .
\end{aligned}
$$

We start with $G=\left\{f_{4}\right\}$ and $P_{1}=\left\{\left(f_{3}, b f_{4}\right)\right\}$, thus $L_{1}=\left\{f_{3}, b f_{4}\right\}$. Let us do symbolic preprocessing:

$$
\begin{aligned}
T\left(L_{1}\right) & =\left\{a b, b^{2}, b c, a d, b d, c d\right\} \\
L_{1} & =\left\{f_{3}, b f_{4} \quad\right\}
\end{aligned}
$$

$b^{2} \notin L(G), b c \notin L(G)$,

Example: Cyclic-4

$\mathscr{R}=\mathbb{Q}[a, b, c, d],<$ denotes DRL and we use the normal selection strategy for Select (P). $I=\left\langle f_{1}, \ldots, f_{4}\right\rangle$, where

$$
\begin{aligned}
& f_{1}=a b c d-1, \\
& f_{2}=a b c+a b d+a c d+b c d, \\
& f_{3}=a b+b c+a d+c d, \\
& f_{4}=a+b+c+d .
\end{aligned}
$$

We start with $G=\left\{f_{4}\right\}$ and $P_{1}=\left\{\left(f_{3}, b f_{4}\right)\right\}$, thus $L_{1}=\left\{f_{3}, b f_{4}\right\}$. Let us do symbolic preprocessing:

$$
\begin{aligned}
T\left(L_{1}\right) & =\left\{a b, b^{2}, b c, a d, b d, c d, d^{2}\right\} \\
L_{1} & =\left\{f_{3}, b f_{4}, d f_{4}\right\}
\end{aligned}
$$

$b^{2} \notin L(G), b c \notin L(G), d \operatorname{lt}\left(f_{4}\right)=a d$,

Example: Cyclic-4

$\mathscr{R}=\mathbb{Q}[a, b, c, d],<$ denotes DRL and we use the normal selection strategy for Select $(P) . I=\left\langle f_{1}, \ldots, f_{4}\right\rangle$, where

$$
\begin{aligned}
& f_{1}=a b c d-1, \\
& f_{2}=a b c+a b d+a c d+b c d, \\
& f_{3}=a b+b c+a d+c d, \\
& f_{4}=a+b+c+d .
\end{aligned}
$$

We start with $G=\left\{f_{4}\right\}$ and $P_{1}=\left\{\left(f_{3}, b f_{4}\right)\right\}$, thus $L_{1}=\left\{f_{3}, b f_{4}\right\}$. Let us do symbolic preprocessing:

$$
\begin{aligned}
T\left(L_{1}\right) & =\left\{a b, b^{2}, b c, a d, b d, c d, d^{2}\right\} \\
L_{1} & =\left\{f_{3}, b f_{4}, d f_{4}\right\}
\end{aligned}
$$

$b^{2} \notin L(G), b c \notin L(G), d \operatorname{lt}\left(f_{4}\right)=a d$, all others also $\notin L(G)$,

Example: Cyclic-4

Now reduction:
Convert polynomial data L_{1} to Macaulay Matrix M_{1}

$$
d f_{4}\left(\begin{array}{ccccccc}
a b & b^{2} & b c & a d & b d & c d & d^{2} \\
f_{3} \\
b f_{4}
\end{array}\left(\begin{array}{ccccccc}
0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 & 0
\end{array}\right)\right.
$$

Example: Cyclic-4

Now reduction:
Convert polynomial data L_{1} to Macaulay Matrix M_{1}

Gaussian Elimination of M_{1} :

$$
d f_{4}\left(\begin{array}{ccccccc}
a b & b^{2} & b c & a d & b d & c d & d^{2} \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & -1 & 0 & -1 \\
0 & 1 & 0 & 0 & 2 & 0 & 1
\end{array}\right)
$$

