Continued fractions and number systems: applications to correctly-rounded implementations of elementary functions and modular arithmetic.

Mourad Gouicem

PEQUAN Team, LIP6/UPMC

Nancy, France May 28th 2013

Continued fraction expansion reminders

2 Application to correctly-rounded implementations of elementary functions

3 Application to modular arithmetic

Table of Contents

1 Continued fraction expansion reminders

2 Application to correctly-rounded implementations of elementary functions

Let a real $0 < \alpha < 1$. There exists a unique integer sequence $(k_i)_{i \in \mathbb{N}}$ with $k_i \in \mathbb{N}^*$ such that

$$\alpha = \frac{1}{k_1 + \frac{1}{k_2 + \frac{1}{\ddots}}} := [0; k_1, k_2, \dots].$$

This sequence is finite if α is rational, or infinite otherwise.

We denote by :

- $(r_i)_{i \in \mathbb{N}}$ the real sequence of the *tails* of α such that $\alpha = [0; k_1, k_2, \dots, k_i + r_i];$
- $(p_i/q_i)_{i\in\mathbb{N}}$ the rational sequence of the *convergents* such that $p_i/q_i = [0; k_1, k_2, \dots, k_i]$;
- $(\theta_i)_{i\in\mathbb{N}}$ the real sequence of the such that $\theta_i = |q_i \alpha p_i|$;

We denote by :

- $(r_i)_{i \in \mathbb{N}}$ the real sequence of the *tails* of α such that $\alpha = [0; k_1, k_2, \dots, k_i + r_i];$
- $(p_i/q_i)_{i\in\mathbb{N}}$ the rational sequence of the *convergents* such that $p_i/q_i = [0; k_1, k_2, \dots, k_i]$;
- $(\theta_i)_{i\in\mathbb{N}}$ the real sequence of the such that $\theta_i = |q_i \alpha p_i|$;

Leitmotif of the talk

Use the fact that $r_i = \theta_i / \theta_{i-1}$ to do modular arithmetic !

All sequences can be computed recursively :

$$\begin{array}{lll} p_{-1} = 1 & p_0 = 0 & p_i = p_{i-2} + k_i p_{i-1}, \\ q_{-1} = 0 & q_0 = 1 & q_i = q_{i-2} + k_i q_{i-1}, \\ \theta_{-1} = 1 & \theta_0 = \alpha & \theta_i = \theta_{i-2} - k_i \theta_{i-1}. \end{array}$$

with $k_i = \lfloor \theta_{i-2}/\theta_{i-1} \rfloor$.

 k_i can be computed by subtraction (subtraction-based Euclidean algorithm) or by division (division-based Euclidean algorithm).

Continued fraction expansion reminders

Application to correctly-rounded implementations of elementary functions

The IEEE 754-2008 standard

Aim

Ensure predictable and portable numerical software.

Basic Formats

- single-precision (binary32)
- double-precision (binary64)
- quadruple-precision (binary128)

Rounding Modes

- Rounding to nearest
- Directed rounding (towards 0, $-\infty$ and $+\infty$)

Correctly rounded operations

 $+,-,\times,/,\sqrt{}$

And for elementary mathematical functions? exp, log, sin, cos, tan, \cdots \Rightarrow IEEE-754-2008 only recommends correct rounding because of the Table Maker's Dilemma

The Table Maker's Dilemma

Correct rounding

$$\circ_p(f(x)\pm\varepsilon)=\circ_p(f(x))$$


```
Function Isolate(Exists?, P, D, depth, k)
Input: Exists? (P, D) test the existence of (p, \epsilon') HR-cases of P
        in D, P an approximation of f in D, depth and k two
        integers
if Exists? (P, D) then
    if depth = 0 then
        retourner ExhaustiveSearch (P, D);
    else
       (D_1, \ldots, D_k) := Subdivide (D, k);
(P_1, \ldots, P_k) := Refine (P, D, k);
        return \bigcup_i Isolate (Exists?, P_i, D_i, depth - 1, k);
else
    return Ø:
```

```
Function Isolate(Exists?, P, D, depth, k)
```

```
Input: Exists? (P, D) test the existence of (p, \epsilon') HR-cases of P in D, P an approximation of f in D, depth and k two integers
```

