
Continued fractions and number systems:
applications to correctly-rounded implementations
of elementary functions and modular arithmetic.

Mourad Gouicem

PEQUAN Team, LIP6/UPMC

Nancy, France
May 28th 2013

Table of Contents

1 Continued fraction expansion reminders

2 Application to correctly-rounded implementations of elementary
functions

3 Application to modular arithmetic

M. Gouicem Continued fractions and Number systems applications 1 / 37

Table of Contents

1 Continued fraction expansion reminders

2 Application to correctly-rounded implementations of elementary
functions

3 Application to modular arithmetic

M. Gouicem Continued fractions and Number systems applications 2 / 37

Notations

Let a real 0 < α < 1. There exists a unique integer sequence
(ki)i∈N with ki ∈ N∗ such that

α =
1

k1 +
1

k2 +
1

. . .

:= [0; k1, k2, . . .].

This sequence is finite if α is rational, or infinite otherwise.

M. Gouicem Continued fractions and Number systems applications 3 / 37

Notations

We denote by :

(ri)i∈N the real sequence of the tails of α such that
α = [0; k1, k2, . . . , ki + ri] ;

(pi/qi)i∈N the rational sequence of the convergents such that
pi/qi = [0; k1, k2, . . . , ki] ;

(θi)i∈N the real sequence of the such that θi = |qiα− pi | ;

Leitmotif of the talk

Use the fact that ri = θi/θi−1 to do modular arithmetic !

M. Gouicem Continued fractions and Number systems applications 4 / 37

Notations

We denote by :

(ri)i∈N the real sequence of the tails of α such that
α = [0; k1, k2, . . . , ki + ri] ;

(pi/qi)i∈N the rational sequence of the convergents such that
pi/qi = [0; k1, k2, . . . , ki] ;

(θi)i∈N the real sequence of the such that θi = |qiα− pi | ;

Leitmotif of the talk

Use the fact that ri = θi/θi−1 to do modular arithmetic !

M. Gouicem Continued fractions and Number systems applications 4 / 37

Recurrence relations

All sequences can be computed recursively :

p−1 = 1 p0 = 0 pi = pi−2 + kipi−1,
q−1 = 0 q0 = 1 qi = qi−2 + kiqi−1,
θ−1 = 1 θ0 = α θi = θi−2 − kiθi−1.

with ki = bθi−2/θi−1c.
ki can be computed by subtraction (subtraction-based Euclidean
algorithm) or by division (division-based Euclidean algorithm).

M. Gouicem Continued fractions and Number systems applications 5 / 37

Table of Contents

1 Continued fraction expansion reminders

2 Application to correctly-rounded implementations of elementary
functions

3 Application to modular arithmetic

M. Gouicem Continued fractions and Number systems applications 6 / 37

The IEEE 754-2008 standard

Aim

Ensure predictable and portable numerical software.

Basic Formats

single-precision (binary32)

double-precision (binary64)

quadruple-precision (binary128)

Rounding Modes

Rounding to nearest

Directed rounding (towards 0, −∞ and +∞)

Correctly rounded operations

+,−,×, /,√

M. Gouicem Continued fractions and Number systems applications 7 / 37

The IEEE 754-2008 standard

And for elementary mathematical functions ?
exp, log, sin, cos, tan, · · ·

⇒ IEEE-754-2008 only recommends correct rounding because of
the Table Maker’s Dilemma

M. Gouicem Continued fractions and Number systems applications 8 / 37

The Table Maker’s Dilemma

Correct rounding

◦p(f (x)± ε) = ◦p(f (x))

Hard-to-round case

[f (x)− ε, f (x) + ε]

Midpoints

Floating-points

M. Gouicem Continued fractions and Number systems applications 9 / 37

HR-case search by isolation

Function Isolate(Exists ?, P, D, depth, k)

Input: Exists? (P, D) test the existence of (p, ε′) HR-cases of P
in D, P an approximation of f in D, depth and k two
integers

if Exists? (P, D) then
if depth = 0 then

retourner ExhaustiveSearch (P, D);
else

(D1, . . . ,Dk) := Subdivide (D, k);
(P1, . . . ,Pk) := Refine (P, D, k);
return

⋃
i Isolate (Exists?, Pi , Di , depth - 1, k);

else
return ∅;