Example: Cyclic-4

Convert matrix data back to polynomial structure F_{1} :

$$
\begin{gathered}
d f_{4}\left(\begin{array}{ccccccc}
a b & b^{2} & b c & a d & b d & c d & d^{2} \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
f_{3} \\
1 & 0 & 1 & 0 & -1 & 0 & -1 \\
0 & 1 & 0 & 0 & 2 & 0 & 1
\end{array}\right) \\
F_{1}=\{\underbrace{a d+b d+c d+d^{2}}_{f_{5}}, \underbrace{a b+b c-b d-d^{2}}_{f_{6}}, \underbrace{b^{2}+2 b d+d^{2}}_{f_{7}}\}
\end{gathered}
$$

Example: Cyclic-4

Convert matrix data back to polynomial structure F_{1} :

$$
\begin{gathered}
d f_{4}\left(\begin{array}{ccccccc}
a b & b^{2} & b c & a d & b d & c d & d^{2} \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
f_{3} & 0 & 1 & 0 & -1 & 0 & -1 \\
0 & 1 & 0 & 0 & 2 & 0 & 1
\end{array}\right) \\
F_{1}=\{\underbrace{a d+b d+c d+d^{2}}_{f_{5}}, \underbrace{a b+b c-b d-d^{2}}_{f_{6}}, \underbrace{b^{2}+2 b d+d^{2}}_{f_{7}}\} \\
\operatorname{lt}\left(f_{5}\right), \operatorname{It}\left(f_{6}\right) \in L(G), \text { so } \\
\mathbf{G} \leftarrow \mathbf{G} \cup\left\{\mathbf{f}_{7}\right\} .
\end{gathered}
$$

Example: Cyclic-4

Next round:

$$
G=\left\{f_{4}, f_{7}\right\}, P_{2}=\left\{\left(f_{2}, b c f_{4}\right)\right\}, L_{2}=\left\{f_{2}, b c f_{4}\right\} .
$$

Example: Cyclic-4

Next round:

$$
G=\left\{f_{4}, f_{7}\right\}, P_{2}=\left\{\left(f_{2}, b c f_{4}\right)\right\}, L_{2}=\left\{f_{2}, b c f_{4}\right\} .
$$

We can simplify the computations:

$$
\operatorname{It}\left(b c f_{4}\right)=a b c=\operatorname{It}\left(c f_{6}\right) .
$$

f_{6} possibly better reduced than f_{4}. (f_{6} is not in $G!$)

$$
\Longrightarrow L_{2}=\left\{f_{2}, c f_{6}\right\}
$$

Example: Cyclic-4

Next round:

$$
G=\left\{f_{4}, f_{7}\right\}, P_{2}=\left\{\left(f_{2}, b c f_{4}\right)\right\}, L_{2}=\left\{f_{2}, b c f_{4}\right\} .
$$

We can simplify the computations:

$$
\operatorname{It}\left(b c f_{4}\right)=a b c=\operatorname{It}\left(c f_{6}\right) .
$$

f_{6} possibly better reduced than f_{4}. f_{6} is not in $G!$)

$$
\Longrightarrow L_{2}=\left\{f_{2}, c f_{6}\right\}
$$

Symbolic preprocessing:

$$
\begin{aligned}
T\left(L_{2}\right) & =\left\{a b c, b c^{2}, a b d, a c d, b c d, c d^{2}\right\} \\
L_{2} & =\left\{f_{2}, c f_{6}, \quad\right\}
\end{aligned}
$$

Example: Cyclic-4

Next round:

$$
G=\left\{f_{4}, f_{7}\right\}, P_{2}=\left\{\left(f_{2}, b c f_{4}\right)\right\}, L_{2}=\left\{f_{2}, b c f_{4}\right\} .
$$