if Exists? (P, D) then

```
if depth = 0 then
    retourner ExhaustiveSearch (P, D);
else
    (D_1, \ldots, D_k) := \text{Subdivide } (D, k);
    (P_1, \ldots, P_k) := \text{Refine } (P, D, k);
```

```
(P_1, \ldots, P_k) := \text{Refine} (P, D, k);
return \bigcup_i Isolate (Exists?, P_i, D_i, depth - 1, k);
```

else

return ∅;

HR-case existence test

Problem

Given $P \in \mathbb{R}[x]$, is there any $x \in [0, \#_p D]$ such that

 $P(x) \mod 1 < \epsilon.$

Solutions (with *p* the floating-point precision)

- Exhaustive search : $O(2^p)$;
- Lefèvre when deg P = 1: $O(2^{2p/3})$ intervals in $O(p^2)$;
- SLZ when deg P > 1 : O(2^{p/2}) intervals in O(poly(p, deg P, α)).

Example of computation times

- e^x in full domain and p = 53 with Lefèvre : 5 years of CPU time;
- 2^{\times} in [1/2, 1[and p = 64 with SLZ : 8 years of CPU time.

Challenges

- Binary128 is actually out of reach ;
- compute the hardest-to-round case for each of the 32 functions recommended by the IEEE std 754-2008 in binary64;
- tackle any function in reasonable time in binary64;
- and certify the results.

Lefèvre HR-case search

- Efficient for binary64 in practice : all known hardest-to-round in binary64 have been generated by Lefèvre;
- Massively parallel;
 Fine-grain parallelism.
 Perfect for GPU!

Problem

Given $b - ax \in \mathbb{R}[x]$, is there any $x \in \llbracket 0, \#_p D \rrbracket$ such that

$$b - ax \mod 1 < \epsilon$$
.

Geometrically

Is there any multiple of *a* in $\{ax \mod 1 \mid x \le \#_p D\}$ at a distance less than ϵ to the left of *b*?

Three distance theorem (Slater)

The points $\{a \cdot x \mod 1 \mid x < N\}$ split the segment [0, 1[into N segments. Their lengths take at most three different values, one being the sum of the two others.

Link with continued fraction expansion

Given $a = [0; k_1, k_2, k_3, ...]$ and $\frac{p_i}{q_i}$ the i^{th} convergent.

- The lengths are the $\theta_{i-1,t} = \theta_{i-1} t \cdot \theta_i$, with $0 \le t < k_{i+1}$. Their number are the $q_{i-1,t} = q_{i-1} + t \cdot q_i$, with $0 \le t < k_{i+1}$.
- There are $O(\log N)$ two-length configurations and they verify

$$q_i\theta_{i-1,t}+q_{i-1,t}\theta_i=1.$$

- Interpretation : if we place $N = q_i + q_{i-1,t}$ multiples of a_i ,
 - there are q_i intervals of length $\theta_{i-1,t}$;
 - there are $q_{i-1,t}$ intervals of length θ_i .

Example : a = 14/45

M. Gouicem Continued fractions and Number systems applications 15 / 37

Lefèvre HR-case existence test

Idea

Write *b* in the basis $(\theta_{i,t})_{i \in \mathbb{N}}$ to get best approximations.

