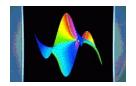
The complete generating function for Gessel walks is algebraic

Alin Bostan (Algorithms Project, INRIA)



joint work with

Manuel Kauers (RISC, Austria)

Séminaire CARAMEL, April 14, 2011

Context: nearest-neighbour walks in \mathbb{N}^2

- ▶ Set of admissible steps $\mathfrak{S} \subseteq \{ \checkmark, \leftarrow, \nwarrow, \uparrow, \nearrow, \rightarrow, \searrow, \downarrow \}$.
- $ightharpoonup \mathfrak{S}$ -walks = walks in \mathbb{N}^2 starting at (0,0) and using steps in \mathfrak{S} .
- \triangleright f(n; i, j) = number of \mathfrak{S} -walks ending at (i, j) and consisting of exactly n steps. Complete generating function

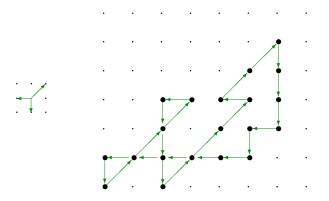
$$F(t;x,y) = \sum_{n=0}^{\infty} \left(\sum_{i,j=0}^{\infty} f(n;i,j) x^{i} y^{j} \right) t^{n} \in \mathbb{Q}[x,y][[t]].$$

Questions: Starting from \mathfrak{S} , what can be said about F(t; x, y)? Is it *algebraic*, or *holonomic transcendental*, or *non-holonomic*?

 $F(t; 1, 1) \rightsquigarrow$ number of walks with prescribed number of steps; $F(t; 0, 0) \rightsquigarrow$ number of walks returning to the origin (excursions); $F(t; 1, 0) \rightsquigarrow$ number of walks ending on the horizontal axis.

Examples: Kreweras and Gessel walks

Kreweras walks:
$$\mathfrak{S}$$
-walks with $\mathfrak{S} = \{\downarrow, \leftarrow, \nearrow\}$ Gessel walks: \mathfrak{S} -walks with $\mathfrak{S} = \{\nearrow, \swarrow, \leftarrow, \rightarrow\}$



Example: A Kreweras excursion of length 24.

Main results

Theorem (Kreweras 1965; 100 pages combinatorial proof!)

$$K(t;0,0) = {}_{3}F_{2} {1/3 \ 2/3 \ 1 \ 27 \ t^{3}} = \sum_{n=0}^{\infty} \frac{4^{n} {3n \choose n}}{(n+1)(2n+1)} t^{3n}.$$

Theorem (Gessel's conjecture; Kauers, Koutschan, Zeilberger 2008)

$$G(t;0,0) = {}_{3}F_{2}\begin{pmatrix} 5/6 & 1/2 & 1 \\ 5/3 & 2 & 1 \end{pmatrix} 16t^{2} = \sum_{n=0}^{\infty} \frac{(5/6)_{n}(1/2)_{n}}{(5/3)_{n}(2)_{n}} (4t)^{2n}.$$

Question: What about K(t; x, y) and G(t; x, y)?

Theorem (Bousquet-Mélou 2005) K(t; x, y) is algebraic.

Theorem (B. & Kauers 2008) G(t; x, y) is algebraic. In particular, g(n; i, j) is holonomic for any pair $(i, j) \in \mathbb{N}^2$.

→ Effective, computer-driven, discovery and proof.

Methodology

Experimental mathematics approach:

- (S1) high order expansions of generating power series;
- (S2) guessing differential and/or algebraic equations they satisfy;
- (S3) empirical certification of the guessed equations (sieving by inspection of their analytic, algebraic, arithmetic properties);
- (S4) rigorous proof, based on (exact) polynomial computations.

Step (S1): high order series expansions

f(n; i, j) satisfies the recurrence with constant coefficients

$$f(n+1;i,j) = \sum_{(u,v)\in\mathfrak{S}} f(n;i-u,j-v) \quad \text{for} \quad n,i,j\geq 0$$

+ init. cond. $f(0; i, j) = \delta_{0,i,j}$ and f(n; -1, j) = f(n; i, -1) = 0.