We can simplify the computations:

$$
\operatorname{It}\left(b c f_{4}\right)=a b c=\operatorname{It}\left(c f_{6}\right) .
$$

f_{6} possibly better reduced than f_{4}. $\left(f_{6}\right.$ is not in $G!$)

$$
\Longrightarrow L_{2}=\left\{f_{2}, c f_{6}\right\}
$$

Symbolic preprocessing:

$$
\begin{aligned}
T\left(L_{2}\right) & =\left\{a b c, b c^{2}, a b d, a c d, b c d, c d^{2}\right\} \\
L_{2} & =\left\{f_{2}, c f_{6}, \quad\right\}
\end{aligned}
$$

$b c^{2} \notin L(G)$,

Example: Cyclic-4

Next round:

$$
G=\left\{f_{4}, f_{7}\right\}, P_{2}=\left\{\left(f_{2}, b c f_{4}\right)\right\}, L_{2}=\left\{f_{2}, b c f_{4}\right\} .
$$

We can simplify the computations:

$$
\operatorname{It}\left(b c f_{4}\right)=a b c=\operatorname{It}\left(c f_{6}\right) .
$$

f_{6} possibly better reduced than f_{4}. $\left(f_{6}\right.$ is not in $G!$)

$$
\Longrightarrow L_{2}=\left\{f_{2}, c f_{6}\right\}
$$

Symbolic preprocessing:

$$
\begin{aligned}
T\left(L_{2}\right) & =\left\{a b c, b c^{2}, a b d, a c d, b c d, c d^{2}\right\} \\
L_{2} & =\left\{f_{2}, c f_{6}, \quad\right\}
\end{aligned}
$$

$b c^{2} \notin L(G), a b d=\operatorname{It}\left(b d f_{4}\right)$, but also $a b d=\operatorname{It}\left(b f_{5}\right)!$

Example: Cyclic-4

Next round:

$$
G=\left\{f_{4}, f_{7}\right\}, P_{2}=\left\{\left(f_{2}, b c f_{4}\right)\right\}, L_{2}=\left\{f_{2}, b c f_{4}\right\} .
$$

We can simplify the computations:

$$
\operatorname{It}\left(b c f_{4}\right)=a b c=\operatorname{It}\left(c f_{6}\right) .
$$

f_{6} possibly better reduced than f_{4}. (f_{6} is not in $G!$)

$$
\Longrightarrow L_{2}=\left\{f_{2}, c f_{6}\right\}
$$

Symbolic preprocessing:

$$
\begin{aligned}
T\left(L_{2}\right) & =\left\{a b c, b c^{2}, a b d, a c d, b c d, c d^{2}\right\} \\
L_{2} & =\left\{f_{2}, c f_{6}, \quad\right\}
\end{aligned}
$$

$b c^{2} \notin L(G), a b d=\operatorname{It}\left(b d f_{4}\right)$, but also $a b d=\operatorname{It}\left(b f_{5}\right)!$

Let us investigate this in more detail.

Interlude - Simplify

Idea

Try to replace $u \cdot f$ by a product $(w v) \cdot g$ where $v g$ corresponds to an already computed row in the Gauss. Elim. of a previous matrix M_{i}.
\Rightarrow Reuse rows that are reduced but not "in" G.

Interlude - Simplify

Idea
Try to replace $u \cdot f$ by a product $(w v) \cdot g$ where $v g$ corresponds to an already computed row in the Gauss. Elim. of a previous matrix M_{i}.
\Rightarrow Reuse rows that are reduced but not "in" G.

Input: monomial u, polynomial f, list \mathscr{F} of old F_{i} (from M_{i} after Gauss. Elim.) Output: product $v \cdot g$ replacing $u \cdot f$

Interlude - Simplify

Idea

Try to replace $u \cdot f$ by a product $(w v) \cdot g$ where $v g$ corresponds to an already computed row in the Gauss. Elim. of a previous matrix M_{i}.
\Rightarrow Reuse rows that are reduced but not "in" G.