If *i* is even

If *i* is odd

M. Gouicem Continued fractions and Number systems applications 16 / 37

An irregular control flow : bad for SIMD

Algorithm 1: Lefèvre HR-case existence test. input : $b - a \cdot x$, ϵ'' , N $p \leftarrow \{a\}; \quad q \leftarrow 1 - \{a\}; \quad d \leftarrow \{b\};$ initialisation : $u \leftarrow 1$: $v \leftarrow 1$: if $d < \epsilon''$ then return Failure: while True do if d < p then k = |q/p|; $a \leftarrow a - k * p; u \leftarrow u + k * v;$ if u + v > N then return Success: $p \leftarrow p - q$; $v \leftarrow v + u$; else $d \leftarrow d - p$: if $d < \epsilon''$ then return Failure: $k = \lfloor p/q \rfloor$; $p \leftarrow p - k * q$; $v \leftarrow v + k * u$; if u + v > N then return Success: $a \leftarrow a - p$: $u \leftarrow u + v$:

An irregular control flow : the SPMD on SIMD model

SPMD on SIMD

- Develop a scalar program : a kernel
- Launch multiple threads running the same kernel
- Group their execution on SIMD units by warps of 32 threads

Control flow regularity

An irregular control flow : loop divergence

Normalized mean deviation to the maximum (NMDM)

$$1 - \frac{\textit{Mean}(\{n_i, 0 \leq i < w\})}{\textit{Max}(\{n_i, 0 \leq i < w\})}$$

No implementation trick works !

- Re-organize data ⇒ no a priori information
- Compute several sub-domains per thread without exiting the loop ⇒ too few instructions to issue in the loop to offset the extra cost.

Why Lefèvre HR-case existence test is irregular?

It goes from subtraction-based to division-based Euclidean algorithm depending on the position of b.

- \Rightarrow The number of loop iterations is hence conditioned by :
 - the position of b on the unit segment,
 - the number of quotient to compute and
 - the value of the quotients.

Goal

Break this dependency by considering only (i, 0) configurations. \Rightarrow Write *b* in the basis $(\theta_i)_{i \in \mathbb{N}}$ to obtain the same sequence of best approximations.

New reduction rules

If *i* is odd

Algorithm 2: Regular HR-case existence test. input : $b - a \cdot x$. ϵ'' . N initialisation : $p \leftarrow \{a\}; \quad q \leftarrow 1; \quad d \leftarrow \{b\};$ $u \leftarrow 1; \quad v \leftarrow 0;$ if $d < \epsilon''$ then return Failure: while True do if p < q then k = |q/p|;q = q - k * p; u = u + k * v; $d = d \mod p$; else k = |p/q|;p = p - k * q; v = v + k * u; if d > p then $d = (d - p) \mod q;$ if u + v > N then return $d > \epsilon''$;

A deterministic test

i is alternatively odd and even.

 \Rightarrow We can avoid divergence by unrolling 2 loop iterations.

Algorithm 3: Regular HR-case existence test unrolled.

input : b - ax, ϵ'' . N $p \leftarrow \{a\}; \quad q \leftarrow 1; \quad d \leftarrow \{b\};$ initialisation : $u \leftarrow 1$; $v \leftarrow 0$; while True do k = |q/p|;q = q - k * p; u = u + k * v; $d = d \mod p$; if u + v > N then return $d > \epsilon''$; k = |p/q|;p = p - k * q; v = v + k * u; if d > p then $d = d - p \mod q$; if $u + v \ge N$ then return $d > \epsilon''$;

Divergence on the main loop (e^x , subdomain $[1, 1 + 2^{-13}]$)

Normalized mean deviation to the maximum (NMDM)

$$1 - \frac{Mean(\{n_i, 0 \le i < w\})}{Max(\{n_i, 0 \le i < w\})}$$

A regular control flow

Why the regular HR-case existence test is regular?

It uses only division-based Euclidean algorithm.

 \Rightarrow The number of loop iterations only depend on the number of quotient to compute, which is very stable from one interval to the next.

	Seq.	MPI	CPU-GPU	Seq. MPI	MPI CPU-GPU
Pol. approx.	43300.81	5251.53	788.84	8.25	6.66
Lefèvre	36816.10	5292.67	2446.27	6.96	2.16
Regular	34039.94	4716.97	711.92	7.22	6.63
Lef. /Reg.	1.08	1.12	3.44	_	_

 $\begin{array}{l} {\rm TABLE}: \mbox{ Performance result on } e^x \mbox{ in } [1,2[\mbox{ for binary64 (Intel Xeon} \\ X5650 \mbox{ hexa-core} \ , \mbox{ Nvidia C2070}). \ Lefèvre \ MPI/New \ GPU : 7.4 \ . \end{array}$

Remaining development

- Argument reduction of periodic functions for large binades
- Implicit vectorization (OpenCL, ispc, ...)

