
Efficient Software Implementation of Binary Field
Arithmetic Using Vector Instruction Sets

Diego F. Aranha
Department of Computer Science

University of Braśılia

Joint work with

Julio López and Darrel Hankerson
and Francisco Rodŕıguez-Henŕıquez

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Introduction

Binary fields (F2m) are omnipresent in Cryptography:

Efficient Curve-based Cryptography (ECC, PBC)

Post-quantum Cryptography

Symmetric ciphers

Many algorithms/optimizations already described in the literature:

Is it possible to unify the fastest ones in a simple formulation?

Can such a formulation reflect the state-of-the-art and
provide new ideas?

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Objective

Contributions

Formulation of state-of-the-art binary field arithmetic using
vector instructions

New strategy for the implementation of multiplication

Side-channel resistance

Time-memory trade-offs to compensate for native multiplier

Experimental results

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Arsenal

Intel Core architecture:

128-bit Streaming SIMD Extensions instruction set

Super shuffle engine introduced in 45 nm series

Relevant vector instructions:

Instruction Description Cost Mnemonic
MOVDQA Memory load/store 2.5 ←

PSLLQ, PSRLQ 64-bit bitwise shifts 1 �-8,�-8
PXOR,PAND,POR Bitwise XOR,AND,OR 1 ⊕,∧,∨
PUNPCKLBW/HBW Byte interleaving 3 interlo/hi
PSLLDQ,PSRLDQ 128-bit bytewise shift 2 (1) �8,�8

PSHUFB Byte shuffling 3 (1) shuffle,lookup
PALIGNR Memory alignment 2 (1) C

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

New SSSE3 instructions

PSHUFB instruction (mm shuffle epi8):

Real power: We can implement in parallel any function:

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

New SSSE3 instructions

Example: Bit manipulation

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

New SSSE3 instructions

Example: Bit manipulation

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

New SSSE3 instructions

PALIGNR instruction (mm alignr epi8):

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Binary field F2m

Irreducible polynomial: f (z) (trinomial or pentanomial)

Polynomial basis: a(z) ∈ F2m =
m−1∑
i=0

ai z
i .

Software representation: vector of n = dm/64e words.

Graphical representation:

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Proposed representation

To employ 4-bit granular arithmetic, convert to split form:

aL =
∑

0≤i<m,
0≤i mod 8≤3

ai z
i , aH =

∑
0≤i<m,

4≤i mod 8≤7

ai z
i−4,

iA

LA
HA

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Proposed representation

Easy to convert to split form:

AL = Ai ∧ 0x0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F
AH = (Ai ∧ 0xF0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0) >> 4

Easy to convert back:

a(z) = aH(z)z4 + aL(z).

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Squaring in F2m

a(z) =
m∑

i=0

ai z
i = am−1 + · · ·+ a2z2 + a1z + a0

a(z)2 =
m−1∑
i=0

ai z
2i = am−1z2m−2 + · · ·+ a2z4 + a1z2 + a0

Example:

a(z) = (am−1, am−2, . . . , a2, a1, a0)

a(z)2 = (am−1, 0, am−2, 0, . . . , 0, a2, 0, a1, 0, a0)

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Squaring in F2m

Since squaring is a linear operation:

a(z)2 = aH(z)2 · z8 + aL(z)2.

We can compute aL(z)2 and aH(z)2 with a lookup table.

For u = (u3, u2, u1, u0), use table(u) = (0, u3, 0, u2, 0, u1, 0, u0):

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Squaring in F2m

Since squaring is a linear operation:

a(z)2 = aH(z)2 · z8 + aL(z)2.

We can compute aL(z)2 and aH(z)2 with a lookup table.

For u = (u3, u2, u1, u0), use table(u) = (0, u3, 0, u2, 0, u1, 0, u0):

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Proposed squaring in F2m

iA

LA HA

000000000000010000000101000100000001000101010101 00000001...

HALA

2i+1T 2iT

interhi, interlo

lookup lookup

table

a(z)2 = aL(z)2 + aH(z)2 · z8.

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Square root extraction in F2m

Algorithm by Fong et al.:√
a(z) = aeven(z) +

√
z · aodd(z)

Since square-root is also a linear operation:√
a(z) =

√
aH(z)z4 + aL(z)

=
√

aH(z)z2 +
√

aL(z)

=
√

z · (aLodd
(z) + aHodd

(z)z2) + aLeven (z) + aHeven (z)z2

Note: Multiplication by
√

z ideally requires shifted additions only.
If not possible, precompute product by

√
z .

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Square root extraction in F2m

Algorithm by Fong et al.:√
a(z) = aeven(z) +

√
z · aodd(z)

Since square-root is also a linear operation:√
a(z) =

√
aH(z)z4 + aL(z)

=
√

aH(z)z2 +
√

aL(z)

=
√

z · (aLodd
(z) + aHodd

(z)z2) + aLeven (z) + aHeven (z)z2

Note: Multiplication by
√

z ideally requires shifted additions only.
If not possible, precompute product by

√
z .