Input: monomial u, polynomial f, list \mathscr{F} of old F_{i} (from M_{i} after Gauss. Elim.) Output: product $v \cdot g$ replacing $u \cdot f$

1. $d \leftarrow$ current index in the F4 algorithm
2. $D(u) \leftarrow\{$ list of divisors of $u\}$
3. for $w \in D(u)$
(a) if $\exists j \in\{1, \ldots, d-1\}$ such that $w \cdot f$ corresponds to row in M_{j}
$\triangleright \exists_{1} g \in F_{j}$ such that $\operatorname{lt}(g)=\operatorname{lt}(w \cdot f)$
\triangleright if $w \neq u$: Return Simplify $\left(\frac{u}{w}, g, \mathscr{F}\right)$ (recursive call)
\triangleright else: Return $1 \cdot g$
4. else: Return $u \cdot f$

Interlude - Simplify

Note

- Tries to reuse all rows from old matrices.
\Rightarrow We need to keep them in memory.
- We also simplify generators of S-pairs, as we have done in our example: $\left(f_{2}, b c f_{4}\right) \Longrightarrow\left(f_{2}, c f_{6}\right)$.
- One can also choose "better" reducers by other properties, not only "last reduced one".
- Without Simplify the F4 algorithm is rather slow.

Interlude - Simplify

Note

- Tries to reuse all rows from old matrices.
\Rightarrow We need to keep them in memory.
- We also simplify generators of S-pairs, as we have done in our example: $\left(f_{2}, b c f_{4}\right) \Longrightarrow\left(f_{2}, c f_{6}\right)$.
- One can also choose "better" reducers by other properties, not only "last reduced one".
- Without Simplify the F4 algorithm is rather slow.

In our example:
Choose $b f_{5}$ as reducer, not $b d f_{4}$.

Example: Cyclic-4

Symbolic preprocessing - now with simplify:

$$
\left.\begin{array}{rl}
T\left(L_{2}\right) & =\left\{a b c, b c^{2}, a b d, a c d, b c d, c d^{2}\right. \\
L_{2} & =\left\{f_{2}, c f_{6}\right.
\end{array}\right\}
$$

$$
b c^{2} \notin L(G),
$$

Example: Cyclic-4

Symbolic preprocessing - now with simplify:

$$
\begin{aligned}
T\left(L_{2}\right) & =\left\{a b c, b c^{2}, a b d, a c d, b c d, c d^{2}\right. \\
L_{2} & =\left\{f_{2}, c f_{6}\right\} \\
b c^{2} \notin L(G), a b d & =\operatorname{It}\left(b f_{5}\right),
\end{aligned}
$$

Example: Cyclic-4

Symbolic preprocessing - now with simplify:

$$
\begin{aligned}
T\left(L_{2}\right) & =\left\{a b c, b c^{2}, a b d, a c d, b c d, c d^{2}, b^{2} d, c^{2} d\right\} \\
L_{2} & =\left\{f_{2}, c f_{6}, b f_{5} \quad\right\} \\
b c^{2} \notin L(G), a b d & =\mathrm{It}\left(b f_{5}\right),
\end{aligned}
$$

Example: Cyclic-4

Symbolic preprocessing - now with simplify:

$$
\begin{aligned}
T\left(L_{2}\right) & =\left\{a b c, b c^{2}, a b d, a c d, b c d, c d^{2}, b^{2} d, c^{2} d, \ldots\right\} \\
L_{2} & =\left\{f_{2}, c f_{6}, b f_{5}, c f_{5}, d f_{7}\right\} \\
b c^{2} \notin L(G), a b d & =\operatorname{It}\left(b f_{5}\right), \text { and so on. }
\end{aligned}
$$

Example: Cyclic-4

Symbolic preprocessing - now with simplify:

$$
\begin{aligned}
T\left(L_{2}\right) & =\left\{a b c, b c^{2}, a b d, a c d, b c d, c d^{2}, b^{2} d, c^{2} d, \ldots\right\} \\
L_{2} & =\left\{f_{2}, c f_{6}, b f_{5}, c f_{5}, d f_{7}\right\} \\
b c^{2} \notin L(G), a b d & =\text { It }\left(b f_{5}\right), \text { and so on. }
\end{aligned}
$$

Now try to exploit the special structure of the Macaulay matrices.