Example: for the Kreweras walks,

$$k(n; i, j) = k(n - 1; i + 1, j) + k(n - 1; i, j + 1) + k(n - 1; i - 1, j - 1)$$



The recurrence is used to compute $F(t; x, y) \mod t^N$ for large N.

$$K(t; x, y) = 1 + xyt + (x^{2}y^{2} + y + x)t^{2} + (x^{3}y^{3} + 2xy^{2} + 2x^{2}y + 2)t^{3}$$

$$+ (x^{4}y^{4} + 3x^{2}y^{3} + 3x^{3}y^{2} + 2y^{2} + 6xy + 2x^{2})t^{4}$$

$$+ (x^{5}y^{5} + 4x^{3}y^{4} + 4x^{4}y^{3} + 5xy^{3} + 12x^{2}y^{2} + 5x^{3}y + 8y + 8x)t^{5} + \cdots$$

Step (S2): guessing equations for F(t; x, y), a first idea

In terms of generating series, the recurrence on k(n; i, j) reads

$$(xy - t(x + y + x^{2}y^{2}))K(t; x, y)$$

$$= xy - tx K(t; x, 0) - ty K(t; 0, y)$$
(KerEq)

- ▶ This *kernel equation* can be seen as a multivariate analogue of $(1 t t^2) \cdot \sum_{n>0} f_n t^n = 1$, where f_n are the Fibonacci numbers.
- \triangleright A similar kernel equation holds for F(t; x, y), for any \mathfrak{S} -walk.
- *Corollary.* F(t; x, y) is holonomic (resp. algebraic) if and only if F(t; x, 0) and F(t; 0, y) are both holonomic (resp. algebraic).
- ▶ This simplification is crucial: equations for G(t; x, y) are huge.

Step (S2): guessing equations for F(t; x, 0) and F(t; 0, y)

Task 1: Given the first N terms of $S = F(t; x, 0) \in \mathbb{Q}[x][[t]]$, search for a *differential equation* satisfied by S at precision N:

$$\mathcal{L}_{x,0}(S) = c_r(x,t) \cdot \frac{d^r S}{dt^r} + \cdots + c_1(x,t) \cdot \frac{dS}{dt} + c_0(x,t) \cdot S = 0 \mod t^N.$$

Task 2: Search for an algebraic equation $\mathcal{P}_{x,0}(S) = 0 \mod t^N$.

- ▶ Both tasks amount to linear algebra in size N over $\mathbb{Q}(x)$.
- ▶ In practice, we use modular Hermite-Padé approximation (Beckermann-Labahn algorithm) combined with (rational) evaluation-interpolation and rational number reconstruction.
- ► (Right) gcds of several candidates provide minimal equations.

Step (S2): guessing equations for K(t; x, 0)

The guessed *operator* of order 4 in $D_t = \frac{d}{dt}$, degree (14, 11) in (t, x)

$$\mathcal{L}_{x,0} = t^3 \cdot (3t - 1) \cdot (9t^2 + 3t + 1) \cdot (3t^2 + 24t^2x^3 - 3xt - 2x^2) \cdot (16t^2x^5 + 4x^4 - 72t^4x^3 - 18x^3t + 5t^2x^2 + 18xt^3 - 9t^4) \cdot (4t^2x^3 - t^2 + 2xt - x^2) \cdot D_t^4 + \cdots$$

is such that $\mathcal{L}_{x,0}(K(t;x,0))=0 \mod t^{100}$.

The guessed *polynomial* of tridegree (6, 10, 6) in (T, t, x)

$$\mathcal{P}_{x,0} = x^6 t^{10} T^6 - 3x^4 t^8 (x - 2t) T^5 +$$

$$+ x^2 t^6 \left(12t^2 + 3t^2 x^3 - 12xt + \frac{7}{2}x^2 \right) T^4 + \cdots$$

is such that $\mathcal{P}_{x,0}(K(t;x,0),t,x)=0 \mod t^{100}$.

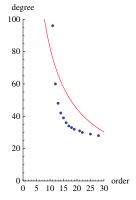
Step (S2): guessing equations for G(t; x, 0) and G(t; 0, y)

For Gessel walks, using N = 1000 terms of G(t; x, y), we guessed

- $\blacktriangleright \mathcal{L}_{x,0}$: order 11 in D_t , bidegree (96,78) in (t,x), 61 digits coeffs
- $ightharpoonup \mathcal{L}_{0,y}$: order 11 in D_t , bidegree (68, 28) in (t,y), 51 digits coeffs

such that $\mathcal{L}_{x,0}(G(t;x,0)) = \mathcal{L}_{0,y}(G(t;0,y)) = 0 \mod t^{1000}$.