Lefèvre HR-case existence test

- Consider minimax approximations (libsollya) rather than Taylor to widen domains?
- Generalize Lefèvre test to higher degree polynomial (change of variable + Hensel lifting)?

SLZ

- Efficient parallel implementation of LLL
- Use structure of Coppersmith lattices
- Investigate structure in lattices involved in Coppersmith method over translated polynomials

3 Application to modular arithmetic

Modular arithmetic and CF

Notations

- $(heta_i)_{i\in\mathbb{N}}$ sequence of the $|q_ilpha-p_i|$ in CF,
- $(\theta'_i)_{i\in\mathbb{N}}$ sequence of the $|q_ia p_id|$ in $\operatorname{extgcd}(a, d)$.

Remark

- CF is arithmetic modulo 1,
- CF over a rational a/d and gcd(a, d) is identical, only difference is θ'_i = d · θ_i.

Goal

Use $(\theta_i)_{i \in \mathbb{N}}$ number scale to perform modular operations.

Ostrowski integer number system

Given $(q_i)_{i \in \mathbb{N}}$ the denominators of the convergents of any irrational $0 < \alpha < 1$, every positive integer *b* can be uniquely written as

$$b=1+\sum_{i=1}^m b_i q_{i-1}$$

where
$$\begin{cases} 0 \le b_1 \le k_1 - 1, 0 \le b_i \le k_i, \text{ for } i \ge 2, \\ b_i = 0 \text{ if } b_{i+1} = k_{i+1}. \end{cases}$$

Associated number scale over real numbers : $((-1)^i \theta_i)_{i \in \mathbb{N}}$. Decomposition algorithm : greedy algorithm by default.

Signed Ostrowski integer number system

Given $(q_i)_{i \in \mathbb{N}}$ the denominators of the convergents of any irrational $0 < \alpha < 1$, every positive integer *b* can be uniquely written as

$$b = 1 + \sum_{i=1}^{m} (-1)^i b_i q_{i-1}$$

where
$$\begin{cases} 0 \le b_1 \le k_1 - 1, 0 \le b_i \le k_i, \text{ for } i \ge 2, \\ b_{i+1} = 0 \text{ if } b_i = k_i. \end{cases}$$

Associated number scale over real numbers : $(\theta_i)_{i \in \mathbb{N}}$. Decomposition algorithm : greedy algorithm by excess.

Compute $c = a \cdot b \mod d$.

Algorithm

- Compute the sequences $(\theta'_i)_{i\in\mathbb{N}}$ and $(q_i)_{i\in\mathbb{N}}$ from $\operatorname{extgcd}(a, d)$
- 2 Compute the sequence $(b_i)_{i\in\mathbb{N}}$ such that $b = 1 + \sum_{i=1}^m b_i q_{i-1}$
- **3** Return $a + \sum_{i=1}^{m} b_i (-1)^i \theta'_{i-1}$

Proof : Let
$$\alpha = a/d$$
 and $b = 1 + \sum_{i=1}^{m} b_i q_{i-1}$.
 $\alpha \cdot b = \alpha + \sum_{i=1}^{m} b_i q_{i-1} \alpha$
As $(-1)^i \theta_i = q_i \alpha - p_i$,
 $\alpha \cdot b = \alpha + \sum_{i=1}^{m} b_i (-1)^i \theta_{i-1} + \sum_{i=1}^{m} b_i p_{i-1}$
By the uniqueness of the decomposition,
 $0 \le \alpha + \sum_{i=1}^{m} b_i (-1)^i \theta_{i-1} < 1$.
And finally, by multiplying by d , we get
 $0 \le a + \sum_{i=1}^{m} b_i (-1)^i \theta'_{i-1} < d$

Compute
$$c = a^{-1} \cdot b \mod d$$
.