M. Gouicem Continued fractions and Number systems applications 10 / 37

HR-case search by isolation

Function Isolate(Exists ?, P, D, depth, k)

Input: Exists? (P, D) test the existence of (p, ε′) HR-cases of P
in D, P an approximation of f in D, depth and k two
integers

if Exists? (P, D) then
if depth = 0 then

retourner ExhaustiveSearch (P, D);
else

(D1, . . . ,Dk) := Subdivide (D, k);
(P1, . . . ,Pk) := Refine (P, D, k);
return

⋃
i Isolate (Exists?, Pi , Di , depth - 1, k);

else
return ∅;

M. Gouicem Continued fractions and Number systems applications 10 / 37

HR-case existence test

Problem

Given P ∈ R[x], is there any x ∈ J0,#pDK such that

P(x) mod 1 < ε.

Solutions (with p the floating-point precision)

Exhaustive search : O(2p) ;

Lefèvre when degP = 1 : O(22p/3) intervals in O(p2) ;

SLZ when degP > 1 : O(2p/2) intervals in
O(poly(p, degP, α)).

Example of computation times

ex in full domain and p = 53 with Lefèvre : 5 years of CPU
time ;

2x in [1/2, 1[and p = 64 with SLZ : 8 years of CPU time.

M. Gouicem Continued fractions and Number systems applications 11 / 37

Challenges

Binary128 is actually out of reach ;

compute the hardest-to-round case for each of the 32
functions recommended by the IEEE std 754-2008 in binary64 ;

tackle any function in reasonable time in binary64 ;

and certify the results.

Lefèvre HR-case search

Efficient for binary64 in practice : all known hardest-to-round
in binary64 have been generated by Lefèvre ;

Massively parallel ;

Fine-grain parallelism.

}
Perfect for GPU !

M. Gouicem Continued fractions and Number systems applications 12 / 37

Lefèvre HR-case existence test

Problem

Given b − ax ∈ R[x], is there any x ∈ J0,#pDK such that

b − ax mod 1 < ε.

Geometrically

Is there any multiple of a in {ax mod 1 | x ≤ #pD} at a distance
less than ε to the left of b ?

0 1
b

a · 0 a · 1 a · 2 a · 3 a · 4 a · 5 a · 6a · 7

M. Gouicem Continued fractions and Number systems applications 13 / 37

The three distance theorem

Three distance theorem (Slater)

The points {a · x mod 1 | x < N} split the segment [0, 1[into N
segments. Their lengths take at most three different values, one
being the sum of the two others.

Link with continued fraction expansion

Given a = [0; k1, k2, k3, . . .] and pi
qi

the i th convergent.

The lengths are the θi−1,t = θi−1 − t · θi , with 0 ≤ t < ki+1.
Their number are the qi−1,t = qi−1 + t · qi , with 0 ≤ t < ki+1.

There are O(logN) two-length configurations and they verify

qiθi−1,t + qi−1,tθi = 1.

Interpretation : if we place N = qi + qi−1,t multiples of a,

there are qi intervals of length θi−1,t ;
there are qi−1,t intervals of length θi .

M. Gouicem Continued fractions and Number systems applications 14 / 37

Example : a = 14/45

00

45
(0, 0)

00 1

14 31
(0, 1)

00 1 2

14 14 17
(0, 2)

00 1 2 3

14 14 14 3
(1, 0)

00 1 2 34 5 6

11 3 11 3 11 3 3
(1, 1)

00 1 2 34 5 67 8 9

8 3 3 8 3 3 8 3 3 3
(1, 2)

00 1 2 34 5 67 8 910 11 12

5 3 3 3 5 3 3 3 5 3 3 3 3
(1, 3)

00 1 2 34 5 67 8 910 11 1213 14 15

2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 3
(2, 0)

M. Gouicem Continued fractions and Number systems applications 15 / 37

Lefèvre HR-case existence test

Idea

Write b in the basis (θi ,t)i∈N to get best approximations.