- For a fixed value x_0 , and modulo a prime p, many (non-minimal) operators in $\mathbb{Z}_p[t]\langle D_t \rangle$ for $G(t;x_0,0)$ can be guessed by Hermite-Padé.
- *Still:* reconstructing from one of them an operator in $\mathbb{Q}[t,x]\langle D_t \rangle$ for G(t;x,0) is *too costly*.
- *However*, the reconstruction (wrt x) is feasible if applied to the *minimal-order* operator = *gcrd*.
- \triangleright Guessing $\mathcal{L}_{x,0}$ by undetermined coefficients would have required solving a dense linear system 91956 \times 91956 with \approx 1000 digits entries!



Step (S2): guessing differential equations for G(t; x, y)?

Feasible in principle: kernel equation + closure by differential lclm.

- Obstacle: this lclm has order 20 in D_t , tridegree (359, 717, 279) in $(t, x, y) \rightarrow 1.5$ billion integer coefficients (!)
- Thus: at this point, we had *guesses* for differential equations for G(t; x, 0) and G(t; 0, y), but *no proof* that they are correct and *no hope* to compute a candidate differential equation for G(t; x, y).
- Remember: it was believed (e.g. by Gessel and Zeilberger, who popularized the problem) that G(t; x, y) is not algebraic.
- ▶ This explains why no one (including us) tried at this stage to search for algebraic equations. Worse: no one even remarked that Gessel's expression ${}_{3}F_{2}{5/6} {1/2 \choose 5/3} {1 \choose 2} {16t^{2}}$ for excursions is algebraic.

Step (S3): empirical certification of guesses

Provide convincing evidence that the candidate $\mathcal{L}_{x,0}$ is correct:

- 1. Size sieve: $\mathcal{L}_{x,0}$ has reasonable bit size compared to an artefact solution of the Hermite-Padé approximation problem.
- 2. Algebraic sieve: High order series matching. $\mathcal{L}_{x,0}$ verifies $\mathcal{L}_{x,0}(F(t;x,0)) = 0 \mod t^{N+\varepsilon}$.
- 3. Analytic sieve: singularity analysis. $\mathcal{L}_{x,0}$ is Fuchsian (all of its singular points are regular singular).
- 4. Arithmetic sieve: $\mathcal{L}_{x,0}$ is globally nilpotent (see below).

Step (S3): G-series and global nilpotence

Def. A power series $\sum_{n\geq 0} \frac{a_n}{b_n} t^n$ in $\mathbb{Q}[[t]]$ is called a *G-series* if it is (a) holonomic; (b) analytic at t=0; (c) $\exists C>0$, $lcm(b_0, ..., b_n) \leq C^n$.

Examples: ${}_{2}F_{1}\binom{\alpha \ \beta}{\gamma} t$, $\alpha, \beta, \gamma \in \mathbb{Q}$; algebraic functions (Eisenstein).

Thm. (Chudnovsky 1985) The minimal-order differential operator annihilating a G-series is globally nilpotent: for almost all prime numbers p, it right-divides $D_t^{p\mu}$ modulo p, for some $\mu \in \mathbb{N}$.

Examples: $t(1-t)D_t^2 + (\gamma - (\alpha + \beta + 1)t)D_t - \alpha\beta t$; algebraic resolvents.

Thm. (B. & Kauers) If F(t; x, 0) is holonomic, then it's a G-series.

- ▶ The guessed operators for K(t; x, 0), G(t; x, 0), G(t; 0, y) pass this arithmetic test: they are all globally nilpotent.
- ▶ And, unexpectedly, even more. . .

Step (S3): Grothendieck's conjecture and the big surprise

Conjecture (Grothendieck) $\mathcal{L}(S) = 0$ possesses a basis of algebraic solutions if and only if \mathcal{L} globally nilpotent with $\mu = 1$.