Improve Gaussian Elimination

Use Linear Algebra for reduction steps in GB computations.

Improve Gaussian Elimination

Use Linear Algebra for reduction steps in GB computations.

$$
\begin{array}{lllllll}
1 & 3 & 0 & 0 & 7 & 1 & 0 \\
1 & 0 & 4 & 1 & 0 & 0 & 5 \\
0 & 1 & 6 & 0 & 8 & 0 & 1 \\
0 & 5 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 & 3 & 1
\end{array}
$$

Improve Gaussian Elimination

Use Linear Algebra for reduction steps in GB computations.

$$
\begin{array}{lllllll}
1 & 3 & 0 & 0 & 7 & 1 & 0 \\
1 & 0 & 4 & 1 & 0 & 0 & 5 \\
0 & 1 & 6 & 0 & 8 & 0 & 1 \\
0 & 5 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 & 3 & 1
\end{array}
$$

Knowledge of underlying GB structure

Improve Gaussian Elimination

Use Linear Algebra for reduction steps in GB computations.
S-pair $\underset{\text { s-pair }}{\text { reducer }}\left\{\begin{array}{lllllll}1 & 3 & 0 & 0 & 7 & 1 & 0 \\ 1 & 0 & 4 & 1 & 0 & 0 & 5\end{array}\right.$

Knowledge of underlying GB structure

Improve Gaussian Elimination

Use Linear Algebra for reduction steps in GB computations.
S-pair $\underset{\text { s-pair }}{\text { reducer }}\left\{\begin{array}{lllllll}1 & 3 & 0 & 0 & 7 & 1 & 0 \\ 1 & 0 & 4 & 1 & 0 & 0 & 5\end{array}\right.$

Knowledge of underlying GB structure

Improve Gaussian Elimination

Use Linear Algebra for reduction steps in GB computations.

S-pair $\underset{\text { s-pair }}{\text { reducer }}$\begin{tabular}{llllllll}
1 \& 3 \& 0 \& 0 \& 7 \& 1 \& 0

1 \& 0 \& 4 \& 1 \& 0 \& 0 \& 5

$|$

0 \& 1 \& 6 \& 0 \& 8 \& 0 \& 1

0 \& 5 \& 0 \& 0 \& 0 \& 2 \& 0

0 \& 0 \& 0 \& 0 \& 1 \& 3 \& 1
\end{tabular}

Knowledge of underlying GB structure

Idea
Do a static reordering before the Gaussian Elimination to achieve a better initial shape. Reorder afterwards.

Faugère-Lachartre Idea

1st step: Sort pivot and non-pivot columns

$$
\begin{array}{lllllll}
1 & 3 & 0 & 0 & 7 & 1 & 0 \\
1 & 0 & 4 & 1 & 0 & 0 & 5 \\
0 & 1 & 6 & 0 & 8 & 0 & 1 \\
0 & 5 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 & 3 & 1
\end{array}
$$

Faugère-Lachartre Idea

1st step: Sort pivot and non-pivot columns

Pivot column

Faugère-Lachartre Idea

1st step: Sort pivot and non-pivot columns

Pivot column

Faugère-Lachartre Idea

1st step: Sort pivot and non-pivot columns

Faugère-Lachartre Idea

1st step: Sort pivot and non-pivot columns

Faugère-Lachartre Idea

1st step: Sort pivot and non-pivot columns

Faugère-Lachartre Idea

2nd step: Sort pivot and non-pivot rows

$$
\begin{array}{lll:llll}
1 & 3 & 7 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 4 & 1 & 0 & 5 \\
0 & 1 & 8 & 6 & 0 & 0 & 9 \\
0 & 5 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 1 & 0 & 0 & 3 & 1
\end{array}
$$

