Hardware Operators for Pairing-Based Cryptography

— Part I: Because size matters —

Jean-Luc Beuchat

Laboratory of Cryptography and Informantion Security University of Tsukuba, Japan jeanluc.beuchat@gmail.com

Joint work with:

Nicolas Brisebarre
Jérémie Detrey
Nicolas Estibals
Eiji Okamoto
Francisco Rodríguez-Henríquez

Arénaire, LIP, ÉNS Lyon, France CACAO, LORIA, Nancy, France CACAO, LORIA, Nancy, France LCIS, University of Tsukuba, Japan CSD, IPN, Mexico City, Mexico

Outline of the talk

- ► Pairing-based cryptography
- ► Pairings over elliptic curves
- ► Finite-field arithmetic
- ► Implementation results
- ► Concluding thoughts

Outline of the talk

- ► Pairing-based cryptography
- ► Pairings over elliptic curves
- ► Finite-field arithmetic
- ► Implementation results
- ► Concluding thoughts

► E defined by a Weierstraß equation of the form $y^2 = x^3 + Ax + B$

- ► E defined by a Weierstraß equation of the form $y^2 = x^3 + Ax + B$
- ightharpoonup E(K) set of rational points over a field K

- ► E defined by a Weierstraß equation of the form $y^2 = x^3 + Ax + B$
- ightharpoonup E(K) set of rational points over a field K
- ightharpoonup Additive group law over E(K)

- ► E defined by a Weierstraß equation of the form $y^2 = x^3 + Ax + B$
- ightharpoonup E(K) set of rational points over a field K
- ightharpoonup Additive group law over E(K)

- EC-based Diffie-Hellman key exchange
- EC-based Digital Signature Algorithm
- •

- ► E defined by a Weierstraß equation of the form $y^2 = x^3 + Ax + B$
- ightharpoonup E(K) set of rational points over a field K
- ightharpoonup Additive group law over E(K)

- EC-based Diffie-Hellman key exchange
- EC-based Digital Signature Algorithm
- •

- ▶ Interest: smaller keys than usual cryptosystems (RSA, DSA, ElGamal, ...)
- ▶ But there's more: bilinear pairings

 \blacktriangleright (\mathbb{G}_1 , +), an additively-written cyclic group of prime order $\#\mathbb{G}_1 = \ell$

- \blacktriangleright (\mathbb{G}_1 , +), an additively-written cyclic group of prime order $\#\mathbb{G}_1 = \ell$
- ▶ P, a generator of the group: $\mathbb{G}_1 = \langle P \rangle$

- \blacktriangleright (\mathbb{G}_1 , +), an additively-written cyclic group of prime order $\#\mathbb{G}_1 = \ell$
- ▶ P, a generator of the group: $\mathbb{G}_1 = \langle P \rangle$

Scalar multiplication: for any integer k, we have $kP = \underbrace{P + P + \cdots + P}_{k \text{ times}}$

- \blacktriangleright (\mathbb{G}_1 , +), an additively-written cyclic group of prime order $\#\mathbb{G}_1 = \ell$
- ▶ P, a generator of the group: $\mathbb{G}_1 = \langle P \rangle$

Scalar multiplication: for any integer k, we have $kP = \underbrace{P + P + \cdots + P}_{k \text{ times}}$

- \blacktriangleright (\mathbb{G}_1 , +), an additively-written cyclic group of prime order $\#\mathbb{G}_1 = \ell$
- ▶ P, a generator of the group: $\mathbb{G}_1 = \langle P \rangle$

Scalar multiplication: for any integer k, we have $kP = \underbrace{P + P + \cdots + P}_{k \text{ times}}$

- \blacktriangleright (\mathbb{G}_1 , +), an additively-written cyclic group of prime order $\#\mathbb{G}_1 = \ell$
- ▶ P, a generator of the group: $\mathbb{G}_1 = \langle P \rangle$

Scalar multiplication: for any integer k, we have $kP = \underbrace{P + P + \cdots + P}_{k \text{ times}}$

▶ Discrete logarithm: given $Q \in G_1$, compute k such that Q = kP

- \blacktriangleright (\mathbb{G}_1 , +), an additively-written cyclic group of prime order $\#\mathbb{G}_1 = \ell$
- ▶ P, a generator of the group: $\mathbb{G}_1 = \langle P \rangle$

Scalar multiplication: for any integer k, we have $kP = \underbrace{P + P + \cdots + P}_{k \text{ times}}$

▶ Discrete logarithm: given $Q \in G_1$, compute k such that Q = kP

$$Q = kP$$

- \blacktriangleright (\mathbb{G}_1 , +), an additively-written cyclic group of prime order $\#\mathbb{G}_1 = \ell$
- ▶ P, a generator of the group: $\mathbb{G}_1 = \langle P \rangle$

Scalar multiplication: for any integer k, we have $kP = \underbrace{P + P + \cdots + P}_{k \text{ times}}$

▶ Discrete logarithm: given $Q \in G_1$, compute k such that Q = kP

- \blacktriangleright (\mathbb{G}_1 , +), an additively-written cyclic group of prime order $\#\mathbb{G}_1 = \ell$
- ▶ P, a generator of the group: $\mathbb{G}_1 = \langle P \rangle$