▶ Big surprise: the guessed operators for G(t; x, 0) and G(t; 0, y) share this property for $5 \le p < 100 \Rightarrow$ this strongly indicates that G(t; x, 0) and G(t; 0, y), and thus G(t; x, y), should be algebraic!

Once we suspect algebraicity of G(t; x, 0) and G(t; 0, y), we guess candidates for annihilating polynomials

- $ightharpoonup \mathcal{P}_{x,0}$ in $\mathbb{Z}[x,t,T]$ of tridegree (32,43,24) in (x,t,T), 21 digits
- $\triangleright \mathcal{P}_{0,y}$ in $\mathbb{Z}[y,t,T]$ of tridegree (40, 44, 24) in (y,t,T), 23 digits such that

$$\mathcal{P}_{x,0}(x,t,G(t;x,0)) = \mathcal{P}_{0,v}(x,t,G(t;0,y)) = 0 \mod t^{1200}.$$

Step (S4): warm-up - Gessel excursions

Theorem
$$G(t; 0, 0) = \sum_{n=0}^{\infty} \frac{(5/6)_n (1/2)_n}{(5/3)_n (2)_n} (4t)^{2n}$$
 is algebraic.

Proof 1: This ${}_3F_2$ series is a ${}_2F_1$ series in disguise:

$$_3F_2igg(egin{array}{c|c} 5/6 & 1/2 & 1 \ 5/3 & 2 \ \end{array} & 16t^2 igg) = rac{1}{t^2} \left(rac{1}{2} \, _2F_1igg(-1/6 & -1/2 \ 2/3 \ \end{array} & 16t^2
ight) - rac{1}{2} igg).$$

Schwarz's classification of algebraic ₂F₁'s allows to conclude.

Proof 2: Guess a polynomial P(T, t) in $\mathbb{Q}[T, t]$, then prove that P admits the power series $g(t) = G(\sqrt{t}; 0, 0) = \sum_{n=0}^{\infty} g_n t^n$ as a root.

- 1. Such a P can be guessed from the first 100 terms of g(t).
- 2. Implicit function theorem: $\exists ! \text{ root } r(t) \in \mathbb{Q}[[t]] \text{ of } P$.
- 3. $r(t) = \sum_{n=0}^{\infty} r_n t^n$ being algebraic, it is holonomic, and so is (r_n) :

$$(n+2)(3n+5)r_{n+1}-4(6n+5)(2n+1)r_n=0, r_0=1.$$

$$\Rightarrow$$
 solution $r_n = \frac{(5/6)_n(1/2)_n}{(5/3)_n(2)_n}4^{2n} = g_n$, thus $g(t) = r(t)$ is algebraic.

Step (S4): rigorous proof for Kreweras walks

1. Setting $y_0 = \frac{x - t - \sqrt{x^2 - 2tx + t^2(1 - 4x^3)}}{2tx^2} = t + \frac{1}{x}t^2 + \frac{x^3 + 1}{x^2}t^3 + \cdots$ in the kernel equation

$$\underbrace{(xy - (x + y + x^2y^2)t)}_{\underline{!}} K(t; x, y) = -xy + xtK(t; x, 0) + ytK(t; 0, y)$$

shows that U = K(t; x, 0) satisfies the reduced kernel equation

$$x \cdot y_0 - x \cdot t \cdot U(t, x) = y_0 \cdot t \cdot U(t, y_0)$$
 (RKerEq)

- 2. U = K(t; x, 0) is the *unique solution* in $\mathbb{Q}[[x, t]]$ of (RKerEq).
- 3. The guessed candidate $\mathcal{P}_{x,0}$ has one solution H(t,x) in $\mathbb{Q}[[x,t]]$.
- 4. Resultant computations + verification of initial terms $\implies U = H(t, x)$ also satisfies (RKerEq).
- 5. Uniqueness: $H(t,x) = K(t;x,0) \Rightarrow K(t;x,0)$ is algebraic!

