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Introduction

Binary fields (F2m ) are omnipresent in Cryptography:

Efficient Curve-based Cryptography (ECC, PBC)

Post-quantum Cryptography

Symmetric ciphers

Many algorithms/optimizations already described in the literature:

Is it possible to unify the fastest ones in a simple formulation?

Can such a formulation reflect the state-of-the-art and
provide new ideas?
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Objective

Contributions

Formulation of state-of-the-art binary field arithmetic using
vector instructions

New strategy for the implementation of multiplication

Side-channel resistance

Time-memory trade-offs to compensate for native multiplier

Experimental results
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Arsenal

Intel Core architecture:

128-bit Streaming SIMD Extensions instruction set

Super shuffle engine introduced in 45 nm series

Relevant vector instructions:

Instruction Description Cost Mnemonic
MOVDQA Memory load/store 2.5 ←

PSLLQ, PSRLQ 64-bit bitwise shifts 1 �-8,�-8
PXOR,PAND,POR Bitwise XOR,AND,OR 1 ⊕,∧,∨
PUNPCKLBW/HBW Byte interleaving 3 interlo/hi
PSLLDQ,PSRLDQ 128-bit bytewise shift 2 (1) �8,�8

PSHUFB Byte shuffling 3 (1) shuffle,lookup
PALIGNR Memory alignment 2 (1) C
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New SSSE3 instructions

PSHUFB instruction ( mm shuffle epi8):

Real power: We can implement in parallel any function:
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New SSSE3 instructions

Example: Bit manipulation
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New SSSE3 instructions

PALIGNR instruction ( mm alignr epi8):
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Binary field F2m

Irreducible polynomial: f (z) (trinomial or pentanomial)

Polynomial basis: a(z) ∈ F2m =
m−1∑
i=0

ai z
i .

Software representation: vector of n = dm/64e words.

Graphical representation:
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Proposed representation

To employ 4-bit granular arithmetic, convert to split form:

aL =
∑

0≤i<m,
0≤i mod 8≤3

ai z
i , aH =

∑
0≤i<m,

4≤i mod 8≤7

ai z
i−4,

iA

LA
HA
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Proposed representation

Easy to convert to split form:

AL = Ai ∧ 0x0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F
AH = (Ai ∧ 0xF0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0) >> 4

Easy to convert back:

a(z) = aH(z)z4 + aL(z).
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Squaring in F2m

a(z) =
m∑

i=0

ai z
i = am−1 + · · ·+ a2z2 + a1z + a0

a(z)2 =
m−1∑
i=0

ai z
2i = am−1z2m−2 + · · ·+ a2z4 + a1z2 + a0

Example:

a(z) = (am−1, am−2, . . . , a2, a1, a0)

a(z)2 = (am−1, 0, am−2, 0, . . . , 0, a2, 0, a1, 0, a0)
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Squaring in F2m

Since squaring is a linear operation:

a(z)2 = aH(z)2 · z8 + aL(z)2.

We can compute aL(z)2 and aH(z)2 with a lookup table.

For u = (u3, u2, u1, u0), use table(u) = (0, u3, 0, u2, 0, u1, 0, u0):
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Proposed squaring in F2m

iA

LA HA

000000000000010000000101000100000001000101010101 00000001...

HALA

2i+1T 2iT

interhi, interlo

lookup lookup

table

a(z)2 = aL(z)2 + aH(z)2 · z8.
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Square root extraction in F2m

Algorithm by Fong et al.:√
a(z) = aeven(z) +

√
z · aodd(z)

Since square-root is also a linear operation:√
a(z) =

√
aH(z)z4 + aL(z)

=
√

aH(z)z2 +
√

aL(z)

=
√

z · (aLodd
(z) + aHodd

(z)z2) + aLeven (z) + aHeven (z)z2

Note: Multiplication by
√

z ideally requires shifted additions only.
If not possible, precompute product by

√
z .
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Proposed square root in F2m

iA

LA HA

000000000000000100110011 ...

HALA

lookup lookup

table

shuffle

000000000000010011001100 ... table · z²

LA HA

evenA
odd

A√
a(z) =

√
z · (aLodd

(z) + aHodd
(z)z2) + aLeven (z) + aHeven (z)z2
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Multiplication in F2m

1 Three strategies:

López-Dahab comb method

Shuffle-based multiplication

Native multiplication
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López-Dahab multiplication in F2m

We can compute u · b(z) using shifts and additions.