Scalar multiplication: for any integer k, we have $kP = \underbrace{P + P + \cdots + P}_{k \text{ times}}$

▶ Discrete logarithm: given $Q \in \mathbb{G}_1$, compute k such that Q = kP

 \blacktriangleright We assume that the discrete logarithm problem (DLP) in \mathbb{G}_1 is hard

 \blacktriangleright (\mathbb{G}_2 , \times), a multiplicatively-written cyclic group of order $\#\mathbb{G}_2 = \#\mathbb{G}_1 = \ell$

- \blacktriangleright (\mathbb{G}_2 , \times), a multiplicatively-written cyclic group of order $\#\mathbb{G}_2 = \#\mathbb{G}_1 = \ell$
- ightharpoon A bilinear pairing on $(\mathbb{G}_1, \mathbb{G}_2)$ is a map

$$\hat{e}: \mathbb{G}_1 \times \mathbb{G}_1 \to \mathbb{G}_2$$

that satisfies the following conditions:

- non-degeneracy: $\hat{e}(P, P) \neq 1_{\mathbb{G}_2}$ (equivalently $\hat{e}(P, P)$ generates \mathbb{G}_2)
- bilinearity:

$$\hat{e}(Q_1 + Q_2, R) = \hat{e}(Q_1, R) \cdot \hat{e}(Q_2, R)$$
 $\hat{e}(Q, R_1 + R_2) = \hat{e}(Q, R_1) \cdot \hat{e}(Q, R_2)$

computability: ê can be efficiently computed

- \blacktriangleright (\mathbb{G}_2 , \times), a multiplicatively-written cyclic group of order $\#\mathbb{G}_2 = \#\mathbb{G}_1 = \ell$
- ightharpoon A bilinear pairing on $(\mathbb{G}_1, \mathbb{G}_2)$ is a map

$$\hat{e}: \mathbb{G}_1 \times \mathbb{G}_1 \to \mathbb{G}_2$$

that satisfies the following conditions:

- non-degeneracy: $\hat{e}(P, P) \neq 1_{\mathbb{G}_2}$ (equivalently $\hat{e}(P, P)$ generates \mathbb{G}_2)
- bilinearity:

$$\hat{e}(Q_1 + Q_2, R) = \hat{e}(Q_1, R) \cdot \hat{e}(Q_2, R)$$
 $\hat{e}(Q, R_1 + R_2) = \hat{e}(Q, R_1) \cdot \hat{e}(Q, R_2)$

- computability: ê can be efficiently computed
- ▶ Immediate property: for any two integers k_1 and k_2

$$\hat{e}(k_1Q, k_2R) = \hat{e}(Q, R)^{k_1k_2}$$

- \blacktriangleright (\mathbb{G}_2, \times), a multiplicatively-written cyclic group of order $\#\mathbb{G}_2 = \#\mathbb{G}_1 = \ell$
- ightharpoon A bilinear pairing on $(\mathbb{G}_1, \mathbb{G}_2)$ is a map

$$\hat{e}: \mathbb{G}_1 \times \mathbb{G}_1 \to \mathbb{G}_2$$

that satisfies the following conditions:

- non-degeneracy: $\hat{e}(P, P) \neq 1_{\mathbb{G}_2}$ (equivalently $\hat{e}(P, P)$ generates \mathbb{G}_2)
- bilinearity:

$$\hat{e}(Q_1 + Q_2, R) = \hat{e}(Q_1, R) \cdot \hat{e}(Q_2, R)$$
 $\hat{e}(Q, R_1 + R_2) = \hat{e}(Q, R_1) \cdot \hat{e}(Q, R_2)$

- computability: ê can be efficiently computed
- \blacktriangleright Immediate property: for any two integers k_1 and k_2

$$\hat{e}(k_1Q, k_2R) = \hat{e}(Q, R)^{k_1k_2}$$

- \blacktriangleright (\mathbb{G}_2 , \times), a multiplicatively-written cyclic group of order $\#\mathbb{G}_2 = \#\mathbb{G}_1 = \ell$
- ightharpoon A bilinear pairing on $(\mathbb{G}_1, \mathbb{G}_2)$ is a map

$$\hat{e}: \mathbb{G}_1 \times \mathbb{G}_1 \to \mathbb{G}_2$$

that satisfies the following conditions:

- non-degeneracy: $\hat{e}(P, P) \neq 1_{\mathbb{G}_2}$ (equivalently $\hat{e}(P, P)$ generates \mathbb{G}_2)
- bilinearity:

$$\hat{e}(Q_1 + Q_2, R) = \hat{e}(Q_1, R) \cdot \hat{e}(Q_2, R)$$
 $\hat{e}(Q, R_1 + R_2) = \hat{e}(Q, R_1) \cdot \hat{e}(Q, R_2)$

- computability: ê can be efficiently computed
- ▶ Immediate property: for any two integers k_1 and k_2

$$\hat{e}(k_1Q, k_2R) = \hat{e}(Q, R)^{k_1k_2}$$

- ► At first, used to attack supersingular elliptic curves
 - Menezes-Okamoto-Vanstone and Frey-Rück attacks, 1993 and 1994

$$\mathsf{DLP}_{\mathbb{G}_1}$$

kP

- ► At first, used to attack supersingular elliptic curves
 - Menezes-Okamoto-Vanstone and Frey-Rück attacks, 1993 and 1994

$$\begin{array}{ccc} \mathsf{DLP}_{\mathbb{G}_1} & <_{\mathsf{P}} & \mathsf{DLP}_{\mathbb{G}_2} \\ & & \mathsf{k}P & \longrightarrow & \hat{\mathsf{e}}(\mathsf{k}P,P) = \hat{\mathsf{e}}(P,P)^{\mathsf{k}} \end{array}$$