Algebraicity of Kreweras walks: our Maple proof in a nutshell

```
[bostan@venus ~] $ maple
    1\^/1
             Maple 11 (X86 64 LINUX)
._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2007
\ MAPLE / All rights reserved. Maple is a trademark of
 <____> Waterloo Maple Inc.
           Type ? for help.
# HIGH ORDER EXPANSION (S1)
> st,bu:=time(),kernelopts(bytesused):
> f:=proc(n,i,j)
 option remember;
   if i<0 or i<0 or n<0 then 0
    elif n=0 then if i=0 and i=0 then 1 else 0 fi
    else f(n-1,i-1,j-1)+f(n-1,i,j+1)+f(n-1,i+1,j) fi
 end:
> S:=series(add(add(f(k,i,0)*x^i,i=0..k)*t^k,k=0..80).t.80):
# GUESSING (S2)
> libname:=".".libname:gfun:-version():
                                      3 49
> gfun:-seriestoalgeq(S,Fx(t)):
> P:=collect(numer(subs(Fx(t)=T, %[1])).T):
# RIGOROUS PROOF (S4)
> ker := (T,t,x) \rightarrow (x+T+x^2*T^2)*t-x*T:
> pol := unapplv(P.T.t.x):
> p1 := resultant(pol(z-T,t,x),ker(t*z,t,x),z):
> p2 := subs(T=x*T,resultant(numer(pol(T/z,t,z)),ker(z,t,x),z)):
> normal(primpart(p1.T)/primpart(p2.T));
# time (in sec) and memory consumption (in Mb)
> trunc(time()-st),trunc((kernelopts(bytesused)-bu)/1000^2);
                                     15, 83
```

Step (S4): rigorous proof for Gessel walks

Two difficulties: $G(t; x, y) \neq G(t; y, x)$ and G(t; 0, 0) occurs in (KerEq)

$$\underbrace{\frac{\text{poly}(x,y,t)}{\text{goly}(x,y,t)}}_{\underline{f}(t;x,y)} G(t;x,y) = xy + tG(t;0,0) - (1+y)tG(t;0,y) - tG(t;x,0)$$

$$\stackrel{!}{=} 0 \implies y_0(t,x) = 0 + \frac{1}{x}t + \frac{x^2+1}{x^2}t^2 + \frac{x^4+3x^2+1}{x^3}t^3 + \cdots$$
or $x_0(t,y) = 0 + \frac{y+1}{y}t + \frac{(y+1)^3}{y^2}t^3 + \frac{2(y+1)^5}{y^3}t^5 + \cdots$

This gives *two* equations connecting G(t; x, 0) and G(t; 0, y):

$$G(t; x, 0) = xy_0/t + G(t; 0, 0) - (1 + y_0)G(t; 0, y_0)$$

(1 + y)G(t; 0, y) = yx_0/t + G(t; 0, 0) - G(t; x_0, 0)

For fixed G(t; 0, 0), they uniquely define G(t; x, 0) and G(t; 0, y).

▶ Resultant size: $\deg_T = 48$, $\deg_t = 90$, $\deg_y = 64$, digits = 47 → fast algorithms needed (*B., Flajolet, Salvy & Schost 2006*).

Conclusion

- 1. Guess'n'Prove approach based on modern CA algorithms.
- 2. Brute-force approach and/or use of naive algorithms = hopeless. E.g. size of algebraic equations for $G(t; x, y) \approx 30$ Gb.
- 3. Going further: experimental classification of 2D and 3D walks: (B. & Kauers FPSAC'09) \rightarrow 3500 cases treated; \approx 4% holonomic. Matches the results of Bousquet-Mélou and Mishna (2D).
- 4. Remarkable properties discovered experimentally: explanation?
 - 4.1 algebraic cases: solvable Galois groups + genus 0, 1 and 5(!)

$$G(t;1,1) = -\frac{3}{6t} + \frac{\sqrt{3}}{6t} \sqrt{U(t) + \sqrt{\frac{16t(2t+3)+2}{(1-4t)^2 U(t)} - U(t)^2 + 3}}$$
 where
$$U(t) = \sqrt{1 + 4t^{1/3}(4t+1)^{1/3}/(4t-1)^{4/3}}.$$

where
$$U(t) = \sqrt{1 + 4t^{1/3}(4t+1)^{1/3}/(4t-1)^{4/3}}$$
.