If i is even

b
(i , 1) (i , 2) (i , 3) (i , 4) (i , 5) (i , 6) (i + 1, 0)

θi θi θi θi θi θi θi θi+1

(b − b̃i,t+1) = (b − b̃i,t)− θi or (b − b̃i+1,0) = (b − b̃i,t)

If i is odd

b
(i , 1)(i , 2)(i , 3)(i , 4)(i , 5)(i , 6)(i + 1, 0)

θiθiθiθiθiθiθiθi+1

(b − b̃i+1,0) = (b − b̃i,t)− θi−1,t+1 or (b − b̃i,t+1) = (b − b̃i,t)

M. Gouicem Continued fractions and Number systems applications 16 / 37

An irregular control flow : bad for SIMD

Algorithm 1: Lefèvre HR-case existence test.

input : b − a · x , ε′′, N

initialisation :
p ← {a} ; q ← 1− {a} ; d ← {b} ;
u ← 1 ; v ← 1 ;

if d < ε′′ then return Failure;
while True do

if d < p then
k = bq/pc;
q ← q − k ∗ p ; u ← u + k ∗ v ;
if u + v ≥ N then return Success;
p ← p − q ; v ← v + u;

else
d ← d − p;
if d < ε′′ then return Failure;
k = bp/qc;
p ← p − k ∗ q ; v ← v + k ∗ u;
if u + v ≥ N then return Success;
q ← q − p ; u ← u + v ;

M. Gouicem Continued fractions and Number systems applications 17 / 37

An irregular control flow : the SPMD on SIMD model

SPMD on SIMD

Develop a scalar program : a kernel

Launch multiple threads running the same kernel

Group their execution on SIMD units by warps of 32 threads

Control flow regularity

i=1 i=1 i=1 i=1 switch (i) {
i = 0 : . . .
i = 1 : . . .
i = 2 : . . .
i = 3 : . . .

}

i=0 i=3 i=2 i=1

M. Gouicem Continued fractions and Number systems applications 18 / 37

An irregular control flow : loop divergence

Normalized mean deviation to the maximum (NMDM)

1− Mean({ni , 0 ≤ i < w})
Max({ni , 0 ≤ i < w})

Lefèvre existence test (ex ,
[1, 1 + 2−13], ε = 2−32)

No implementation trick
works !

Re-organize data ⇒ no a
priori information

Compute several
sub-domains per thread
without exiting the loop
⇒ too few instructions to
issue in the loop to offset
the extra cost.

M. Gouicem Continued fractions and Number systems applications 19 / 37

An irregular control flow

Why Lefèvre HR-case existence test is irregular ?

It goes from subtraction-based to division-based Euclidean
algorithm depending on the position of b.
⇒ The number of loop iterations is hence conditioned by :

the position of b on the unit segment,

the number of quotient to compute and

the value of the quotients.

Goal

Break this dependency by considering only (i , 0) configurations.
⇒ Write b in the basis (θi)i∈N to obtain the same sequence of
best approximations.

M. Gouicem Continued fractions and Number systems applications 20 / 37

New reduction rules

If i is even

b
(i , 1) (i , 2) (i , 3) (i , 4) (i , 5) (i , 6) (i + 1, 0)

θi θi θi θi θi θi θi θi+1

(b − b̃i+1) = (b − b̃i) mod θi

If i is odd

b
(i , 1)(i , 2)(i , 3)(i , 4)(i , 5)(i , 6)(i + 1, 0)

θiθiθiθiθiθiθiθi+1

(b − b̃i+1) = (b − b̃i)− θi+1 mod θi

M. Gouicem Continued fractions and Number systems applications 21 / 37

Divergence in the regular algorithm

Algorithm 2: Regular HR-case existence test.

input : b − a · x , ε′′, N

initialisation :
p ← {a} ; q ← 1 ; d ← {b} ;
u ← 1 ; v ← 0 ;

if d < ε′′ then return Failure;
while True do

if p < q then
k = bq/pc;
q = q − k ∗ p ; u = u + k ∗ v ;
d = d mod p;

else
k = bp/qc;
p = p − k ∗ q ; v = v + k ∗ u;
if d ≥ p then

d = (d − p) mod q;

if u + v ≥ N then return d > ε′′;

M. Gouicem Continued fractions and Number systems applications 22 / 37

Divergence on the main conditional branch

A deterministic test

i is alternatively odd and even.
⇒ We can avoid divergence by unrolling 2 loop iterations.