- ► At first, used to attack supersingular elliptic curves
 - Menezes-Okamoto-Vanstone and Frey-Rück attacks, 1993 and 1994

$$\begin{array}{ccc} \mathsf{DLP}_{\mathbb{G}_1} & <_{\mathsf{P}} & \mathsf{DLP}_{\mathbb{G}_2} \\ & & \mathsf{k}P & \longrightarrow & \hat{\mathsf{e}}(\mathsf{k}P,P) = \hat{\mathsf{e}}(P,P)^{\mathsf{k}} \end{array}$$

• for cryptographic applications, we will also require the DLP in \mathbb{G}_2 to be hard

- ► At first, used to attack supersingular elliptic curves
 - Menezes-Okamoto-Vanstone and Frey-Rück attacks, 1993 and 1994

$$\begin{array}{ccc}
\mathsf{DLP}_{\mathbb{G}_1} & <_{\mathsf{P}} & \mathsf{DLP}_{\mathbb{G}_2} \\
kP & \longrightarrow & \hat{e}(kP, P) = \hat{e}(P, P)^k
\end{array}$$

- for cryptographic applications, we will also require the DLP in \mathbb{G}_2 to be hard
- ▶ One-round three-party key agreement (Joux, 2000)
- ► Identity-based encryption
 - Boneh-Franklin, 2001
 - Sakai-Kasahara, 2001
- ► Short digital signatures
 - Boneh-Lynn-Shacham, 2001
 - Zang-Safavi-Naini-Susilo, 2004

...

7 / 38

7 / 38

7 / 38

7 / 38

Outline of the talk

- ► Pairing-based cryptography
- ► Pairings over elliptic curves
- ► Finite-field arithmetic
- ► Implementation results
- ► Concluding thoughts

- ▶ We first define
 - \mathbb{F}_q , a finite field, with $q = 2^m$, 3^m or p
 - E, an elliptic curve defined over \mathbb{F}_q
 - ℓ , a large prime factor of $\#E(\mathbb{F}_q)$

- ▶ We first define
 - \mathbb{F}_q , a finite field, with $q=2^m$, 3^m or p
 - E, an elliptic curve defined over \mathbb{F}_q
 - ℓ , a large prime factor of $\#E(\mathbb{F}_q)$
- ▶ $\mathbb{G}_1 = E(\mathbb{F}_q)[\ell]$, the \mathbb{F}_q -rational ℓ -torsion of E:

$$\mathbb{G}_1 = \{ P \in E(\mathbb{F}_q) \mid \ell P = \mathcal{O} \}$$

- ▶ We first define
 - \mathbb{F}_q , a finite field, with $q = 2^m$, 3^m or p
 - E, an elliptic curve defined over \mathbb{F}_q
 - ℓ , a large prime factor of $\#E(\mathbb{F}_q)$
- ▶ $\mathbb{G}_1 = E(\mathbb{F}_q)[\ell]$, the \mathbb{F}_q -rational ℓ -torsion of E:

$$\mathbb{G}_1 = \{ P \in E(\mathbb{F}_q) \mid \ell P = \mathcal{O} \}$$

▶ $\mathbb{G}_2 = \mu_\ell$, the group of ℓ -th roots of unity in $\mathbb{F}_{q^k}^{\times}$:

$$\mathbb{G}_2=\{U\in\mathbb{F}_{a^k}^{ imes}\mid U^\ell=1\}$$

- We first define
 - \mathbb{F}_q , a finite field, with $q=2^m$, 3^m or p
 - E, an elliptic curve defined over \mathbb{F}_q
 - ℓ , a large prime factor of $\#E(\mathbb{F}_q)$
- ▶ $\mathbb{G}_1 = E(\mathbb{F}_q)[\ell]$, the \mathbb{F}_q -rational ℓ -torsion of E:

$$\mathbb{G}_1 = \{ P \in E(\mathbb{F}_q) \mid \ell P = \mathcal{O} \}$$

▶ $\mathbb{G}_2 = \mu_\ell$, the group of ℓ -th roots of unity in $\mathbb{F}_{q^k}^{\times}$:

$$\mathbb{G}_2=\{U\in\mathbb{F}_{q^k}^{ imes}\mid U^\ell=1\}$$

- lacksquare k is the embedding degree, the smallest integer such that $\mu_\ell\subseteq \mathbb{F}_{q^k}^{ imes}$
 - usually large for ordinary elliptic curves
 - bounded in the case of supersingular elliptic curves
 (4 in characteristic 2; 6 in characteristic 3; and 2 in characteristic > 3)