4.2 transcendental holonomic: operators factor as $L^{(2)} \cdot L_t^{(1)} \cdots L_t^{(1)}$ \longrightarrow iterated integrals of ${}_{2}F_{1}$'s (cf. Dwork's conjecture)

$$F_{\bullet \cdots \bullet}(t;0,0) = \frac{2}{t^2} \int_0^t \frac{\tau (1-12\tau^2)(4\tau^2+1)}{(1-4\tau^2)^{5/2}} \cdot {}_2F_1\left(\frac{5/4}{2},\frac{7/4}{(1-4\tau^2)^2}\right) d\tau.$$

Bonus: closed form for G(t; x, y) (courtesy of M. van Hoeij)

Theorem Let
$$V=1+4t^2+36t^4+396t^6+\cdots$$
 be the root of $256V^3t^2-(V-1)(V+3)^3=0$, let $U=1+2t^2+16t^4+2xt^5+2(x^2+83)t^6+\cdots$ be the root of $x(V-1)(V+1)U^3-2V(3x+5xV-8Vt)U^2$ $-xV(V^2-24V-9)U+2V^2(xV-9x-8Vt)=0$, let $W=t^2+(y+8)t^4+2(y^2+8y+41)t^6+\cdots$ be the root of $y(1-V)W^3+y(V+3)W^2-(V+3)W+V-1=0$.

Then G(t; x, y) is equal to

$$\frac{\frac{64(U(V+1)-2V)V^{3/2}}{x(U^2-V(U^2-8U+9-V))^2} - \frac{y(W-1)^4(1-Wy)V^{-3/2}}{t(y+1)(1-W)(W^2y+1)^2}}{(1+y+x^2y+x^2y^2)t-xy} - \frac{1}{tx(y+1)}.$$

Bonus: existence of the series root of $P = \mathcal{P}_{x,0}$

- 1. Question: Prove the existence of a root $H \in \mathbb{Q}[[x, t]]$ of P.
- 2. Difficulty: $P(1,0,0) = \frac{\partial P}{\partial T}(1,0,0) = 0 \rightarrow IFT$ does not apply.
- 3. Workaround: exploit zero genus \rightarrow there exist R_1 and R_2

$$R_1(U,x) = \frac{(U^4x^2 + 2U^2(U+1)^2x + 1 + 4U + 6U^2 + 2U^3 - U^4)h(U,x)}{(1+U)^2(1+2U+U^2+U^2x)^4},$$

$$R_2(U,x) = \frac{U(1+U)(1+2U+U^2+U^2x)^2}{h(U,x)},$$

with $h \in \mathbb{Q}[x, U]$ such that:

- $P(R_1(U,x), R_2(U,x), x) = 0;$
- **IFT** applies to $R_2 t$: there exists a power series in $\mathbb{Q}[[x, t]]$ $U_0(t, x) = t + t^2 + (x+1)t^3 + (2x+5)t^4 + (2x^2 + 3x + 9)t^5 + ...$ such that $R_2(U_0, x) = t$.

$$\longrightarrow P(\underbrace{R_1(U_0,x)}_{H(t,x)},t,x) = P(R_1(U_0,x),R_2(U_0,x),x) = 0.$$

Experimental classification of 2D walks with holonomic F(t; 1, 1)

OEIS Tag		Eq	uation siz	es	OEIS Tag		Eq	es	
A000012	1.1	1, 0	1, 1	1, 1	A000079	: . :	1, 0	1, 1	1, 1
A001405	• •	2, 1	2, 3	2, 2	A000244	:::	1, 0	1, 1	1, 1
A001006	•••	2, 1	2, 3	2, 2	A005773	***	2, 1	2, 3	2, 2
A126087	• :	3, 1	2, 5	2, 2	A151255	::•	6, 8	4, 16	-
A151265	• •	6, 4	4, 9	6, 8	A151266	• .	7, 10	5, 16	-
A151278	••	7, 4	4, 12	6, 8	A151281	:::	3, 1	2, 5	2, 2
A005558	• •	2, 3	3, 5	-	A005566	•:•	2, 2	3, 4	-
A018224	:::	2, 3	3, 5	-	A060899	• •	2, 1	2, 3	2, 2
A060900		2, 3	3, 5	8, 9	A128386	•	3, 1	2, 5	2, 2
A129637	:::	3, 1	2, 5	2, 2	A151261	:::	5, 8	4, 15	-
A151282	• • • • • • • • • • • • • • • • • • • •	3, 1	2, 5	2, 2	A151291	• :	6, 10	5, 15	-
A151275	::	9, 18	5, 24	-	A151287	::	7, 11	5, 19	-
A151292	:::	3, 1	2, 5	2, 2	A151302	:::	9, 18	5, 24	-
A151307	::	8, 15	5, 20	-	A151318	:::	2, 1	2, 3	2, 2
A129400	::	2, 1	2, 3	2, 2	A151297	::-	7, 11	5, 18	-
A151312	::	4, 5	3, 8	-	A151323	::	2, 1	2, 3	4, 4
A151326	::	7, 14	5, 18	-	A151314	:::	9, 18	5, 24	-
A151329	::	9, 18	5, 24	-	A151331	:::	3, 4	3, 6	-