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Proposed square root in F2m

iA

LA HA

000000000000000100110011 ...

HALA

lookup lookup

table

shuffle

000000000000010011001100 ... table · z²

LA HA

evenA
odd

A√
a(z) =

√
z · (aLodd

(z) + aHodd
(z)z2) + aLeven (z) + aHeven (z)z2

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Multiplication in F2m

1 Three strategies:

López-Dahab comb method

Shuffle-based multiplication

Native multiplication

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

López-Dahab multiplication in F2m

We can compute u · b(z) using shifts and additions.

If a(z) is divided into 4-bit polynomials, compute a(z) · b(z) by:

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

López-Dahab multiplication in F2m

If the multiplier is represented in split form:

a(z) · b(z) = b(z) · (aH(z)z4 + aL(z))

= b(z)z4aH(z) + b(z)aL(z)

This is a well-known technique for removing expensive 4-bit shifts!

Note: The core operation is accumulating u × dense b(z).

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

López-Dahab multiplication in F2m

Algorithm 1 LD multiplication implemented with n 128-bit registers.
Input: a(z) = a[0..n − 1], b(z) = b[0..n − 1].
Output: c(z) = c[0..n − 1].
Note: mi denotes the vector of n

2
128-bit registers (r(i−1+n/2), . . . , ri).

1: Compute T0(u) = u(z) · b(z),T1(u) = u(z) · (b(z)z4) for all u(z) of degree < 4.
2: (rn−1 . . . , r0)← 0
3: for k ← 56 downto 0 by 8 do
4: for j ← 1 to n − 1 by 2 do
5: Let u = (u3, u2, u1, u0), where ut is bit (k + t) of a[j].
6: Let v = (v3, v2, v1, v0), where vt is bit (k + t + 4) of a[j].
7: m(j−1)/2 ← m(j−1)/2 ⊕ T0(u), m(j−1)/2 ← m(j−1)/2 ⊕ T1(v)
8: end for
9: (rn−1 . . . , r0)← (rn−1 . . . , r0) C 8
10: end for
11: for k ← 56 downto 0 by 8 do
12: for j ← 0 to n − 2 by 2 do
13: Let u = (u3, u2, u1, u0), where ut is bit (k + t) of a[j].
14: Let v = (v3, v2, v1, v0), where vt is bit (k + t + 4) of a[j].
15: mj/2 ← mj/2 ⊕ T0(u), mj/2 ← mj/2 ⊕ T1(v)
16: end for
17: if k > 0 then (rn−1 . . . , r0)← (rn−1 . . . , r0) C 8
18: end for
19: return c = (rn−1 . . . , r0) mod f (z)

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Shuffle-based multiplication in F2m

If both multiplicand and multiplier are represented in split form:

a(z) · b(z) = (bH(z)z4 + bL(z)) · (aH(z)z4 + aL(z))

Using Karatsuba formula, we can reduce it to 3 multiplications:

a(z)·b(z) = aHbHz8+[(aH + aL)(bH + bL) + aHbH + aLbL] z4+aLbL

Note: The core operation is accumulating u × sparse bL,H(z).

x 023456789
...

n-1 1 BBBBBBBBBBB

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Shuffle-based multiplication in F2m

Algorithm 2 Multiplication in split form.
Input: Operands a, b in split representation.
Output: Result a · b stored in registers (rn−1 . . . , r0).
1: � table stores all products of 4-bit × 4-bit polynomials.
2: (rn−1 . . . , r0)← 0
3: for k ← 56 downto 0 by 8 do
4: for j ← 1 to n − 1 by 2 do
5: Let u = (u3, u2, u1, u0), where ut is bit (k + t) of a[j].
6: for i ← 0 to n

2
− 1 do ri ← ri ⊕ shuffle(table[u], b[i])

7: end for
8: (rn−1 . . . , r0)← (rn−1 . . . , r0) C 8
9: end for
10: for k ← 56 downto 0 by 8 do
11: for j ← 0 to n − 2 by 2 do
12: Let u = (u3, u2, u1, u0), where ut is bit (k + t) of a[j].
13: for i ← 0 to n

2
− 1 do ri ← ri ⊕ shuffle(table[u], b[i])

14: end for
15: if k > 0 then (rn−1 . . . , r0)← (rn−1 . . . , r0) C 8
16: end for

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Native multiplication

Guidelines:

As memory access is expensive, do work on registers.

To minimize number of registers, use 128-bit granularity.

Use Karatsuba for each 128 × 128-bit multiplication.

Use maximum number of Karatsuba levels for dn
2e digits.

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Comparison

López-Dahab multiplication:

Explores highest-granularity XOR operation

Consumes memory space proportional to field size

Shuffle-based multiplication:

Relies on sparser core operation

Consumes constant memory space (apart from Karatsuba)

Depends on constants stored in memory

Native multiplication:

Faster and with constant memory consumption.

No widespread support.

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Modular reduction

Requires heavy shifting, so split representation does not help.