- ▶ We first define
 - \mathbb{F}_q , a finite field, with $q=2^m$, 3^m or p
 - E, an elliptic curve defined over \mathbb{F}_q
 - ℓ , a large prime factor of $\#E(\mathbb{F}_q)$
- ▶ $\mathbb{G}_1 = E(\mathbb{F}_q)[\ell]$, the \mathbb{F}_q -rational ℓ -torsion of E:

$$\mathbb{G}_1 = \{ P \in E(\mathbb{F}_q) \mid \ell P = \mathcal{O} \}$$

▶ $\mathbb{G}_2 = \mu_\ell$, the group of ℓ -th roots of unity in $\mathbb{F}_{q^k}^{\times}$:

$$\mathbb{G}_2=\{U\in\mathbb{F}_{q^k}^{ imes}\mid U^\ell=1\}$$

- ightharpoonup k is the embedding degree, the smallest integer such that $\mu_\ell \subseteq \mathbb{F}_{q^k}^{ imes}$
 - usually large for ordinary elliptic curves
 - bounded in the case of supersingular elliptic curves
 (4 in characteristic 2; 6 in characteristic 3; and 2 in characteristic > 3)

10 / 38

$$\hat{e}$$
 : $E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_q)[\ell]$
(P , Q)

- ► Computation via Miller's iterative algorithm:
 - m/2 iterations over \mathbb{F}_{2^m} and \mathbb{F}_{3^m} (η_T pairing)
 - $\log_2 p$ iterations over \mathbb{F}_p

ightharpoonup Discrete logarithm problem should be hard in G_1

ightharpoonup Discrete logarithm problem should be hard in G_1

ightharpoonup Discrete logarithm problem should be hard in G_1

▶ Discrete logarithm problem should be hard in G₁

▶ Discrete logarithm problem should be hard in G₁

▶ Discrete logarithm problem should be hard in G₁

ightharpoonup Discrete logarithm problem should be hard in \mathbb{G}_2

$$\hat{\mathsf{e}}: E(\mathbb{F}_q)[\ell] imes E(\mathbb{F}_q)[\ell] o \mu_\ell \subseteq \mathbb{F}_{q^k}^{ imes}$$

$$\hat{\mathsf{e}}: \mathsf{E}(\mathbb{F}_q)[\ell] imes \mathsf{E}(\mathbb{F}_q)[\ell] o \mu_\ell \subseteq \mathbb{F}_{q^k}^{\times}$$

▶ Discrete logarithm in $\mathbb{G}_1 = E(\mathbb{F}_q)[\ell]$ (Pollard's ρ):

$$\sqrt{\ell} \approx \sqrt{q}$$

▶ Discrete logarithm in $\mathbb{G}_2 = \mu_{\ell} \subseteq \mathbb{F}_{q^k}^{\times}$ (FFS or NFS):

$$\exp\left(c\cdot(\ln q^k)^{\frac{1}{3}}\cdot(\ln\ln q^k)^{\frac{2}{3}}\right)$$

$$\hat{\mathsf{e}}: \mathsf{E}(\mathbb{F}_q)[\ell] imes \mathsf{E}(\mathbb{F}_q)[\ell] o \mu_\ell \subseteq \mathbb{F}_{q^k}^{ imes}$$

▶ Discrete logarithm in $\mathbb{G}_1 = E(\mathbb{F}_q)[\ell]$ (Pollard's ρ):

$$\sqrt{\ell} \approx \sqrt{q} = \exp\left(\frac{1}{2} \cdot (\ln q)\right)$$

▶ Discrete logarithm in $\mathbb{G}_2 = \mu_\ell \subseteq \mathbb{F}_{q^k}^{\times}$ (FFS or NFS):

$$\exp\left(c\cdot(\ln q^k)^{\frac{1}{3}}\cdot(\ln\ln q^k)^{\frac{2}{3}}\right)$$

$$\hat{\mathbf{e}}: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_q)[\ell] \to \mu_\ell \subseteq \mathbb{F}_{q^k}^{\times}$$

▶ Discrete logarithm in $\mathbb{G}_1 = E(\mathbb{F}_q)[\ell]$ (Pollard's ρ):

$$\sqrt{\ell} pprox \sqrt{q} = \exp\left(\frac{1}{2} \cdot (\ln q)\right)$$

▶ Discrete logarithm in $\mathbb{G}_2 = \mu_{\ell} \subseteq \mathbb{F}_{q^k}^{\times}$ (FFS or NFS):

$$\exp\left(c\cdot(\ln q^k)^{\frac{1}{3}}\cdot(\ln\ln q^k)^{\frac{2}{3}}\right)$$

- \blacktriangleright The discrete logarithm problem is usually easier in \mathbb{G}_2 than in \mathbb{G}_1
 - \bullet current security: $\sim 2^{80}$, equivalent to 80-bit symmetric encryption or RSA-1024
 - recommended security: $\sim 2^{128}$ (AES-128, RSA-3072)

$$\hat{\mathsf{e}}: \mathsf{E}(\mathbb{F}_q)[\ell] imes \mathsf{E}(\mathbb{F}_q)[\ell] o \mu_\ell \subseteq \mathbb{F}_{q^k}^{ imes}$$

▶ The embedding degree k depends on the field characteristic q

$$\hat{\mathsf{e}}: \mathsf{E}(\mathbb{F}_q)[\ell] imes \mathsf{E}(\mathbb{F}_q)[\ell] o \mu_\ell \subseteq \mathbb{F}_{q^k}^{ imes}$$