Equation sizes = {order, degree}(rec, diffeq, algeq).

Experimental classification of 2D walks with holonomic F(t;1,1)

OEIS Tag	Steps	Equ	ation siz	es	Asymptotics	OEIS Tag	Steps	Equation sizes		es	Asymptotics
A000012	:::	1, 0	1, 1	1, 1	1	A000079	:::	1,0	1, 1	1, 1	2^n
A001405	:::	2, 1	2, 3	2, 2	$\frac{\sqrt{2}}{\Gamma(\frac{1}{2})} \frac{2^n}{\sqrt{n}}$	A000244	: ::	1,0	1, 1	1, 1	3^n
A001006	•::	2, 1	2, 3	2, 2	$\frac{3\sqrt{3}}{2\Gamma(\frac{1}{2})} \frac{3^n}{n^{3/2}}$	A005773	:::	2, 1	2, 3	2, 2	$\frac{\sqrt{3}}{\Gamma(\frac{1}{2})} \frac{3^n}{\sqrt{n}}$
A126087	•	3, 1	2, 5	2, 2	$\frac{12\sqrt{2}}{\Gamma(\frac{1}{2})} \frac{2^{3n/2}}{n^{3/2}}$	A151255	::	6, 8	4, 16	-	$\frac{24\sqrt{2}}{\pi} \frac{2^{3n/2}}{n^2}$
A151265	•.:	6, 4	4, 9	6, 8	$\frac{2\sqrt{2}}{\Gamma(\frac{1}{4})} \frac{3^n}{n^{3/4}}$	A151266	: :	7, 10	5, 16	-	$\frac{\sqrt{3}}{2\Gamma(\frac{1}{2})} \frac{3^n}{\sqrt{n}}$
A151278	:::	7, 4	4, 12	6, 8	$\frac{3\sqrt{3}}{\sqrt{2}\Gamma(\frac{1}{4})} \frac{3^n}{n^{3/4}}$	A151281	:::	3, 1	2, 5	2, 2	$\frac{1}{2}3^{n}$
A005558	:::	2, 3	3, 5	-	$\frac{8}{\pi} \frac{4^n}{n^2}$	A005566	::	2, 2	3, 4	-	$\frac{4}{\pi} \frac{4^n}{n}$
A018224	:::	2, 3	3, 5	-	$\frac{2}{\pi} \frac{4^n}{n}$	A060899	; ;	2, 1	2, 3	2, 2	$\frac{\sqrt{2}}{\Gamma(\frac{1}{2})} \frac{4^n}{\sqrt{n}}$
A060900	:::	2, 3	3, 5	8, 9	$\frac{4\sqrt{3}}{3\Gamma(\frac{1}{3})} \frac{4^n}{n^{2/3}}$	A128386	:::	3, 1	2, 5	2, 2	$\frac{6\sqrt{2}}{\Gamma(\frac{1}{2})} \frac{2^n 3^{n/2}}{n^{3/2}}$
A129637	:::	3, 1	2, 5	2, 2	$\frac{1}{2}4^{n}$	A151261	::	5, 8	4, 15	-	$\frac{12\sqrt{3}}{\pi} \frac{2^n 3^{n/2}}{n^2}$
A151282	: ::	3, 1	2, 5	2, 2	$\frac{A^2B^{3/2}}{2^{3/4}\Gamma(\frac{1}{2})}\frac{B^n}{n^{3/2}}$	A151291	•	6, 10	5, 15	-	$\frac{4}{3\Gamma(\frac{1}{2})} \frac{4^n}{\sqrt{n}}$
A151275	:::	9, 18	5, 24	-	$\frac{12\sqrt{30}}{\pi} \frac{(\sqrt{24})^n}{n^2}$	A151287	::	7, 11	5, 19	-	$\frac{\sqrt{8}A^{7/2}}{\pi} \frac{(2A)^n}{n^2}$
A151292	:::	3, 1	2, 5	2, 2	$\frac{\sqrt[4]{3}C^{2}D^{3/2}}{8\Gamma(\frac{1}{2})} \frac{D^{n}}{n^{3/2}}$	A151302	:::	9, 18	5, 24	-	$\frac{\sqrt{5}}{3\sqrt{2}\Gamma(\frac{1}{2})}\frac{5^n}{\sqrt{n}}$
A151307	: ,:	8, 15	5, 20	-	$\frac{\sqrt{5}}{2\sqrt{2}\Gamma(\frac{1}{2})}\frac{5^n}{\sqrt{n}}$	A151318	:::	2, 1	2, 3	2, 2	$\frac{\sqrt{5/2}}{\Gamma(\frac{1}{2})} \frac{5^n}{\sqrt{n}}$
A129400	:::	2, 1	2, 3	2, 2	$\frac{3\sqrt{3}}{2\Gamma(\frac{1}{2})} \frac{6^n}{n^{3/2}}$	A151297	:::	7, 11	5, 18	-	$\frac{\sqrt{3}C^{7/2}}{2\pi} \frac{(2C)^n}{n^2}$
A151312	:::	4, 5	3, 8	-	$\frac{\sqrt{6}}{\pi} \frac{6^n}{n}$	A151323	:::	2, 1	2, 3	4, 4	$\frac{\sqrt{2} 3^{3/4}}{\Gamma(\frac{1}{4})} \frac{6^n}{n^{3/4}}$
A151326	; ;;	7, 14	5, 18	-	$\frac{2\sqrt{3}}{3\Gamma(\frac{1}{2})} \frac{6^n}{\sqrt{n}}$	A151314	:::	9, 18	5, 24	-	$\frac{EF^{7/2}}{5\sqrt{95}\pi} \frac{(2F)^n}{n^2}$
A151329	:::	9, 18	5, 24	-	$\frac{\sqrt{7/3}}{3\Gamma(\frac{1}{2})} \frac{7^n}{\sqrt{n}}$	A151331	:::	3, 4	3, 6	-	$\frac{8}{3\pi} \frac{8^n}{n}$

