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Notations

Let a real 0 < α < 1. There exists a unique integer sequence
(ki )i∈N with ki ∈ N∗ such that

α =
1

k1 +
1

k2 +
1

. . .

:= [0; k1, k2, . . . ].

This sequence is finite if α is rational, or infinite otherwise.

M. Gouicem Continued fractions and Number systems applications 3 / 37



Notations

We denote by :

(ri )i∈N the real sequence of the tails of α such that
α = [0; k1, k2, . . . , ki + ri ] ;

(pi/qi )i∈N the rational sequence of the convergents such that
pi/qi = [0; k1, k2, . . . , ki ] ;

(θi )i∈N the real sequence of the such that θi = |qiα− pi | ;

Leitmotif of the talk

Use the fact that ri = θi/θi−1 to do modular arithmetic !
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Recurrence relations

All sequences can be computed recursively :

p−1 = 1 p0 = 0 pi = pi−2 + kipi−1,
q−1 = 0 q0 = 1 qi = qi−2 + kiqi−1,
θ−1 = 1 θ0 = α θi = θi−2 − kiθi−1.

with ki = bθi−2/θi−1c.
ki can be computed by subtraction (subtraction-based Euclidean
algorithm) or by division (division-based Euclidean algorithm).
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The IEEE 754-2008 standard

Aim

Ensure predictable and portable numerical software.

Basic Formats

single-precision (binary32)

double-precision (binary64)

quadruple-precision (binary128)

Rounding Modes

Rounding to nearest

Directed rounding (towards 0, −∞ and +∞)

Correctly rounded operations

+,−,×, /,√
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The IEEE 754-2008 standard

And for elementary mathematical functions ?
exp, log, sin, cos, tan, · · ·

⇒ IEEE-754-2008 only recommends correct rounding because of
the Table Maker’s Dilemma

M. Gouicem Continued fractions and Number systems applications 8 / 37



The Table Maker’s Dilemma

Correct rounding

◦p(f (x)± ε) = ◦p(f (x))

Hard-to-round case

[f (x)− ε, f (x) + ε]

Midpoints

Floating-points
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HR-case search by isolation

Function Isolate(Exists ?, P, D, depth, k)

Input: Exists? (P, D) test the existence of (p, ε′) HR-cases of P
in D, P an approximation of f in D, depth and k two
integers

if Exists? (P, D) then
if depth = 0 then

retourner ExhaustiveSearch (P, D);
else

(D1, . . . ,Dk) := Subdivide (D, k);
(P1, . . . ,Pk) := Refine (P, D, k);
return

⋃
i Isolate (Exists?, Pi , Di , depth - 1, k);

else
return ∅;

M. Gouicem Continued fractions and Number systems applications 10 / 37



HR-case search by isolation

Function Isolate(Exists ?, P, D, depth, k)

Input: Exists? (P, D) test the existence of (p, ε′) HR-cases of P
in D, P an approximation of f in D, depth and k two
integers

if Exists? (P, D) then
if depth = 0 then

retourner ExhaustiveSearch (P, D);
else

(D1, . . . ,Dk) := Subdivide (D, k);
(P1, . . . ,Pk) := Refine (P, D, k);
return

⋃
i Isolate (Exists?, Pi , Di , depth - 1, k);

else
return ∅;

M. Gouicem Continued fractions and Number systems applications 10 / 37



HR-case existence test

Problem

Given P ∈ R[x ], is there any x ∈ J0,#pDK such that

P(x) mod 1 < ε.

Solutions (with p the floating-point precision)

Exhaustive search : O(2p) ;

Lefèvre when degP = 1 : O(22p/3) intervals in O(p2) ;

SLZ when degP > 1 : O(2p/2) intervals in
O(poly(p, degP, α)).

Example of computation times

ex in full domain and p = 53 with Lefèvre : 5 years of CPU
time ;

2x in [1/2, 1[ and p = 64 with SLZ : 8 years of CPU time.
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Challenges

Binary128 is actually out of reach ;

compute the hardest-to-round case for each of the 32
functions recommended by the IEEE std 754-2008 in binary64 ;

tackle any function in reasonable time in binary64 ;

and certify the results.