▶ The embedding degree k depends on the field characteristic q

Base field (\mathbb{F}_q)	F ₂ ^m	\mathbb{F}_{3^m}	\mathbb{F}_{p}
Embedding degree (k)	4	6	2

$$\hat{\mathsf{e}}: E(\mathbb{F}_q)[\ell] imes E(\mathbb{F}_q)[\ell] o \mu_\ell \subseteq \mathbb{F}_{q^k}^{ imes}$$

 \blacktriangleright The embedding degree k depends on the field characteristic q

Base field (\mathbb{F}_q)	F ₂ ^m	\mathbb{F}_{3^m}	\mathbb{F}_p	
Embedding degree (k)	4	4 6 2		
Lower security $(\sim 2^{64})$	m = 239	m = 97	p pprox 256 bits	
Medium security ($\sim 2^{80}$)	m = 373	m = 163	$ p pprox 512 ext{ bits}$	
Higher security $(\sim 2^{128})$	m = 1103	m = 503	p pprox 1536 bits	

13 / 38

$$\hat{\mathbf{e}}: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_q)[\ell] \to \mu_\ell \subseteq \mathbb{F}_{q^k}^{\times}$$

 \triangleright The embedding degree k depends on the field characteristic q

Base field (\mathbb{F}_q)	F ₂ ^m	\mathbb{F}_{3^m}	\mathbb{F}_p	
Embedding degree (k)	4	6	2	
Lower security $(\sim 2^{64})$	m = 239	m = 97	p pprox 256 bits	
Medium security ($\sim 2^{80}$)	m = 373	m=163	$ p pprox 512 ext{ bits}$	
Higher security ($\sim 2^{128}$)	m = 1103	m = 503	p pprox 1536 bits	

ightharpoonup \mathbb{F}_{2^m} : simpler finite field arithmetic

$$\hat{\mathsf{e}}: E(\mathbb{F}_q)[\ell] imes E(\mathbb{F}_q)[\ell] o \mu_\ell \subseteq \mathbb{F}_{q^k}^{ imes}$$

 \blacktriangleright The embedding degree k depends on the field characteristic q

Base field (\mathbb{F}_q)	F ₂ ^m	\mathbb{F}_{3^m}	\mathbb{F}_p	
Embedding degree (k)	4 6		2	
Lower security $(\sim 2^{64})$	m = 239	m = 97	p pprox 256 bits	
Medium security ($\sim 2^{80}$)	m = 373	$m=163$ $ p \approx 512$ b		
Higher security ($\sim 2^{128}$)	m = 1103	m = 503	p pprox 1536 bits	

- $ightharpoonup \mathbb{F}_{2^m}$: simpler finite field arithmetic
- ightharpoonup \mathbb{F}_{3^m} : smaller field extension

$$\hat{\mathbf{e}}: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_q)[\ell] \to \mu_\ell \subseteq \mathbb{F}_{q^k}^{\times}$$

 \blacktriangleright The embedding degree k depends on the field characteristic q

Base field (\mathbb{F}_q)	F ₂ ^m	\mathbb{F}_{3^m}	\mathbb{F}_{p}	
Embedding degree (k)	4	6	2	
Lower security $(\sim 2^{64})$	m = 239	m = 97	p pprox 256 bits	
Medium security ($\sim 2^{80}$)	m = 373	m = 163	p pprox 512 bits	
Higher security ($\sim 2^{128}$)	m = 1103	m = 503	p pprox 1536 bits	

- $ightharpoonup \mathbb{F}_{2^m}$: simpler finite field arithmetic
- ightharpoonup F_{3m}: smaller field extension
- \triangleright \mathbb{F}_p : prohibitive field sizes

$$\hat{\mathsf{e}}: \mathsf{E}(\mathbb{F}_q)[\ell] imes \mathsf{E}(\mathbb{F}_q)[\ell] o \mu_\ell \subseteq \mathbb{F}_{q^k}^{ imes}$$

 \blacktriangleright The embedding degree k depends on the field characteristic q

Base field (\mathbb{F}_q)	F ₂ ^m	\mathbb{F}_{3^m}	\mathbb{F}_p	
Embedding degree (k)	4 6		2	
Lower security $(\sim 2^{64})$	m = 239	m = 97	p pprox 256 bits	
Medium security ($\sim 2^{80}$)	m = 373	m = 163	p pprox 512 bits	
Higher security ($\sim 2^{128}$)	m = 1103	m = 503	p pprox 1536 bits	

- ightharpoonup F_{2m}: simpler finite field arithmetic
- ightharpoonup F_{3m}: smaller field extension
- \triangleright \mathbb{F}_p : prohibitive field sizes

$$\hat{\mathsf{e}}: E(\mathbb{F}_{p^m})[\ell] imes E(\mathbb{F}_{p^m})[\ell] o \mu_\ell \subseteq \mathbb{F}_{p^{km}}^{ imes}$$

$$\hat{\mathsf{e}}: E(\mathbb{F}_{p^m})[\ell] imes E(\mathbb{F}_{p^m})[\ell] o \mu_\ell \subseteq \mathbb{F}_{p^{km}}^{ imes}$$