If a(z) is divided into 4-bit polynomials, compute a(z) · b(z) by:
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López-Dahab multiplication in F2m

If the multiplier is represented in split form:

a(z) · b(z) = b(z) · (aH(z)z4 + aL(z))

= b(z)z4aH(z) + b(z)aL(z)

This is a well-known technique for removing expensive 4-bit shifts!

Note: The core operation is accumulating u × dense b(z).
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López-Dahab multiplication in F2m

Algorithm 1 LD multiplication implemented with n 128-bit registers.
Input: a(z) = a[0..n − 1], b(z) = b[0..n − 1].
Output: c(z) = c[0..n − 1].
Note: mi denotes the vector of n

2
128-bit registers (r(i−1+n/2), . . . , ri ).

1: Compute T0(u) = u(z) · b(z),T1(u) = u(z) · (b(z)z4) for all u(z) of degree < 4.
2: (rn−1 . . . , r0)← 0
3: for k ← 56 downto 0 by 8 do
4: for j ← 1 to n − 1 by 2 do
5: Let u = (u3, u2, u1, u0), where ut is bit (k + t) of a[j].
6: Let v = (v3, v2, v1, v0), where vt is bit (k + t + 4) of a[j].
7: m(j−1)/2 ← m(j−1)/2 ⊕ T0(u), m(j−1)/2 ← m(j−1)/2 ⊕ T1(v)
8: end for
9: (rn−1 . . . , r0)← (rn−1 . . . , r0) C 8
10: end for
11: for k ← 56 downto 0 by 8 do
12: for j ← 0 to n − 2 by 2 do
13: Let u = (u3, u2, u1, u0), where ut is bit (k + t) of a[j].
14: Let v = (v3, v2, v1, v0), where vt is bit (k + t + 4) of a[j].
15: mj/2 ← mj/2 ⊕ T0(u), mj/2 ← mj/2 ⊕ T1(v)
16: end for
17: if k > 0 then (rn−1 . . . , r0)← (rn−1 . . . , r0) C 8
18: end for
19: return c = (rn−1 . . . , r0) mod f (z)
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Shuffle-based multiplication in F2m

If both multiplicand and multiplier are represented in split form:

a(z) · b(z) = (bH(z)z4 + bL(z)) · (aH(z)z4 + aL(z))

Using Karatsuba formula, we can reduce it to 3 multiplications:

a(z)·b(z) = aHbHz8+[(aH + aL)(bH + bL) + aHbH + aLbL] z4+aLbL

Note: The core operation is accumulating u × sparse bL,H(z).

x 023456789
...

n-1 1 BBBBBBBBBBB
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Shuffle-based multiplication in F2m

Algorithm 2 Multiplication in split form.
Input: Operands a, b in split representation.
Output: Result a · b stored in registers (rn−1 . . . , r0).
1: � table stores all products of 4-bit × 4-bit polynomials.
2: (rn−1 . . . , r0)← 0
3: for k ← 56 downto 0 by 8 do
4: for j ← 1 to n − 1 by 2 do
5: Let u = (u3, u2, u1, u0), where ut is bit (k + t) of a[j].
6: for i ← 0 to n

2
− 1 do ri ← ri ⊕ shuffle(table[u], b[i ])

7: end for
8: (rn−1 . . . , r0)← (rn−1 . . . , r0) C 8
9: end for
10: for k ← 56 downto 0 by 8 do
11: for j ← 0 to n − 2 by 2 do
12: Let u = (u3, u2, u1, u0), where ut is bit (k + t) of a[j].
13: for i ← 0 to n

2
− 1 do ri ← ri ⊕ shuffle(table[u], b[i ])

14: end for
15: if k > 0 then (rn−1 . . . , r0)← (rn−1 . . . , r0) C 8
16: end for
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Native multiplication

Guidelines:

As memory access is expensive, do work on registers.

To minimize number of registers, use 128-bit granularity.

Use Karatsuba for each 128 × 128-bit multiplication.