Lefèvre HR-case search

Efficient for binary64 in practice : all known hardest-to-round
in binary64 have been generated by Lefèvre ;

Massively parallel ;

Fine-grain parallelism.

}
Perfect for GPU !
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Lefèvre HR-case existence test

Problem

Given b − ax ∈ R[x ], is there any x ∈ J0,#pDK such that

b − ax mod 1 < ε.

Geometrically

Is there any multiple of a in {ax mod 1 | x ≤ #pD} at a distance
less than ε to the left of b ?

0 1
b

a · 0 a · 1 a · 2 a · 3 a · 4 a · 5 a · 6a · 7
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The three distance theorem

Three distance theorem (Slater)

The points {a · x mod 1 | x < N} split the segment [0, 1[ into N
segments. Their lengths take at most three different values, one
being the sum of the two others.

Link with continued fraction expansion

Given a = [0; k1, k2, k3, . . . ] and pi
qi

the i th convergent.

The lengths are the θi−1,t = θi−1 − t · θi , with 0 ≤ t < ki+1.
Their number are the qi−1,t = qi−1 + t · qi , with 0 ≤ t < ki+1.

There are O(logN) two-length configurations and they verify

qiθi−1,t + qi−1,tθi = 1.

Interpretation : if we place N = qi + qi−1,t multiples of a,

there are qi intervals of length θi−1,t ;
there are qi−1,t intervals of length θi .
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Example : a = 14/45

00

45
(0, 0)

00 1

14 31
(0, 1)

00 1 2

14 14 17
(0, 2)

00 1 2 3

14 14 14 3
(1, 0)

00 1 2 34 5 6

11 3 11 3 11 3 3
(1, 1)

00 1 2 34 5 67 8 9

8 3 3 8 3 3 8 3 3 3
(1, 2)

00 1 2 34 5 67 8 910 11 12

5 3 3 3 5 3 3 3 5 3 3 3 3
(1, 3)

00 1 2 34 5 67 8 910 11 1213 14 15

2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 3
(2, 0)
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Lefèvre HR-case existence test

Idea

Write b in the basis (θi ,t)i∈N to get best approximations.

If i is even

b
(i , 1) (i , 2) (i , 3) (i , 4) (i , 5) (i , 6) (i + 1, 0)

θi θi θi θi θi θi θi θi+1

(b − b̃i,t+1) = (b − b̃i,t)− θi or (b − b̃i+1,0) = (b − b̃i,t)

If i is odd

b
(i , 1)(i , 2)(i , 3)(i , 4)(i , 5)(i , 6)(i + 1, 0)

θiθiθiθiθiθiθiθi+1

(b − b̃i+1,0) = (b − b̃i,t)− θi−1,t+1 or (b − b̃i,t+1) = (b − b̃i,t)

M. Gouicem Continued fractions and Number systems applications 16 / 37



An irregular control flow : bad for SIMD

Algorithm 1: Lefèvre HR-case existence test.

input : b − a · x , ε′′, N

initialisation :
p ← {a} ; q ← 1− {a} ; d ← {b} ;
u ← 1 ; v ← 1 ;

if d < ε′′ then return Failure;
while True do

if d < p then
k = bq/pc;
q ← q − k ∗ p ; u ← u + k ∗ v ;
if u + v ≥ N then return Success;
p ← p − q ; v ← v + u;

else
d ← d − p;
if d < ε′′ then return Failure;
k = bp/qc;
p ← p − k ∗ q ; v ← v + k ∗ u;
if u + v ≥ N then return Success;
q ← q − p ; u ← u + v ;
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An irregular control flow : the SPMD on SIMD model

SPMD on SIMD

Develop a scalar program : a kernel

Launch multiple threads running the same kernel

Group their execution on SIMD units by warps of 32 threads

Control flow regularity

i=1 i=1 i=1 i=1 switch (i) {
i = 0 : . . .
i = 1 : . . .
i = 2 : . . .
i = 3 : . . .

}

i=0 i=3 i=2 i=1
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An irregular control flow : loop divergence

Normalized mean deviation to the maximum (NMDM)

1− Mean({ni , 0 ≤ i < w})
Max({ni , 0 ≤ i < w})

Lefèvre existence test (ex ,
[1, 1 + 2−13], ε = 2−32)

No implementation trick
works !