- ightharpoonup Arithmetic over \mathbb{F}_{p^m} :
 - polynomial basis: $\mathbb{F}_{p^m} \cong \mathbb{F}_p[x]/(f(x))$
 - f(x), degree-m polynomial irreducible over \mathbb{F}_p

$$\hat{e}: E(\mathbb{F}_{p^m})[\ell] imes E(\mathbb{F}_{p^m})[\ell] o \mu_\ell \subseteq \mathbb{F}_{p^{km}}^{\times}$$

- ightharpoonup Arithmetic over \mathbb{F}_{p^m} :
 - polynomial basis: $\mathbb{F}_{p^m} \cong \mathbb{F}_p[x]/(f(x))$
 - f(x), degree-m polynomial irreducible over \mathbb{F}_p
- ▶ Arithmetic over $\mathbb{F}_{p^{km}}^{\times}$:
 - tower-field representation
 - only arithmetic over the underlying field \mathbb{F}_{p^m}

$$\hat{\mathsf{e}}: E(\mathbb{F}_{p^m})[\ell] imes E(\mathbb{F}_{p^m})[\ell] o \mu_\ell \subseteq \mathbb{F}_{p^{km}}^{ imes}$$

- ightharpoonup Arithmetic over \mathbb{F}_{p^m} :
 - polynomial basis: $\mathbb{F}_{p^m} \cong \mathbb{F}_p[x]/(f(x))$
 - f(x), degree-m polynomial irreducible over \mathbb{F}_p
- ightharpoonup Arithmetic over $\mathbb{F}_{p^{km}}^{\times}$:
 - tower-field representation
 - only arithmetic over the underlying field \mathbb{F}_{p^m}
- ▶ Operations over \mathbb{F}_{p^m} :

	Characteristic 2		Characteristic 3	
Base field (\mathbb{F}_{p^m})	F ₂ ^m	$\mathbb{F}_{2^{313}}$	F ₃ ^m	F ₃₁₂₇
+/-	$27\lfloor \frac{m}{2} \rfloor + 75$	4287	$119\lfloor \frac{m}{4} \rfloor + 260$	3949
×	$\left 7\left\lfloor \frac{\bar{m}}{2} \right\rfloor + 29 \right $	1121	$25\lfloor \frac{\dot{m}}{4} \rfloor + 93$	868
a ^p	6m + 9	1887	$17\lfloor \frac{m}{2} \rfloor + 8$	1079
a^{-1}	1	1	1	1

$$\hat{e}: E(\mathbb{F}_{p^m})[\ell] \times E(\mathbb{F}_{p^m})[\ell] \to \mu_\ell \subseteq \mathbb{F}_{p^{km}}^{\times}$$

- ▶ Arithmetic over \mathbb{F}_{p^m} :
 - polynomial basis: $\mathbb{F}_{p^m} \cong \mathbb{F}_p[x]/(f(x))$
 - f(x), degree-m polynomial irreducible over \mathbb{F}_p
- ightharpoonup Arithmetic over $\mathbb{F}_{p^{km}}^{\times}$:
 - tower-field representation
 - only arithmetic over the underlying field \mathbb{F}_{p^m}
- ▶ Operations over \mathbb{F}_{p^m} :

	Characteristic 2		Characterist	ic 3
Base field (\mathbb{F}_{p^m})	F ₂ ^m	$\mathbb{F}_{2^{313}}$	\mathbb{F}_{3^m}	$\mathbb{F}_{3^{127}}$
+/-	$27\lfloor \frac{m}{2} \rfloor + 75$	4287	$119\lfloor \frac{m}{4} \rfloor + 260$	3949
×	$\left 7\left\lfloor \frac{\bar{m}}{2} \right\rfloor + 29 \right $	1121	$25\lfloor \frac{\dot{m}}{4} \rfloor + 93$	868
a ^p	6m + 9	1887	$17\lfloor \frac{m}{2} \rfloor + 8$	1079
a^{-1}	1	1	1	1

▶ Software not well suited to small characteristic: need for hardware acceleration

Outline of the talk

- ► Pairing-based cryptography
- ► Pairings over elliptic curves
- ► Finite-field arithmetic
- ► Implementation results
- ► Concluding thoughts

Outline of the talk

- ► Pairing-based cryptography
- ► Pairings over elliptic curves
- ► Finite-field arithmetic (only in characteristic 3)
- ► Implementation results
- ► Concluding thoughts

▶ $f \in \mathbb{F}_3[x]$: degree-m irreducible polynomial over \mathbb{F}_3

$$f = x^m + f_{m-1}x^{m-1} + \cdots + f_1x + f_0$$

Arithmetic over F₃^m

▶ $f \in \mathbb{F}_3[x]$: degree-m irreducible polynomial over \mathbb{F}_3

$$f = x^m + f_{m-1}x^{m-1} + \cdots + f_1x + f_0$$

- $ightharpoonup \mathbb{F}_{3^m} \cong \mathbb{F}_3[x]/(f)$
- ightharpoonup $a \in \mathbb{F}_{3^m}$:

$$a = a_{m-1}x^{m-1} + \cdots + a_1x + a_0$$

 \blacktriangleright Each element of \mathbb{F}_3 stored using two bits

Addition over F_{3m}

$$r = a + b = (a_{m-1} + b_{m-1})x^{m-1} + \cdots + (a_1 + b_1)x + (a_0 + b_0)$$

Addition over F₃^m

$$r = a + b = (a_{m-1} + b_{m-1})x^{m-1} + \cdots + (a_1 + b_1)x + (a_0 + b_0)$$

• coefficient-wise additions over \mathbb{F}_3 : $r_i = (a_i + b_i) \mod 3$

Addition over F₃^m

$$r = a + b = (a_{m-1} + b_{m-1})x^{m-1} + \cdots + (a_1 + b_1)x + (a_0 + b_0)$$

- coefficient-wise additions over \mathbb{F}_3 : $r_i = (a_i + b_i) \mod 3$
- addition over \mathbb{F}_3 : small look-up tables