Algorithm 3: Regular HR-case existence test unrolled.

input : b − ax , ε′′, N

initialisation :
p ← {a} ; q ← 1 ; d ← {b} ;
u ← 1 ; v ← 0 ;

while True do
k = bq/pc;
q = q − k ∗ p ; u = u + k ∗ v ;
d = d mod p;
if u + v ≥ N then return d > ε′′;
k = bp/qc;
p = p − k ∗ q ; v = v + k ∗ u;
if d ≥ p then

d = d − p mod q;

if u + v ≥ N then return d > ε′′;

M. Gouicem Continued fractions and Number systems applications 23 / 37

Divergence on the main loop (ex , subdomain [1, 1 + 2−13[)

Normalized mean deviation to the maximum (NMDM)

1− Mean({ni , 0 ≤ i < w})
Max({ni , 0 ≤ i < w})

Lefèvre Algorithm New Algorithm

M. Gouicem Continued fractions and Number systems applications 24 / 37

A regular control flow

Why the regular HR-case existence test is regular ?

It uses only division-based Euclidean algorithm.
⇒ The number of loop iterations only depend on the number of
quotient to compute, which is very stable from one interval to the
next.

Seq. MPI CPU-GPU Seq.
MPI

MPI
CPU-GPU

Pol.
43300.81 5251.53 788.84 8.25 6.66

approx.
Lefèvre 36816.10 5292.67 2446.27 6.96 2.16
Regular 34039.94 4716.97 711.92 7.22 6.63

Lef. /Reg. 1.08 1.12 3.44 – –

Table : Performance result on ex in [1, 2[for binary64 (Intel Xeon
X5650 hexa-core , Nvidia C2070). Lefèvre MPI/New GPU : 7.4 .

M. Gouicem Continued fractions and Number systems applications 25 / 37

Perspectives

Remaining development

Argument reduction of periodic functions for large binades

Implicit vectorization (OpenCL, ispc, . . .)

Lefèvre HR-case existence test

Consider minimax approximations (libsollya) rather than
Taylor to widen domains ?

Generalize Lefèvre test to higher degree polynomial (change of
variable + Hensel lifting) ?

SLZ

Efficient parallel implementation of LLL

Use structure of Coppersmith lattices

Investigate structure in lattices involved in Coppersmith
method over translated polynomials

M. Gouicem Continued fractions and Number systems applications 26 / 37

Table of Contents

1 Continued fraction expansion reminders

2 Application to correctly-rounded implementations of elementary
functions

3 Application to modular arithmetic

M. Gouicem Continued fractions and Number systems applications 27 / 37

Modular arithmetic and CF

Notations

(θi)i∈N sequence of the |qiα− pi | in CF,

(θ′i)i∈N sequence of the |qia− pid | in extgcd(a, d).

Remark

CF is arithmetic modulo 1,

CF over a rational a/d and gcd(a, d) is identical, only
difference is θ′i = d · θi .

Goal

Use (θi)i∈N number scale to perform modular operations.

M. Gouicem Continued fractions and Number systems applications 28 / 37

Number systems based on CF

Ostrowski integer number system

Given (qi)i∈N the denominators of the convergents of any irrational
0 < α < 1, every positive integer b can be uniquely written as

b = 1 +
m∑
i=1

biqi−1

where

{
0 ≤ b1 ≤ k1 − 1, 0 ≤ bi ≤ ki , for i ≥ 2,
bi = 0 if bi+1 = ki+1.

Associated number scale over real numbers : ((−1)iθi)i∈N.
Decomposition algorithm : greedy algorithm by default.

M. Gouicem Continued fractions and Number systems applications 29 / 37

Number systems based on CF

Signed Ostrowski integer number system

Given (qi)i∈N the denominators of the convergents of any irrational
0 < α < 1, every positive integer b can be uniquely written as

b = 1 +
m∑
i=1

(−1)ibiqi−1

where

{
0 ≤ b1 ≤ k1 − 1, 0 ≤ bi ≤ ki , for i ≥ 2,
bi+1 = 0 if bi = ki .

Associated number scale over real numbers : (θi)i∈N.
Decomposition algorithm : greedy algorithm by excess.

M. Gouicem Continued fractions and Number systems applications 30 / 37

Modular multiplication

Compute c = a · b mod d .

Algorithm

1 Compute the sequences (θ′i)i∈N and (qi)i∈N from extgcd(a, d)

2 Compute the sequence (bi)i∈N such that b = 1 +
∑m

i=1 biqi−1
3 Return a +

∑m
i=1 bi (−1)iθ′i−1

Proof : Let α = a/d and b = 1 +
∑m

i=1 biqi−1.
α · b = α +

∑m
i=1 biqi−1α

As (−1)iθi = qiα− pi ,
α · b = α +

∑m
i=1 bi (−1)iθi−1 +

∑m
i=1 bipi−1

By the uniqueness of the decomposition,
0 ≤ α +

∑m
i=1 bi (−1)iθi−1 < 1.