Faugère-Lachartre Idea

2nd step: Sort pivot and non-pivot rows

Faugère-Lachartre Idea

2nd step: Sort pivot and non-pivot rows

Faugère-Lachartre Idea

2nd step: Sort pivot and non-pivot rows

Faugère-Lachartre Idea

2nd step: Sort pivot and non-pivot rows

Faugère-Lachartre Idea

3rd step: Reduce lower left part to zero

Faugère-Lachartre Idea

3rd step: Reduce lower left part to zero

Faugère-Lachartre Idea

4th step: Reduce lower right part

1	0	0	4	1	0	5
0	5	0	0	0	2	0
0	0	1	0	0	3	1
\cdots	0	0	7	10	10	3

Faugère-Lachartre Idea

4th step: Reduce lower right part

1	0	0	4	1	0	5
0	5	0	0	0	2	0
0	0	1	0	0	3	1
0	0	0	7	10	3	10
0	0	0	6	0	2	1

\longrightarrow| 1 | 0 | 0 | 4 | 1 | 0 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 5 | 0 | 0 | 0 | 2 | 0 |
| 0 | 0 | 1 | 0 | 0 | 3 | 1 |
| $\cdots \cdots \cdots \cdots$ | \cdots | \cdots | \cdots | \cdots | | |
| 0 | 0 | 0 | 7 | 10 | 3 | 10 |
| 0 | 0 | 0 | 0 | 4 | 1 | 5 |

Faugère-Lachartre Idea

4th step: Reduce lower right part

5th step: Remap columns of lower right part

How our matrices look like

Some data about the matrix:

- F_{4} computation of homogeneous KATSURA-12, degree 6 matrix

How our matrices look like

Some data about the matrix:

- F_{4} computation of homogeneous KATSURA-12, degree 6 matrix
- Size 137 MB

How our matrices look like

Some data about the matrix:

- F_{4} computation of homogeneous KATSURA-12, degree 6 matrix
- Size 137MB
- 24,006, 869 nonzero elements (density: 5\%)

How our matrices look like

Some data about the matrix:

- F_{4} computation of homogeneous KATSURA-12, degree 6 matrix
- Size 137 MB
- 24,006,869 nonzero elements (density: 5\%)
- Dimensions:

full matrix:	$21,182 \times 22,207$		
upper-left:	17,915	\times	17,915
lower-left:	3,267	\times	17,915
upper-right:	17,915	\times	4,292
lower-right:	3,267	\times	4,292

How our matrices look like (2)

How our matrices look like (3)

Hybrid Matrix Multiplication $A^{-1} B$

Hybrid Matrix Multiplication $A^{-1} B$

Reduce C to zero

Gaussian Elimination on D

New information

First attempts

2010 - UPMC Paris 6, INRIA PolSys Team
Jean-Charles Faugère \& Sylvain Lachartre - FL

2011 - University of Kaiserslautern Bradford Hovinen - LELA
https://github.com/Singular/LELA

2012 - UPMC Paris 6, INRIA PolSys Team
Fayssal Martani - new implementation in LELA
https://github.com/martani/LELA

2012-2013 - University of Kaiserslautern Bjarke Hammersholt Roune - MathicGB https://github.com/broune/mathicgb

> 2012-2014 - University of Passau

Severin Neumann - parallelGBC
https://github.com/svrnm/parallelGBC

References I

[1] Albrecht, M. and Perry, J. F4/5. http: / /arxiv.org/abs/1006.4933, 2010.
[2] Arri, A. and Perry, J. The F5 Criterion revised. Journal of Symbolic Computation, 46(2):1017-1029, June 2011. Preprint online at arxiv . org/abs/1012.3664.
[3] Ars, G. Applications des bases de Gröbner à la cryptographie. PhD thesis, Université de Rennes I, 2005.
[4] Ars, G. and Hashemi, A. Extended F5 Criteria. Journal of Symbolic Computation, MEGA 2009 special issue, 45(12):1330-1340, 2010.
[5] Buchberger, B. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, University of Innsbruck, 1965.
[6] Buchberger, B. Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems. Aequ. Math., 4(3):374-383, 1970.
[7] Buchberger, B. A criterion for detecting unnecessary reductions in the construction of Gröbner bases. In EUROSAM '79, An International Symposium on Symbolic and Algebraic Manipulation, volume 72 of Lecture Notes in Computer Science, pages 3-21. Springer, 1979.
[8] Buchberger, B. Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory. pages 184-232, 1985.