Addition, subtraction and accumulation over F_{3^m}

• sign selection: multiplication by 1 or 2

$$-a \equiv 2a \pmod{3}$$

feedback loop for accumulation

- ► Parallel-serial multiplication
 - multiplicand loaded in a parallel register
 - multiplier loaded in a shift register
- Most significant coefficients first (Horner scheme)
- ▶ D coefficients processed at each clock cycle: $\left\lceil \frac{m}{D} \right\rceil$ cycles per multiplication

 \triangleright Example for D=3 (3 coefficients per iteration):

- ► Computing the partial products $b_j \cdot a$:
 - coefficient-wise multiplication over \mathbb{F}_3 : $(b_j \cdot a_i) \mod 3$
 - multiplications over \mathbb{F}_3 : small look-up tables

- ► Computing the partial products $b_i \cdot a$:
 - coefficient-wise multiplication over \mathbb{F}_3 : $(b_i \cdot a_i)$ mod 3
 - multiplications over \mathbb{F}_3 : small look-up tables
- ightharpoonup Multiplication by x^j : simple shift (only wires)

- ► Computing the partial products $b_i \cdot a$:
 - coefficient-wise multiplication over \mathbb{F}_3 : $(b_i \cdot a_i)$ mod 3
 - multiplications over \mathbb{F}_3 : small look-up tables
- ightharpoonup Multiplication by x^j : simple shift (only wires)
- ▶ Modulo *f* reduction:

•
$$f = x^m + f_{m-1}x^{m-1} + \dots + f_1x + f_0$$
 gives

$$x^m \equiv (-f_{m-1})x^{m-1} + \dots + (-f_1)x + (-f_0) \pmod{f}$$

- highest degree of polynomial to reduce: m + D 1
- if f is carefully selected (e.g. a trinomial or pentanomial), only a few multiplications and additions over \mathbb{F}_3

- ► Computing the partial products $b_i \cdot a$:
 - coefficient-wise multiplication over \mathbb{F}_3 : $(b_i \cdot a_i)$ mod 3
 - multiplications over \mathbb{F}_3 : small look-up tables
- ightharpoonup Multiplication by x^j : simple shift (only wires)
- ▶ Modulo *f* reduction:
 - $f = x^m + f_{m-1}x^{m-1} + \dots + f_1x + f_0$ gives $x^m \equiv (-f_{m-1})x^{m-1} + \dots + (-f_1)x + (-f_0) \pmod{f}$
 - highest degree of polynomial to reduce: m + D 1
 - if f is carefully selected (e.g. a trinomial or pentanomial), only a few multiplications and additions over \mathbb{F}_3
 - example for m = 97: $f = x^{97} + x^{12} + 2$

Frobenius map over F_{3m}: cubing

 $\blacktriangleright \text{ Since } \binom{3}{1} = \binom{3}{2} = 3:$

$$a^3 \equiv a_{m-1}x^{3(m-1)} + \dots + a_1x^3 + a_0 \pmod{3}$$

▶ Degree-(3m-3) polynomial: requires a modulo f reduction

Frobenius map over F_{3m}: cubing

 $\blacktriangleright \text{ Since } \binom{3}{1} = \binom{3}{2} = 3:$

$$a^3 \equiv a_{m-1}x^{3(m-1)} + \dots + a_1x^3 + a_0 \pmod{3}$$

- ▶ Degree-(3m-3) polynomial: requires a modulo f reduction
- ► Symbolic computation of the reduction: each coefficient of the result is a linear combination of the a_i's

$$a^3 \bmod f = \sum_{j=0}^{n-1} w_j \cdot \mu_j$$

with $w_j \in \mathbb{F}_3$, $\mu_j \in \mathbb{F}_{3^m}$, and $\mu_{j,i} \in \{0\} \cup \{a_{m-1}, \dots, a_1, a_0\}$

• Example for m = 97 and $f = x^{97} + x^{12} + 2$:

• Example for m = 97 and $f = x^{97} + x^{12} + 2$:

• Example for m = 97 and $f = x^{97} + x^{12} + 2$:

$$a^{3} \bmod f = (a_{32}x^{96} + a_{64}x^{95} + a_{96}x^{94} + \cdots + a_{33}x^{2} + a_{65}x + a_{0}) \times 1$$

$$+ (0 + 0 + a_{88}x^{94} + \cdots + 0 + 0 + a_{89}) \times 1$$

$$+ (0 + 0 + a_{92}x^{94} + \cdots + 0 + 0 + a_{93}) \times 1$$

$$+ (0 + a_{60}x^{95} + 0 + \cdots + 0 + a_{61}x + 0) \times 2$$

$$= (a_{32}x^{96} + a_{64}x^{95} + a_{96}x^{94} + \cdots + a_{33}x^{2} + a_{65}x + a_{0}) \times 1$$

$$+ (0 + a_{60}x^{95} + a_{88}x^{94} + \cdots + 0 + a_{61}x + a_{89}) \times 1$$

$$+ (0 + a_{60}x^{95} + a_{92}x^{94} + \cdots + 0 + a_{61}x + a_{93}) \times 1$$

- ► Required hardware:
 - only wires to compute the μ_j 's
 - multiplications over \mathbb{F}_3 for the weights w_i
 - multi-operand addition over \mathbb{F}_{3^m}

- feedback loop for successive cubings
- sign selection for computing either a^3 or $-a^3$

Inversion over F_{3m}

► Extended Euclidean Algorithm?