Algorithm

- **(**) Compute the sequences $(\theta'_i)_{i\in\mathbb{N}}$ and $(q_i)_{i\in\mathbb{N}}$ from $\operatorname{extgcd}(a,d)$
- ② Compute the sequence $(b_i)_{i\in\mathbb{N}}$ such that $b = a + \sum_{i=1}^m b_i (-1)^{i-1} \theta'_{i-1}$

3 Return $1 + \sum_{i=1}^{m} b_i q_{i-1}$

Proof : Similar to modular multiplication.

Compute the sequences $(heta'_i)_{i\in\mathbb{N}}$ and $(q_i)_{i\in\mathbb{N}}$ from $ext{extgcd}(a,d)$ $O(\log(d)^2)$

Compute the sequence $(b_i)_{i \in \mathbb{N}}$ from $(q_i)_{i \in \mathbb{N}}$ (or $(\theta'_i)_{i \in \mathbb{N}}$) $O(\log(d)^2)$

Evaluate the sequence $(b_i)_{i\in\mathbb{N}}$ in $(heta_i')_{i\in\mathbb{N}}$ (or $(q_i)_{i\in\mathbb{N}}$) $O(\log(d)^2)$

Implementation considerations

Both algorithm

- Integrate multiplication and reduction
 - \Rightarrow we manipulate only words of size less than log d ;
- Quotients k_i and b_i can be computed only with subtractions as they are likely very small
 - \Rightarrow mean value is Khinchin constant \approx 2.69.

Modular Multiplication

- $(q_i)_{i\in\mathbb{N}}$ is an increasing sequence
 - \Rightarrow every $q_i \leq b$ need to be stored to decompose b
 - \Rightarrow the needed part of the sequence is of size $O(\log(b)^2)$.

Modular Division

- $(\theta_i)_{i\in\mathbb{N}}$ is an decreasing sequence
 - \Rightarrow we can decompose b on-the-fly
 - \Rightarrow no extra storage is needed !

Algorithm enhancement

- Use other decompositions from Euclidean algorithm?
 - compute remainders with centered division
 - use decomposition from three distance theorem (irregular control flow ? optimal ?)
- Find mean optimal decomposition (minimizing $\sum |b_i| + |k_i|$)
- Use binary GCD algorithm to build the sequences (θ_i)_{i∈ℕ} and (q_i)_{i∈ℕ} and avoid divisions?

Implementation

 We have a 64 bits proof of concept C implementation (speedup of 1.5-2.5x over GMP). Now provide multiprecision.

Searching application...

- Compact hardware implementation of modular arithmetic? (Jérémie?)
- When multiple modular mult/div by the same value *a* are needed (e.g. Gauss elimination)?

Thank you for your attention !! Any question, remark, recommendation ?

References I

- Valérie Berthé, Autour du système de numération d'Ostrowski, Bulletin of the Belgian Mathematical Society 8 (2001), 209–238.
- Pierre Fortin, Mourad Gouicem, and Stef Graillat, Correctly rounding elementary functions on gpu, http://arxiv.org/abs/1211.3056.
- Pierre Fortin, Mourad Gouicem, and Stef Graillat, Towards solving the table maker's dilemma on GPU, Proceedings of the 20th International Euromicro Conference on Parallel, Distributed and Network-based Processing, PDP'2012, IEEE Computer Society, February 2012, pp. 407 – 415.
- Mourad Gouicem, New modular multiplication and division algorithms based on continued fraction expansion, http://arxiv.org/abs/1303.3445.

- Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-Pierre Jeannerod, Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol, Damien Stehlé, and Serge Torres, *Handbook of floating-point arithmetic*, Birkhauser, 2009.
- Noel Bryan Slater, Gaps and steps for the sequence nθ mod 1, Mathematical Proceedings of the Cambridge Philosophical Society (1967), 1115–1123.