Use maximum number of Karatsuba levels for dn
2e digits.
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Comparison

López-Dahab multiplication:

Explores highest-granularity XOR operation

Consumes memory space proportional to field size

Shuffle-based multiplication:

Relies on sparser core operation

Consumes constant memory space (apart from Karatsuba)

Depends on constants stored in memory

Native multiplication:

Faster and with constant memory consumption.

No widespread support.
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Modular reduction

Requires heavy shifting, so split representation does not help.

Some guidelines:

If f (z) is a trinomial, implement with vector digits

If f (z) is a pentanomial, process pairs of digits in parallel or in
64-bit mode

Accumulate writes into registers before writing to memory

Reduce squaring/multiplication results in registers
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Half-trace

We want to compute H(c) =
∑(m−1)/2

i=0 c22i
.

Important: For even i , H(z i ) = H(z i/2) + z i/2 + Tr(z i ).

Algorithm 3 Solve x2 + x = c

Input: c =
∑m−1

i=0 ci z
i ∈ F2m where m is odd and Tr(c) = 0

Output: a solution s of x2 + x = c.

1: Compute H(l0c8i+1 + l1c8i+3 + l2c8i+5 + l3c8i+7) for 0 ≤ i ≤ bm−3
8
c and lj ∈ F2.

2: s ← 0
3: for i = (m − 1)/2 downto 1 do
4: if c2i = 1 then
5: c ← c + z i , s ← s + z i

6: end if
7: end for
8: return s +

∑
i∈I c8i+1H(z8i+1) + c8i+3H(z8i+3) + c8i+5H(z8i+5) + c8i+7H(z8i+7)
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Fixed 2k power [Bos et al.]

Precompute a table T of 16dm
4 e field elements such that

T [j , i0 + 2i1 + 4i2 + 8i3] = (i0z4j + i1z4j+1 + i2z4j+2 + i3z4j+3)2k

Then we can compute a2k
as:∑dm

4
e

j=0 T [j , ba/24jc mod 24].
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Inversion

Guidelines:

If memory is not available, implement Extended Euclidean
Algorithm in 64-bit mode.

If memory is available, implement Itoh-Tsuji with
precomputed 2i powers:

a−1 = a(2m−1−1)2
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Implementation

Material:

GCC 4.1.2 (fastest SSE intrinsics, GCC 4.5.0 is good again)

RELIC cryptographic library1

Intel Core 2 65,45nm processors and Intel Core i7

Parameters:

16 different binary fields ranging from 113 to 1223 bits

Choices of square-root friendly and standard f (z)

Elliptic curves over 6 of these fields

Comparison:

Only vector implementations (mpFq, Beuchat et al. 2009)

Only in entry-level Intel Core 2 65 nm (more on the paper)

1http://code.google.com/p/relic-toolkit/
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Experimental results – Squaring
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Experimental results – Square-root with friendly f (z)
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Experimental results – Square-root with standard f (z)
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Experimental results – López-Dahab multiplication
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Experimental results – Shuffle-based multiplication
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Note: Native multiplier on newer machines is twice faster than LD.
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Observations

Squaring and square-root are:

Efficiently formulated with M/S ratio up to 34

Faster when shuffling throughput is higher

Heavily dependent on the choice of f (z)

Shuffle-based multiplication:

Has a bottleneck with constants stored in memory

Requires faster table addressing scheme

Is only 50%-90% slower than López-Dahab!

Other operations:

Restore the ratio to native multiplication (H ≈ M, I ≈ 25M).
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Experimental results – Elliptic curve arithmetic

Table: Timings given in 103 cycles for elliptic curve operations.

Point multiplication (kP)
Curve Core 2 65nm

CURVE2251 - Core 2 594

CURVE2251 - CLMUL 282

CURVE2251 - CLMUL + AVX 225

Related work for E (F2251)

BBE (Bernstein) - Core 2 314

eBACS (mpFq) - Core 2 855
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Conclusions

New formulation and implementation of binary field arithmetic:

Follows trend of faster shuffle instructions

Improve results from related work by 8%-84%

Induces a new implementation strategy for multiplication

Still requires architectural features to be optimal

May be cheaper to support than a full native multiplier

Timings for non-batched arithmetic on binary elliptic curves:

Provide new speed record for side-channel resistant scalar
multiplication on binary curves

Improve results for kP on eBACS by at least 27%-30%
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Thank you for your attention!
Any questions?
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