Experimental classification of holonomic transcendental 3D walks

OEIS Tag	Step sets	Equation sizes		OEIS Tag	Step sets	Equation sizes	
A148060	:	9, 17	5, 28	A148438	## # #	7, 10	5, 17
A149090	## ## # #	9, 17	5, 28	A149589	::: ::: : ::	10, 21	6, 29
A005817	:::• • :: : : : : : : : : : : : : : : :	2, 2	3, 4	A148005	• • • • • • • • • • • • • • • • • • •	5, 8	4, 15
A148052	::: :::	7, 18	6, 27	A148068		7, 17	6, 25
A148072	::• : :: :::	12, 57	10, 69	A148162		4, 3	3, 6
A148284	::• : :: :::	14, 57	10, 71	A148331	** **	11, 43	9, 53
A148507	*:: : : •::	4, 6	4, 11	A148525	• : •	7, 16	6, 25
A148548	II II	7, 19	6, 28	A148689	H 10 H	8, 25	8, 31
A148703	· · · · · ·	4, 3	3, 6	A148790		6, 12	5, 18
A148934	::: ::: :::	5, 5	4, 11	A149279		14, 62	10, 75
A149290	• • • • • • • • • • • • • • • • • • • •	11, 53	9, 61	A149363	:: •: ·:	7, 16	6, 24
A149632		7, 11	5, 16	A149713		8, 22	7, 29
A150054		12, 39	9, 52	A150370		14, 62	10, 75
A150410	:: •: :: :: :: :: :: :: :: :: :: :: :: :	4, 6	4, 11	A150471	• • •	12, 33	8, 42
A150499	:: :: :	14, 48	9, 61	A150764		7, 13	6, 19
A150950	::: ::: :::	8, 23	7, 29	A151053		14, 38	9, 48

Equation sizes $= \{ order, degree \} (rec, diffeq).$