Some guidelines:

If f (z) is a trinomial, implement with vector digits

If f (z) is a pentanomial, process pairs of digits in parallel or in
64-bit mode

Accumulate writes into registers before writing to memory

Reduce squaring/multiplication results in registers

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Half-trace

We want to compute H(c) =
∑(m−1)/2

i=0 c22i
.

Important: For even i , H(z i) = H(z i/2) + z i/2 + Tr(z i).

Algorithm 3 Solve x2 + x = c

Input: c =
∑m−1

i=0 ci z
i ∈ F2m where m is odd and Tr(c) = 0

Output: a solution s of x2 + x = c.

1: Compute H(l0c8i+1 + l1c8i+3 + l2c8i+5 + l3c8i+7) for 0 ≤ i ≤ bm−3
8
c and lj ∈ F2.

2: s ← 0
3: for i = (m − 1)/2 downto 1 do
4: if c2i = 1 then
5: c ← c + z i , s ← s + z i

6: end if
7: end for
8: return s +

∑
i∈I c8i+1H(z8i+1) + c8i+3H(z8i+3) + c8i+5H(z8i+5) + c8i+7H(z8i+7)

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Fixed 2k power [Bos et al.]

Precompute a table T of 16dm
4 e field elements such that

T [j , i0 + 2i1 + 4i2 + 8i3] = (i0z4j + i1z4j+1 + i2z4j+2 + i3z4j+3)2k

Then we can compute a2k
as:∑dm

4
e

j=0 T [j , ba/24jc mod 24].

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Inversion

Guidelines:

If memory is not available, implement Extended Euclidean
Algorithm in 64-bit mode.

If memory is available, implement Itoh-Tsuji with
precomputed 2i powers:

a−1 = a(2m−1−1)2

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Implementation

Material:

GCC 4.1.2 (fastest SSE intrinsics, GCC 4.5.0 is good again)

RELIC cryptographic library1

Intel Core 2 65,45nm processors and Intel Core i7

Parameters:

16 different binary fields ranging from 113 to 1223 bits

Choices of square-root friendly and standard f (z)

Elliptic curves over 6 of these fields

Comparison:

Only vector implementations (mpFq, Beuchat et al. 2009)

Only in entry-level Intel Core 2 65 nm (more on the paper)

1http://code.google.com/p/relic-toolkit/

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

http://code.google.com/p/relic-toolkit/

Experimental results – Squaring

 0

 100

 200

 300

 400

 500

 200 400 600 800 1000 1200

C
yc

le
s

in
 In

te
l C

or
e

2
65

nm

Field size

Related work
This work

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Experimental results – Square-root with friendly f (z)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 200 400 600 800 1000 1200

C
yc

le
s

in
 In

te
l C

or
e

2
65

nm

Field size

Related work
This work

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Experimental results – Square-root with standard f (z)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 200 400 600 800 1000 1200

C
yc

le
s

in
 In

te
l C

or
e

2
65

nm

Field size

Related work
This work

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Experimental results – López-Dahab multiplication

 0

 1000

 2000

 3000

 4000

 5000

 6000

 200 400 600 800 1000 1200

C
yc

le
s

in
 In

te
l C

or
e

2
65

nm

Field size

Related work
This work (López-Dahab)

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Experimental results – Shuffle-based multiplication

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 200 400 600 800 1000 1200

C
yc

le
s

in
 In

te
l C

or
e

2
45

nm

Field size

This work (López-Dahab)
This work (Shuffling)

Note: Native multiplier on newer machines is twice faster than LD.

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Observations

Squaring and square-root are:

Efficiently formulated with M/S ratio up to 34

Faster when shuffling throughput is higher

Heavily dependent on the choice of f (z)

Shuffle-based multiplication:

Has a bottleneck with constants stored in memory

Requires faster table addressing scheme

Is only 50%-90% slower than López-Dahab!

Other operations:

Restore the ratio to native multiplication (H ≈ M, I ≈ 25M).

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Experimental results – Elliptic curve arithmetic

Table: Timings given in 103 cycles for elliptic curve operations.

Point multiplication (kP)
Curve Core 2 65nm

CURVE2251 - Core 2 594

CURVE2251 - CLMUL 282

CURVE2251 - CLMUL + AVX 225

Related work for E (F2251)

BBE (Bernstein) - Core 2 314

eBACS (mpFq) - Core 2 855

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Conclusions

New formulation and implementation of binary field arithmetic:

Follows trend of faster shuffle instructions

Improve results from related work by 8%-84%

Induces a new implementation strategy for multiplication

Still requires architectural features to be optimal

May be cheaper to support than a full native multiplier

Timings for non-batched arithmetic on binary elliptic curves:

Provide new speed record for side-channel resistant scalar
multiplication on binary curves

Improve results for kP on eBACS by at least 27%-30%

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

Thank you for your attention!
Any questions?

Aranha, López, Hankerson, Rodŕıguez-Henŕıquez Efficient Binary Field Arithmetic Using Vector Instruction Sets