Re-organize data ⇒ no a
priori information

Compute several
sub-domains per thread
without exiting the loop
⇒ too few instructions to
issue in the loop to offset
the extra cost.
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An irregular control flow

Why Lefèvre HR-case existence test is irregular ?

It goes from subtraction-based to division-based Euclidean
algorithm depending on the position of b.
⇒ The number of loop iterations is hence conditioned by :

the position of b on the unit segment,

the number of quotient to compute and

the value of the quotients.

Goal

Break this dependency by considering only (i , 0) configurations.
⇒ Write b in the basis (θi )i∈N to obtain the same sequence of
best approximations.
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New reduction rules

If i is even

b
(i , 1) (i , 2) (i , 3) (i , 4) (i , 5) (i , 6) (i + 1, 0)

θi θi θi θi θi θi θi θi+1

(b − b̃i+1) = (b − b̃i ) mod θi

If i is odd

b
(i , 1)(i , 2)(i , 3)(i , 4)(i , 5)(i , 6)(i + 1, 0)

θiθiθiθiθiθiθiθi+1

(b − b̃i+1) = (b − b̃i )− θi+1 mod θi
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Divergence in the regular algorithm

Algorithm 2: Regular HR-case existence test.

input : b − a · x , ε′′, N

initialisation :
p ← {a} ; q ← 1 ; d ← {b} ;
u ← 1 ; v ← 0 ;

if d < ε′′ then return Failure;
while True do

if p < q then
k = bq/pc;
q = q − k ∗ p ; u = u + k ∗ v ;
d = d mod p;

else
k = bp/qc;
p = p − k ∗ q ; v = v + k ∗ u;
if d ≥ p then

d = (d − p) mod q;

if u + v ≥ N then return d > ε′′;
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Divergence on the main conditional branch

A deterministic test

i is alternatively odd and even.
⇒ We can avoid divergence by unrolling 2 loop iterations.

Algorithm 3: Regular HR-case existence test unrolled.

input : b − ax , ε′′, N

initialisation :
p ← {a} ; q ← 1 ; d ← {b} ;
u ← 1 ; v ← 0 ;

while True do
k = bq/pc;
q = q − k ∗ p ; u = u + k ∗ v ;
d = d mod p;
if u + v ≥ N then return d > ε′′;
k = bp/qc;
p = p − k ∗ q ; v = v + k ∗ u;
if d ≥ p then

d = d − p mod q;

if u + v ≥ N then return d > ε′′;
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Divergence on the main loop (ex , subdomain [1, 1 + 2−13[)

Normalized mean deviation to the maximum (NMDM)

1− Mean({ni , 0 ≤ i < w})
Max({ni , 0 ≤ i < w})

Lefèvre Algorithm New Algorithm
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A regular control flow

Why the regular HR-case existence test is regular ?

It uses only division-based Euclidean algorithm.
⇒ The number of loop iterations only depend on the number of
quotient to compute, which is very stable from one interval to the
next.

Seq. MPI CPU-GPU Seq.
MPI

MPI
CPU-GPU

Pol.
43300.81 5251.53 788.84 8.25 6.66

approx.
Lefèvre 36816.10 5292.67 2446.27 6.96 2.16
Regular 34039.94 4716.97 711.92 7.22 6.63

Lef. /Reg. 1.08 1.12 3.44 – –

Table : Performance result on ex in [1, 2[ for binary64 (Intel Xeon
X5650 hexa-core , Nvidia C2070). Lefèvre MPI/New GPU : 7.4 .
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Perspectives

Remaining development

Argument reduction of periodic functions for large binades

Implicit vectorization (OpenCL, ispc, . . . )

Lefèvre HR-case existence test

Consider minimax approximations (libsollya) rather than
Taylor to widen domains ?

Generalize Lefèvre test to higher degree polynomial (change of
variable + Hensel lifting) ?

SLZ

Efficient parallel implementation of LLL

Use structure of Coppersmith lattices

Investigate structure in lattices involved in Coppersmith
method over translated polynomials
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Modular arithmetic and CF

Notations

(θi )i∈N sequence of the |qiα− pi | in CF,

(θ′i )i∈N sequence of the |qia− pid | in extgcd(a, d).