- ► Extended Euclidean Algorithm?
 - fast computation
 - ... but need for additional hardware

- Extended Euclidean Algorithm?
 - fast computation
 - ... but need for additional hardware
- ➤ Our solution: Fermat's little theorem

$$a^{-1} = a^{3^m - 2}$$
 on $\mathbb{F}_{3^m} (a \neq 0)$

- Extended Euclidean Algorithm?
 - fast computation
 - ... but need for additional hardware
- ▶ Our solution: Fermat's little theorem

$$a^{-1} = a^{3^m-2}$$
 on $\mathbb{F}_{3^m} (a \neq 0)$

- algorithm by Itoh and Tsujii
- requires only multiplications and cubings over \mathbb{F}_{3^m}

- Extended Euclidean Algorithm?
 - fast computation
 - ... but need for additional hardware
- ▶ Our solution: Fermat's little theorem

$$a^{-1} = a^{3^m - 2}$$
 on $\mathbb{F}_{3^m} (a \neq 0)$

- algorithm by Itoh and Tsujii
- requires only multiplications and cubings over \mathbb{F}_{3^m}
- ullet only one inversion for the full pairing: delay overhead is negligible (<1%)

The full processing element

The full processing element

- ► For the Tate pairing: limited parallelism between additions, multiplications and Frobenius maps
- ► Can we share hardware resources between the three operators?

What can we share?

- ► Input and output registers
- ► Partial product generators:
 - sign selection for the addition / subtraction
 - partial products for the multiplication
 - multiplication by the w_i 's for the Frobenius map
- ► Multi-operand addition tree
- ► Feedback loops for accumulation

Outline of the talk

- ► Pairing-based cryptography
- ► Pairings over elliptic curves
- ► Finite-field arithmetic
- ► Implementation results
- ► Concluding thoughts

Experimental setup

- ► Full coprocessor for computation of the Tate pairing
- Architecture based on our unified operator
- Prototyped on a Xilinx Virtex-II Pro 20 FPGA (mid-range model)
- ▶ Post place-and-route results: area, computation time, AT product

Coprocessor area (characteristic 2)

Coprocessor area (characteristic 3)

Coprocessor area

Calculation time (characteristic 2)

Calculation time (characteristic 3)

Calculation time

Outline of the talk

- ► Pairing-based cryptography
- ► Pairings over elliptic curves
- ► Finite-field arithmetic
- ► Implementation results
- ► Concluding thoughts

- ► Characteristic 3 performs slightly better than characteristic 2
 - at least on our unified architecture
 - good overall performances vouch for stronger confidence in this observation

- ► Characteristic 3 performs slightly better than characteristic 2
 - at least on our unified architecture
 - good overall performances vouch for stronger confidence in this observation
 - not true anymore on parallel architectures: the battle is not over!

- ► Characteristic 3 performs slightly better than characteristic 2
 - at least on our unified architecture
 - good overall performances vouch for stronger confidence in this observation
 - not true anymore on parallel architectures: the battle is not over!
- Unified operator
 - small but also competitively fast
 - parameter D to explore the area-time tradeoff
 - high scalability: support for larger extension degrees and higher levels of security
 - automatic VHDL generation: ultra-fast development

- ► Characteristic 3 performs slightly better than characteristic 2
 - at least on our unified architecture
 - good overall performances vouch for stronger confidence in this observation
 - not true anymore on parallel architectures: the battle is not over!

Unified operator

- small but also competitively fast
- parameter D to explore the area-time tradeoff
- high scalability: support for larger extension degrees and higher levels of security
- automatic VHDL generation: ultra-fast development

Perspectives

- parallel architectures (work in progress with N. Cortez-Duarte and N. Estibals)
- hyperelliptic curves (work in progress with G. Hanrot on genus 2)
- Ate pairing
- pairings on Edwards curves

- ► Characteristic 3 performs slightly better than characteristic 2
 - at least on our unified architecture
 - good overall performances vouch for stronger confidence in this observation
 - not true anymore on parallel architectures: the battle is not over!
- Unified operator
 - small but also competitively fast
 - parameter D to explore the area-time tradeoff
 - high scalability: support for larger extension degrees and higher levels of security
 - automatic VHDL generation: ultra-fast development
- Perspectives
 - parallel architectures (work in progress with N. Cortez-Duarte and N. Estibals)
 - hyperelliptic curves (work in progress with G. Hanrot on genus 2)
 - Ate pairing
 - pairings on Edwards curves
 - AES-128-equivalent security!

With thanks to our sponsor

Thank you for your attention

Questions?