References II

[9] Decker, W., Greuel, G.-M., Pfister, G., and Schönemann, H. Singular 4-0-0 - A computer algebra system for polynomial computations, 2014.
http://www.singular.uni-kl.de.
[10] Eder, C. Improving incremental signature-based Groebner bases algorithms. ACM SIGSAM Communications in Computer Algebra, 47(1):1-13, 2013.
http://arxiv.org/abs/1201.6472.
[11] Eder, C. Predicting zero reductions in Gröbner basis computations. submitted to Journal of Symbolc Computation, preprint at http://arxiv.org/abs/1404.0161, 2014.
[12] Eder, C. and Faugère, J.-C. A survey on signature-based Groebner basis algorithms, 2014.
http://arxiv.org/abs/1404.1774
[13] Eder, C., Gash, J., and Perry, J. Modifying Faugère's F5 Algorithm to ensure termination. ACM SIGSAM Communications in Computer Algebra, 45(2):70-89, 2011. http://arxiv.org/abs/1006.0318.
[14] Eder, C. and Perry, J. F5C: A Variant of Faugère's F5 Algorithm with reduced Gröbner bases. Journal of Symbolic Computation, MEGA 2009 special issue, 45(12):1442-1458, 2010. dx.doi.org/10.1016/j.jsc.2010.06.019.
[15] Eder, C. and Perry, J. Signature-based Algorithms to Compute Gröbner Bases. In ISSAC 2011: Proceedings of the 2011 international symposium on Symbolic and algebraic computation, pages 99-106, 2011.

References III

[16] Eder, C. and Roune, B. H. Signature Rewriting in Gröbner Basis Computation. In ISSAC 2013: Proceedings of the 2013 international symposium on Symbolic and algebraic computation, pages 331-338, 2013.
[17] Faugère, J.-C. A new efficient algorithm for computing Gröbner bases without reduction to zero F5. In ISSAC'02, Villeneuve d'Ascq, France, pages 75-82, July 2002. Revised version from http://fgbrs.lip6.fr/jcf/Publications/index.html.
[18] Faugère, J.-C. and Joux, A. Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases. 2729:44-60, 2003.
[19] Faugère, J.-C., Safey El Din, M., and Spaenlehauer, P.-J. Gröbner Bases of Bihomogeneous Ideals Generated by Polynomials of Bidegree (1,1): Algorithms and Complexity. Journal of Symbolic Computation, 46(4):406-437, 2011. Available online 4 November 2010.
[20] Faugère, J.-C., Safey El Din, M., and Verron, T. On the complexity of Computing Gröbner Bases for Quasi-homogeneous Systems. In Proceedings of the 38th international symposium on International symposium on symbolic and algebraic computation, ISSAC '13, pages 189-196, New York, NY, USA, 2013. ACM.
[21] Faugère, J.-C., Spaenlehauer, P.-J. and Svartz, J. Sparse Gröbner Bases: the unmixed Case. In Proceedings of the 39th international symposium on International symposium on symbolic and algebraic computation, ISSAC '14, Kobe, Japan, 2014.