And finally, by multiplying by d , we get
0 ≤ a +

∑m
i=1 bi (−1)iθ′i−1 < d

M. Gouicem Continued fractions and Number systems applications 31 / 37

Modular division

Compute c = a−1 · b mod d .

Algorithm

1 Compute the sequences (θ′i)i∈N and (qi)i∈N from extgcd(a, d)

2 Compute the sequence (bi)i∈N such that
b = a +

∑m
i=1 bi (−1)i−1θ′i−1

3 Return 1 +
∑m

i=1 biqi−1

Proof : Similar to modular multiplication.

M. Gouicem Continued fractions and Number systems applications 32 / 37

Complexity considerations

Compute the sequences (θ′i)i∈N and (qi)i∈N from extgcd(a, d)

O(log(d)2)

Compute the sequence (bi)i∈N from (qi)i∈N (or (θ′i)i∈N)

O(log(d)2)

Evaluate the sequence (bi)i∈N in (θ′i)i∈N (or (qi)i∈N)

O(log(d)2)

M. Gouicem Continued fractions and Number systems applications 33 / 37

Implementation considerations

Both algorithm

Integrate multiplication and reduction
⇒ we manipulate only words of size less than log d ;

Quotients ki and bi can be computed only with subtractions
as they are likely very small
⇒ mean value is Khinchin constant ≈ 2.69.

Modular Multiplication

(qi)i∈N is an increasing sequence
⇒ every qi ≤ b need to be stored to decompose b
⇒ the needed part of the sequence is of size O(log(b)2).

Modular Division

(θi)i∈N is an decreasing sequence
⇒ we can decompose b on-the-fly
⇒ no extra storage is needed !

M. Gouicem Continued fractions and Number systems applications 34 / 37

Perspectives

Algorithm enhancement

Use other decompositions from Euclidean algorithm ?

compute remainders with centered division
use decomposition from three distance theorem (irregular
control flow ? optimal ?)

Find mean optimal decomposition (minimizing
∑
|bi |+ |ki |)

Use binary GCD algorithm to build the sequences (θi)i∈N and
(qi)i∈N and avoid divisions ?

M. Gouicem Continued fractions and Number systems applications 35 / 37

Perspectives

Implementation

We have a 64 bits proof of concept C implementation
(speedup of 1.5 – 2.5x over GMP). Now provide multiprecision.

Searching application...

Compact hardware implementation of modular arithmetic ?
(Jérémie ?)

When multiple modular mult/div by the same value a are
needed (e.g. Gauss elimination) ?

M. Gouicem Continued fractions and Number systems applications 36 / 37

Thank you for your attention ! !
Any question, remark, recommendation ?

M. Gouicem Continued fractions and Number systems applications 37 / 37

References I

Valérie Berthé, Autour du système de numération d’Ostrowski,
Bulletin of the Belgian Mathematical Society 8 (2001),
209–238.

Pierre Fortin, Mourad Gouicem, and Stef Graillat, Correctly
rounding elementary functions on gpu,
http ://arxiv.org/abs/1211.3056.

Pierre Fortin, Mourad Gouicem, and Stef Graillat, Towards
solving the table maker’s dilemma on GPU, Proceedings of the
20th International Euromicro Conference on Parallel,
Distributed and Network-based Processing, PDP’2012, IEEE
Computer Society, February 2012, pp. 407 – 415.

Mourad Gouicem, New modular multiplication and division
algorithms based on continued fraction expansion,
http ://arxiv.org/abs/1303.3445.

M. Gouicem Continued fractions and Number systems applications 38 / 37

References II

Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin,
Claude-Pierre Jeannerod, Vincent Lefèvre, Guillaume
Melquiond, Nathalie Revol, Damien Stehlé, and Serge Torres,
Handbook of floating-point arithmetic, Birkhauser, 2009.

Noel Bryan Slater, Gaps and steps for the sequence nθ
mod 1, Mathematical Proceedings of the Cambridge
Philosophical Society (1967), 1115–1123.

M. Gouicem Continued fractions and Number systems applications 39 / 37