Remark

CF is arithmetic modulo 1,

CF over a rational a/d and gcd(a, d) is identical, only
difference is θ′i = d · θi .

Goal

Use (θi )i∈N number scale to perform modular operations.
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Number systems based on CF

Ostrowski integer number system

Given (qi )i∈N the denominators of the convergents of any irrational
0 < α < 1, every positive integer b can be uniquely written as

b = 1 +
m∑
i=1

biqi−1

where

{
0 ≤ b1 ≤ k1 − 1, 0 ≤ bi ≤ ki , for i ≥ 2,
bi = 0 if bi+1 = ki+1.

Associated number scale over real numbers : ((−1)iθi )i∈N.
Decomposition algorithm : greedy algorithm by default.
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Number systems based on CF

Signed Ostrowski integer number system

Given (qi )i∈N the denominators of the convergents of any irrational
0 < α < 1, every positive integer b can be uniquely written as

b = 1 +
m∑
i=1

(−1)ibiqi−1

where

{
0 ≤ b1 ≤ k1 − 1, 0 ≤ bi ≤ ki , for i ≥ 2,
bi+1 = 0 if bi = ki .

Associated number scale over real numbers : (θi )i∈N.
Decomposition algorithm : greedy algorithm by excess.
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Modular multiplication

Compute c = a · b mod d .

Algorithm

1 Compute the sequences (θ′i )i∈N and (qi )i∈N from extgcd(a, d)

2 Compute the sequence (bi )i∈N such that b = 1 +
∑m

i=1 biqi−1
3 Return a +

∑m
i=1 bi (−1)iθ′i−1

Proof : Let α = a/d and b = 1 +
∑m

i=1 biqi−1.
α · b = α +

∑m
i=1 biqi−1α

As (−1)iθi = qiα− pi ,
α · b = α +

∑m
i=1 bi (−1)iθi−1 +

∑m
i=1 bipi−1

By the uniqueness of the decomposition,
0 ≤ α +

∑m
i=1 bi (−1)iθi−1 < 1.

And finally, by multiplying by d , we get
0 ≤ a +

∑m
i=1 bi (−1)iθ′i−1 < d
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Modular division

Compute c = a−1 · b mod d .

Algorithm

1 Compute the sequences (θ′i )i∈N and (qi )i∈N from extgcd(a, d)

2 Compute the sequence (bi )i∈N such that
b = a +

∑m
i=1 bi (−1)i−1θ′i−1

3 Return 1 +
∑m

i=1 biqi−1

Proof : Similar to modular multiplication.
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Complexity considerations

Compute the sequences (θ′i )i∈N and (qi )i∈N from extgcd(a, d)

O(log(d)2)

Compute the sequence (bi )i∈N from (qi )i∈N (or (θ′i )i∈N)

O(log(d)2)

Evaluate the sequence (bi )i∈N in (θ′i )i∈N (or (qi )i∈N)

O(log(d)2)
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Implementation considerations

Both algorithm

Integrate multiplication and reduction
⇒ we manipulate only words of size less than log d ;

Quotients ki and bi can be computed only with subtractions
as they are likely very small
⇒ mean value is Khinchin constant ≈ 2.69.

Modular Multiplication

(qi )i∈N is an increasing sequence
⇒ every qi ≤ b need to be stored to decompose b
⇒ the needed part of the sequence is of size O(log(b)2).

Modular Division

(θi )i∈N is an decreasing sequence
⇒ we can decompose b on-the-fly
⇒ no extra storage is needed !
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Perspectives

Algorithm enhancement

Use other decompositions from Euclidean algorithm ?

compute remainders with centered division
use decomposition from three distance theorem (irregular
control flow ? optimal ?)

Find mean optimal decomposition (minimizing
∑
|bi |+ |ki |)

Use binary GCD algorithm to build the sequences (θi )i∈N and
(qi )i∈N and avoid divisions ?
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Perspectives

Implementation

We have a 64 bits proof of concept C implementation
(speedup of 1.5 – 2.5x over GMP). Now provide multiprecision.

Searching application...

Compact hardware implementation of modular arithmetic ?
(Jérémie ?)

When multiple modular mult/div by the same value a are
needed (e.g. Gauss elimination) ?
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Thank you for your attention ! !
Any question, remark, recommendation ?
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