References IV

[22] Faugère, J.-C. and Svartz, J. Solving polynomial systems globally invariant under an action of the symmetric group and application to the equilibria of n vertices in the plane. In
Proceedings of the 37th international symposium on International symposium on symbolic and algebraic computation, ISSAC '12, pages 170-178, New York, NY, USA, 2012. ACM.
[23] Faugère, J.-C. and Svartz, J. Gröbner Bases of ideals invariant under a Commutative group : the Non-modular Case. In Proceedings of the 38th international symposium on International symposium on symbolic and algebraic computation, ISSAC '13, pages 347-354, New York, NY, USA, 2013. ACM.
[24] Faugère, J.-C. and Rahmany, S. Solving systems of polynomial equations with symmetries using SAGBI-Gröbner bases. In ISSAC '09: Proceedings of the 2009 international symposium on Symbolic and algebraic computation, ISSAC '09, pages 151-158, New York, NY, USA, 2009. ACM.
[25] Galkin, V. Simple signature-based Groebner basis algorithm.
http://arxiv.org/abs/1205.6050, 2012.
[26] Gao, S., Guan, Y., and Volny IV, F. A new incremental algorithm for computing Gröbner bases. In ISSAC '10: Proceedings of the 2010 international symposium on Symbolic and algebraic computation, pages 13-19. ACM, 2010.
[27] Gao, S., Volny IV, F., and Wang, D. A new algorithm for computing Groebner bases. http://eprint.iacr.org/2010/641, 2010.

References V

[28] Gao, S., Volny IV, F., and Wang, D. A new algorithm for computing Groebner bases (rev. 2011). http://www.math. clemson.edu/~sgao/papers/gvw.pdf, 2011.
[29] Gao, S., Volny IV, F., and Wang, D. A new algorithm for computing Groebner bases (rev. 2013).
http://www.math.clemson.edu/~sgao/papers/gvw_R130704.pdf, 2013.
[30] Gash, J. M. On efficient computation of Gröbner bases. PhD thesis, University of Indiana, Bloomington, IN, 2008.
[31] Gash, J. M. A provably terminating and speed-competitive variant of F5 - F5t. submitted to the Journal of Symbolic Computation, 2009.
[32] Gebauer, R. and Möller, H. M. On an installation of Buchberger's algorithm. Journal of Symbolic Computation, 6(2-3):275-286, October/December 1988.
[33] Gerdt, V. P. and Hashemi, A. On the use of Buchberger criteria in G2V algorithm for calculating Gröbner bases. Program. Comput. Softw., 39(2):81-90, March 2013.
[34] Gerdt, V. P., Hashemi, A., and M.-Alizadeh, B. Involutive Bases Algorithm Incorporating F5 Criterion. J. Symb. Comput., 59:1-20, 2013.
[35] Huang, L. A new conception for computing Gröbner basis and its applications.
http://arxiv.org/abs/1012.5425, 2010.

References VI

[36] Moreno-Socías, G. Degrevlex Gröbner bases of generic complete intersections. Journal of Pure and Applied Algebra, 180(3):263-283, 2003.
[37] Pan, S., Hu, Y., and Wang, B. The Termination of Algorithms for Computing Gröbner Bases. http://arxiv.org/abs/1202.3524, 2012.
[38] Pan, S., Hu, Y., and Wang, B. The Termination of the F5 Algorithm Revisited. In ISSAC 2013: Proceedings of the 2013 international symposium on Symbolic and algebraic computation, pages 291-298, 2013.
[39] Roune, B. H. and Stillman, M. Practical Gröbner Basis Computation. In ISSAC 2012: Proceedings of the 2012 international symposium on Symbolic and algebraic computation, 2012.
[40] Stegers, T. Faugère's F5 Algorithm revisited. Master's thesis, Technische Univerität Darmstadt, revised version 2007.
[41] Sun, Y. and Wang, D. K. A generalized criterion for signature related Gröbner basis algorithms. In ISSAC 2011: Proceedings of the 2011 international symposium on Symbolic and algebraic computation, pages 337-344, 2011.
[42] Sun, Y., Wang, D. K., Ma, D. X., and Zhang, Y. A signature-based algorithm for computing Gröbner bases in solvable polynomial algebras. In ISSAC 2012: Proceedings of the 2011 international symposium on Symbolic and algebraic computation, pages 351-358, 2012.

References VII

[43] Volny, F. New algorithms for computing Gröbner bases. PhD thesis, Clemson University, 2011.

